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Abstract6

Rapid screening of hospital admissions to detect asymptomatic carriers of resistant bacteria can prevent pathogen7

outbreaks. However, the resulting isolates rarely have their genome sequenced due to cost constraints and long turn-8

around times to get and process the data, limiting their usefulness to the practitioner. Here we use real-time, on-device9

target enrichment ("adaptive") sequencing as a highly multiplexed assay covering 1,147 antimicrobial resistance genes.10

We compare its utility against standard and metagenomic sequencing, focusing on an isolate of Raoultella ornithinolytica11

harbouring three carbapenemases (NDM, KPC, VIM). Based on this experimental data, we then model the influence of12

several variables on the enrichment results and predict a large effect of nucleotide identity (higher is better) and read13

length (shorter is better). Lastly, we show how all relevant resistance genes are detected using adaptive sequencing on a14

miniature ("Flongle") flow cell, motivating its use in a clinical setting to monitor similar cases and their surroundings.15

Keywords Nanopore sequencing · Target enrichment · Antimicrobial Resistance · Carbapenemases · Plasmids16

Background17

Screening patients for multiresistant bacteria on hospital admission can detect asymptomatic colonization early1 and18

reduce subsequent complications.2 However, corresponding isolates rarely have their genome sequenced, which would19

enable genomic surveillance, and, as a result, source control and reduced spread.3 Such resistant strains can colonize20

patients for years, increasing the value of this information.4 Long-term carriage is surprising in the absence of a21

selective stimuli such as treatment with antimicrobials. Recently, the underlying microbial consortia in which these22

strains are embedded have been implicated in resistance maintenance through ongoing horizontal gene transfer of23

mobile elements.5, 6 This finding suggests that in special cases, genomic surveillance should be expanded to include24

metagenomic data.725
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Here we report on a patient with multiple carbapenem-resistant strains detected in a rectal swab. One of the isolates26

simultaneously carried three carbapenemases, an unusually high number. To support a timely response, we integrated27

the results from multiple modalities of real-time nanopore sequencing. First, we reconstructed the genomes of individual28

isolates and then complemented them with metagenomic data from the swab. In a proof-of-concept, we then applied29

real-time on-device target enrichment of 1,147 resistance genes on a miniature flow cell8 to create an ultra-high multiplex30

assay.31

Results32

A case of extensive antimicrobial resistance is characterized using isolate and metagenomic33

Nanopore-sequencing34

During resistance screening of rectal swabs, we found three bacterial species growing on carbapenem agar (Raoultella35

ornithinolytica, Citrobacter freundii, and Citrobacter amalonaticus). The patient’s history revealed no apparent source,36

although past occupations included work in waste management and training in agriculture, both of which have increased37

exposure to antibiotic resistance genes.9 Surprisingly, we detected multiple carbapenemases in R. ornithinolytica using38

PCR (NDM, KPC, VIM). To identify all resistance genes in the isolates and any putative horizontal transfer between39

them, we performed real-time nanopore sequencing, both of the isolates individually and of the entire rectal swab,40

generating in total 3.9 M reads and 23.3 Gb on a standard ("MinION") flow cell.41

The R. ornithinolytica isolate carried nine plasmids and three carbapenemases: NDM-1, KPC-2, and VIM-1 (Figure 1A).42

All carbapenemases were encoded on one plasmid each, except VIM, which was located on the bacterial chromosome.43

The two Citrobacter isolates only carried VIM-1. An alignment of the genomic region 10 Kb upstream and downstream44

of VIM across the isolates revealed a transposase-mediated resistance transfer, for which we propose the following45

gene flow: The genomes of C. freundii and C. amalonaticus both carry VIM-1 on an IncHI2 plasmid (> 95 %46

sequence identity). In C. freundii, this transposon then likely copied itself into an IncN plasmid with the help of an47

ISKpn19 transposase (Figure 1B). The same transposase is found flanking the VIM transposon in the R. ornithinolytica48

chromosome, which makes the IncN plasmid of C. freundii its likely source. A similar transfer pattern was observed for49

the penicillinase OXA-1 (data not shown).50

Isolate sequencing captured 85.5 % (59/69) of resistance genes detected in the underlying microbial consortium through51

metagenomic sequencing (total yield 10 Gb, Figure 1C). Of the remainder, few genes were clinically relevant, such as52

several efflux pumps. Other resistance genes were associated with Gram-positive bacteria, which we did not screen for53

with culture (Figure 1C). Surprisingly, metagenomics did not detect five resistance gene types, including KPC, two54

out of three OXA copies, and two out of four VIM copies. This omission likely occurs because the metagenome was55

dominated by Proteus vulgaris (44.6 % of reads), leaving fewer reads (depth) for the carbapenemase-carrying strains56

(C. freundii 19.7 %, R. ornithinolytica 1.8 %, C. amalonaticus 0.01 %). Selective culture enriched these low-abundant57

species.58

We also observed substantial horizontal gene transfer between our isolate members of the Enterobacteriaceae (Fig-59

ure 1D). For example, C. freundii and R. ornithinolytica share 15 loci. A region was labeled as a putative transfer60

if its length exceeded one kilobase with 99.9 % sequence identity between any two genomes. No additional transfer61
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Figure 1: Real-time sequencing reveals extensive resistance load and horizontal gene transfer. (A) Genome
reconstruction of a strain of R. ornithinolytica carrying nine plasmids and three carbapenemase genes
(in addition to two linear plasmid fragments mapping to R. ornithinolytica plasmid MT062911.1, NCBI).
Color-coded coverage from 90x (black, e.g., chromosome) to 250x (red, e.g., plasmid carrying OXA-1).
(B) Gene transfer of VIM-1 across three strains and four loci. The carbapenemase is flanked by multiple
transposases (see annotation), which likely mediate its mobilization. Vertical lines indicate 100 % sequence
identity between corresponding genes. (C) Comparison of shared resistance genes between the enrichment
sequencing run ("Flongle"), the R. ornithinolytica isolate, all four "isolates" combined and the "metagenome"
assembly. Numbers correspond to absolute numbers of (shared, de-duplicated) genes. Of all resistance
genes identified in the metagenome, 85.5 % (59/69) were found in the isolates. Surprisingly, several
resistance genes were not identified in the metagenome, among them several carbapenemase copies. In the
R. ornithinolytica isolate genome, about two-thirds of resistance genes were also found using on-device
target enrichment. All plasmid-encoded genes among them were detected, including all carbapenemases.
(D) Pairwise shared sequences between isolates and metagenome-assembled genomes (grayscale is number
of shared sequences). Putative transfers were defined as loci with a minimum length of one kilobase and
99.9 % sequence identity between each pair of loci. Extensive sequence transfer is observed between the
three isolate genomes (and their corresponding bins from the metagenomic assembly). (E) Miniature,
low-cost flow cell used for on-device target enrichment ("Flongle", Oxford Nanopore Technologies), with a
one-cent coin placed on top as scale.

was found in two uncultured, metagenome-assembled genomes (MAGs), namely Enterococcus faecium and Serratia62

ureilytica. None of the remaining metagenomic contigs showed putative transfers. Again, metagenomics did not add63

important information beyond the culture isolates.64
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Adaptive sequencing effectively enriches for antimicrobial resistance genes65

The sensitivity of metagenomic sequencing can be increased with depth, but the associated cost limits the applicability66

in the routine laboratory. Therefore, going in the opposite direction, the "Flongle" nanopore flow cell aims to reduce67

per-run costs through reduced sequencing yield. Because the yield is reduced, however, targeted sequencing of relevant68

genes or loci is desirable. Such target enrichment can be performed "on-device", i.e., during the sequencing run69

in real-time and without any changes in the sample preparation, using a method also known as nanopore "adaptive70

sequencing".10–12 Here, reads are rejected from the pore when the read fragment that already passed through it does not71

match any sequence in a target database. The nanopore is then free to sequence another molecule.72

Adaptive sequencing can be used to enrich or deplete either entire organisms from a sample of DNA or to target specific73

genes.11, 12 Here we aimed to enrich 1,147 representative antimicrobial resistance genes (ARGs, see methods), which to74

our knowledge, is the first time that adaptive sequencing has been used to target a microbial gene panel. We define75

enrichment as the difference in total read count over a corresponding ARG between standard and adaptive sequencing.76

In the latter condition and unless stated otherwise, we exclude rejected reads, i.e., those for which the adaptive selection77

algorithm has not recognized a target in the first bases of the read (Figure S1).78

Within the score of the presented use case, our enrichment definition makes sense because our aim is to count (and79

optimize for) the absolute number of detected resistance gene copies. Analogous to digital PCR, an increased number80

of detected copies translates into increased test sensitivity. This definition should not be applied when the aim is e. g.81

to balance target coverage. For example, Payne et al. demonstrated how adaptive sampling could be used to balance82

sequencing coverage for an unbalanced, mixed culture of microbial species.12 In their enrichment protocol, reads from83

all genomes are initially accepted until a target coverage is reached, at which point reads from the associated genome84

are rejected. This protocol effectively shifts the number of bases sequenced towards less-covered genomes because85

rejected reads are much shorter, while the proportion of reads remaines the same (a result we replicate, see below).86

Thus, one can still determine relative abundance during such an experiment.87

However, detecting and comparing the number of gene copies between conditions is a wholly different use case. Read88

count over target genes is a commonly used metric in RNA-Seq experiments, with two caveats: First, most RNA-Seq89

studies use fixed-sized short reads, i.e., the read length distribution is the same for all conditions. Second, the read90

count is normalized by target length and the overall number of mapped reads, which allows the comparison of targets91

within a condition ("relative expression"), although their size might differ. Here, we only use raw read count to measure92

enrichment without further adjustments. We justify this because, first, a single library (and thus a single pool of DNA93

fragments) was used in both conditions (standard, adaptive), and the resulting read length distributions for "standard"94

and "unrejected adaptive" reads are near-identical (Figure S1). Second, we only compare each target gene between the95

two conditions, so target length normalization is not required.96

To compare target read abundance between adaptive and "standard" nanopore sequencing, we sequenced three isolates97

in technical duplicates on a single MinION flow cell, periodically alternating between adaptive and standard sequencing98

in 16 one-hour intervals (Figure 2A). Overall, adaptive sequencing could roughly double the abundance of many targets,99

while others were hardly detected at all (Figure 2B). We subsequently identified two factors that substantially affected100

target abundance between the two conditions: nucleotide identity and read length.101
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First, high nucleotide identity between an isolate’s gene and the corresponding member of the target gene panel resulted102

in a higher on-target read count (Figure 2B). Surprisingly, most similar and thus most enriched genes were located on103

plasmids. This likely reflects a bias in the database composition, where common resistance plasmids are well annotated104

while strain-specific, chromosomal gene isoforms are undersampled. As expected, target sequence similarity did not105

affect abundance in the standard condition, which did not use a target database. To quantify this effect, we performed106

Bayesian regression and modeled the effects of variables for which a contribution to abundance seemed plausible,107

namely sequence similarity, coverage, read length and whether the target was located on a plasmid (including interaction108

effects, see methods). The largest effect was observed for similarity conditional on whether adaptive sequencing was109

turned on (β = 11.98, 95 % CI ± 0.15). However, it can be hard to interpret any single coefficient in an interaction110

model in isolation; it is more informative to plot samples from the posterior distribution for any variable of interest. All111

else being equal, adaptive enrichment only outperforms standard sequencing when an isolate’s gene has a nucleotide112

identity of at least 95 % to a record in the target database, and up to two-fold for near-identical targets (Figure 2C).113

Several targets are enriched four times over the standard baseline. Other studies reported a similar enrichment of two-114

to four-fold for bacterial genomes, albeit partly using different real-time matching algorithms.11, 13115

Second, we observed that reads from plasmids were shorter than chromosomal ones (Figure 2D). Furthermore, the116

length of chromosomal reads is shorter for adaptive sequencing than the standard because if a target is not identified on117

a given read, sequencing is terminated prematurely. Our statistical model takes this conditionality into account. The118

model indicates that adaptive sequencing outperforms the standard only for reads smaller than 3 kb, all else being equal119

(Figure 2E). This bias contributes to the higher target abundance for plasmid-encoded genes than chromosomal ones120

within the adaptive sequencing condition.121

It seems counterintuitive that short reads are enriched more than longer ones. However, this is due to how adaptive122

sequencing rejects reads. The algorithm scans the first part of each read for target sequences, and if none is found123

after several hundred bases, the read is rejected (median 415 bases, Figure S1). To further investigate the relationship124

between read length, target length, and false-negative rate (FNR), we simulated combinations of, e.g., long reads and125

short targets and short reads and long targets (see methods). A fixed-length target occupies a smaller fraction in long126

reads than in shorter ones. We find that the smaller this fraction, the higher the false-negative rate, i.e., the more reads127

which contain the target are falsely rejected (Figure S3). The intuition behind this result is that a target has many128

potential starting points on a read. The longer the read and the shorter the target, the more likely the target starts at a129

position after the read interval that the selection algorithm uses for its decision.130

The relative abundance of reads outside of target regions should not change during adaptive sequencing.12 We checked131

this by comparing the coverage of "standard" and "rejected adaptive" reads across assembly contigs, which did not132

differ substantially (Figure S2). Note that we normalize coverage to that of the chromosome for both read sets because133

the rejected reads from the adaptive condition are much shorter and more numerous (Figure S1, median read length134

3,194 vs. 415 bases).135

Adaptive sequencing detects all clinically relevant resistance genes on a miniature flow cell136

We then tested the enrichment on a type of miniature, low-cost flow cell ("Flongle") and generated 5.4 Mb within four137

hours from the carbapenemase-rich R. ornithinolytica isolate (Figure 1E). 97.2 % of reads were rejected; of those, 0.2 %138
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Figure 2: Effect of two variables during adaptive sequencing on enrichment efficiency compared to a
standard nanopore sequencing run. (A) Setup of the sequential experiment to compare adaptive and
standard sequencing, with the same samples on the same flow cell. Three Citrobacter and Raoultella
isolates were sequenced with and without enrichment, alternating between these two conditions every hour
on a single flow cell (green is adaptive sampling turned on, violet is standard sequencing). Note how the
average sequencing yield per minute in megabases (y-axis, rolling mean) differs across time (x-axis): In the
adaptive sampling condition, most reads are rejected after around 400 bases, which, as expected, results in
substantially reduced total yield in this condition. (B) Each point corresponds to an open reading frame
that has been annotated in the final isolate genome assembly as a resistance gene using a dereplicated ARG
database (n=1,147). "Read count" is the number of reads from each sequencing condition that map to these
genes. As the read passes through the nanopore during enrichment, it is searched in real-time against a
database of target genes. If no match is found, the read is ejected prematurely. Reads that are very similar
to a database entry (nucleotide identity) pass this filter, while reads with lower sequence identity are falsely
rejected. Many highly similar targets reside on plasmids, likely a sampling bias in the resistance database.
As expected, similarity has no effect on read count per ORF for standard sequencing because there is no
database search involved. (C) Adaptive sequencing outperforms the standard once the nucleotide identity
("similarity") between the target and its match in the panel database surpasses 95 %. For values close to
identity, a two-fold enrichment can be expected. We even observed a four-fold enrichment of several targets
over the standard baseline. When we fit a Bayesian multivariate regression model, the increase of target
abundance with similarity becomes clear (2.5 and 97.5 % quantiles displayed). (D) Median read length
in bases (y-axis) is plotted on the log scale for visual clarity and compared between chromosomal and
plasmid DNA (x-axis). As orientation, the logarithm of one thousand (bases) is about 7, the logarithm
of ten thousand is around 9. Reads derived from plasmids are shorter than chromosomal ones. In turn,
chromosomal reads from adaptive are shorter than those from standard sequencing because they are more
frequently ejected from the nanopore before the read has been sequenced fully for lack of any match.
These factors need to be accounted for in a regression model to estimate the effect of read length on target
abundance accurately. (E) Adaptive sequencing outperforms the standard for read lengths of 3 kb and
less, all else being equal (for visual clarity, read length is logarithmic as in (D), and 3 kb corresponds to
a logarithm of about 8, where the green and violet lines intersect). Short reads of about 1 kb (log 6) can
potentially double target abundance. Therefore, library preparation protocols for adaptive sequencing could
add a step to shear extracted DNA to improve the enrichment.
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(n=43) were false negative. Correspondingly, 2.8 % of reads were accepted, of which 20.4 % (n=104) were true positive,139

i.e., could be found in the target database. A positive database hit was defined as a read with at least 100 bp mapped to a140

target with a minimum of 50 % matching positions. 57.9 % (22/38) of the resistance genes found in the high-quality141

genome reconstruction were found using adaptive sampling, too, including all three carbapenemases (Figure 1C). As142

expected from the adaptive-standard state switching experiment, the probability of detection was determined by genomic143

location: All un-detected genes were located on the chromosome, and all plasmid-encoded resistance genes were144

detected (odds ratio 26.7, p < 0.001). While plasmids are present in higher copy numbers relative to the chromosome145

(Figure 1A), our regression model did not assign a large effect to this variable. Since many resistance determinants are146

located on plasmids, we argue that enrichment sequencing is a promising approach for antimicrobial gene detection147

in routine settings. Note, however, that the sequencing yield from Flongle flow cells is still more variable than for148

other flow cell types at the time of writing. While the Flongle yield presented here is typical in our experience, we149

occasionally see unusual deviations for no apparent reason. This variability might make adoption in routine workflows150

more challenging compared to other flow cell types.151

Discussion152

We detected a highly resistant consortium during hospital admission screening, including a strain that carried three153

carbapenemases. Nanopore sequencing comprehensively characterized three resistant culture isolates, documenting154

many resistance genes as well as extensive gene transfer between isolates. Metagenomic sequencing of the corresponding155

rectal swap added little information and did not detect several important resistance genes. It might be that deeper156

sequencing would increase sensitivity. Still, because the carbapenemase-carrying strains were low abundant, in practice,157

this procedure would not be cost-competitive in a routine setting. Cultural screening as a first step reliably identified the158

strains that carried clinically relevant resistance genes within 24 hours from sample streaking on screening agar plates to159

detectable growth. From subsequent sequencing, including library preparation to isolate genome assembly, another 24160

hours passed. This short turn-around time helped shape the public health response. For example, transposon-encoded161

VIM and OXA meant that associated wards could be monitored for the occurrence of these genes in other members of162

the Enterobacteriaceae. By comparison, generating 20 Gb of metagenomic data would also take two days, irrespective163

of the sequencing platform. In addition, more computation is required for the final assembly, binning, and validation of164

the mixed sample. We recently explored a combination of metagenomic sequencing with adaptive sampling, which165

could, in principle, further reduce the time to results.14 However, we observed a moderate enrichment by about a factor166

of two, which would roughly halve the cost of metagenomic sequencing. While this is still about an order of magnitude167

too expensive for most routine use cases, a combination of moderate decreases in sequencing costs combined with better168

enrichment through better sample preparation and adaptive sampling efficiency could approach this threshold soon.169

We then evaluated a new approach for on-device, real-time target enrichment called "adaptive sequencing". It en-170

compassed 1,147 representative antimicrobial resistance genes in an ultra-high multiplex assay. In the enrichment171

sequencing data, all and 57.9 % of known resistance genes from matched isolate assemblies were identified on a172

MinION and Flongle flow cell, respectively. However, while some genes could be enriched up to four times over173

the baseline, others were hardly captured. To explain the disparity, we found that two variables influence enrichment174

substantially.175
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First, the higher the nucleotide similarity of a read to its corresponding entry in the target database, the more reads176

were selected. Adaptive outperformed standard sequencing above 95 % identity. Optimization of the target database to177

reflect the expected targets as closely as possible is thus crucial. Future studies will have to determine the influence of178

database size and redundancy on target abundance. However, sequence identity of a given read to a database target has179

two sources. One is the already discussed biological variability, for which the experimenter can adjust the database180

composition. The second source is sequencing error. Any improvement to the nanopore technology to reduce per-read181

sequencing error, from pore shape to basecalling algorithms, likely improves the adaptive sequencing results further.182

Second, we showed that fragments shorter than 3 kb are beneficial to target abundance. Counterintuitively for nanopore183

sequencing, deliberate shearing of DNA fragments during library preparation should help to enrich targets. From an184

economics perspective, the fold-enrichment is inversely proportional to sequencing cost. So an enrichment by a factor of185

two would translate into 50 % reduced sequencing costs (excluding library preparation). Alternatively, more enrichment186

leads to a shorter time-to-answer, or increases sensitivity of the assay, whatever the researcher prioritizes in their use187

case.188

Regarding the adaptive sequencing experiment setup, it may have been better to run adaptive sampling on half the189

channels continuously rather than stopping and starting the sequencing run every hour. However, while more convenient190

to the user because it does not require manual mode switching, this might have introduced bias if the channels in one191

split were less active than in the other. Either way, the conclusions drawn are unlikely to change substantially between192

the sequential or parallel setup of the experiment.193

The degree to which DNA should be sheared for an enrichment experiment depends on the underlying choice of target194

length. For the enrichment of antimicrobial resistance genes, as demonstrated in this study and with a mean length195

of about one kilobase, we suggest matching this with an equal median read length. Note that this suggestion is based196

on modeling results derived from limited experimental data (one isolate, eight on-off cycles of adaptive sequencing).197

Future work will have to demonstrate the effectiveness of these optimizations under a broader range of isolates and198

sample conditions.199

On-device target enrichment could be demonstrated for the most resistant culture isolate on a Flongle flow cell and200

we were able to identify all plasmid-encoded resistance genes and more than half of all resistance genes known to be201

present. This proof-of-principle motivates further exploration of the clinical utility of this sequencing protocol and202

hardware.203

Conclusions204

We show that on-device target enrichment on low-cost flow cells could be a valuable complement to routine microbiology.205

It takes us closer to an effective point-of-care resistance screening, especially given the continued rapid improvements in206

the underlying technology.15 However, given the variable sequencing yield of this new flow cell type, further controlled207

experiments that compare multiple runs with and without enrichment are warranted, as are studies that optimize sample208

preparation and target database composition.209
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Methods210

Culture and DNA extraction211

All samples were streaked on carbapenemase chromogenic agar plates (CHROMagar, Paris, France). Carbapenemase212

carriage was confirmed using PCR and phenotypically using microdilution MIC testing. DNA was extracted from213

culture isolates and rectal swabs using the ZymoBIOMICS DNA Miniprep extraction kit according to the manufacturer’s214

instructions. The cell disruption was conducted three times for five minutes with the Speedmill Plus (Analytik Jena,215

Germany).216

Library preparation217

DNA quantification steps were performed using the dsDNA HS assay for Qubit (Invitrogen, US). DNA was size-selected218

by cleaning up with 0.45x volume of Ampure XP buffer (Beckman Coulter, Brea, CA, USA) and eluted in 60 µlEB219

buffer (Qiagen, Hilden, Germany). The libraries were prepared from 1.5 µg input DNA. For multiple samples we220

used the SQK-LSK109 kit (Oxford Nanopore Technologies, Oxford, UK) and the Native Barcoding Expansion-Kit221

(EXP-NBD104), according to the manufacturer’s protocol. For the Flongle run we used the SQK-RBK004 kit from the222

same manufacturer.223

Nanopore sequencing and on-device target enrichment224

All DNA was sequenced on the GridION using a FLO-MIN106D (MinION) and FLO-FGL001 (Flongle) flow cells225

(MinKNOW software v4.1.2), all from Oxford Nanopore Technologies. Data on sequencing statistics for all runs is226

provided in the project code repository at github.com/phiweger/adaptive/tree/main/stats. Three sequencing runs were227

performed: For the first run (MinION flow cell) we multiplexed three culture isolates (A2, B1, B2) and a metagenomic228

sample (3.9 M reads and 23.3 Gb in 48 h, about 10 Gb were metagenomic). The second run (MinION flow cell) was an229

experiment comparing "adaptive" and "standard" sequencing. On a single flow cell, we periodically alternated between230

both states by manually turning the sequencing run off and then back on in the other state in one-hour intervals for a231

total of 16 hours. Toggling between states did not harm sequencing (e.g., through pore blockages; 3.44 M reads and232

4.47 Gb in 16 hours). The sequencing yield for all barcodes from three isolates (two Citrobacter and one Raoultella)233

with two technical replicates each was about equal. Adaptive sequencing groups the sequence data into "rejected",234

i.e., reads that do not contain a target, and "unrejected". The latter comprises reads with a target found and reads235

with a pending decision. We used the unrejected reads pooled across isolates and replicates for all further analyses236

unless stated otherwise. Pooled and per-isolate results did not differ substantially (compare Figure 2B and S4). In the237

third sequencing run (Flongle flow cell), only isolate A2 was included, and adaptive sampling was applied throughout238

(18,646 reads and 5.36 Mb in 4h).239

As target database, we created a dereplicated version of the CARD database of resistance genes (v3.1.3)16 using240

mmseqs2 easy-cluster (v13.45111)17 using a minimum sequence identity of 0.95 and minimum coverage of 0.8 in241

coverage mode 1. We thereby reduced the database from 2,979 to 1,147 representative genes. We performed this step242

to reduce the search space that the adaptive sequencing algorithm has to map against. The total length of all genes in243

the database was 1.16 Mb. The reduction halves the database size because many resistance genes such as CTX have244
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many documented isoforms, which would lead to uninformative multi-mappings. Reads were basecalled using the245

guppy GPU basecaller (high accuracy model, v4.2.2, Oxford Nanopore Technologies). For isolate genomes, reads246

were assigned to their respective barcodes only if matching adapters were detected on both ends of the read to avoid247

cross-contamination.248

For the experiment comparing "adaptive" and "standard" sequencing on a single flow cell, we periodically alternated249

between both states by manually turning the sequencing run off and then back on in the other state in one-hour intervals250

for a total of 16 hours. This protocol did not have a negative effect on total sequencing yield over time (e.g., through251

pore blockages). The sequencing yield for all barcodes from three isolates (two Citrobacter and one Raoultella) with252

two technical replicates each was about equal. Adaptive sequencing groups the sequence data into "rejected", i.e., reads253

that do not contain a target, and "unrejected". The latter comprises reads where a target has been found and reads with a254

pending decision. We used the unrejected read fraction for all further analyses.255

Data analysis256

Isolate data were assembled using flye (v2.9)18 and consensus sequences corrected using three rounds of polishing257

with racon (v1.4.3)19 followed by medaka (v1.4.3, unpublished, github.com/nanoporetech/medaka). Read mapping258

was performed using minimap2 (v2.22-r1101).20 Genome quality was confirmed using checkm (v1.1.3).21 All isolate259

genome assemblies were > 99 % complete and < 1 % "contaminated" (duplicate single-copy marker genes), which260

counts as high quality by community standards.21 Resistance gene annotation was performed using abricate (v1.0.1,261

unpublished, github.com/tseemann/abricate) against the CARD database (see above). Taxonomic assignments were262

performed using single-copy marker genes22 as well as k-mers using sourmash (v4.2).23263

Human DNA sequences were removed from the metagenomic stool dataset before analysis by filtering them against264

the recently published complete human reference genome CHM1324 using minimap220 with default settings. For the265

long read-only metagenomic assembly we used flye with the --meta flag. We then mapped all reads to the assembly266

using minimap2. We then used racon to perform three rounds of long read-only polishing of the assembly using267

the alignment. Last, we used medaka to generate the final consensus assembly. Binning and annotation were then268

performed as described elsewhere,25 by feeding the consensus assembly into the corresponding workflow modules269

using default settings. Pairwise similarity between genes was calculated using mmseqs2 easy-search (v13.45111).17270

The amount of putative horizontal gene transfer between isolate genomes and MAGs was estimated by counting the271

number of shared genes for each pair. First, we performed pairwise genome alignment using the nucmer command from272

mummer (v4.0.0rc1).26 We then searched for "shared genes", defined as such if the alignment was 1 kb or longer and if273

the pairwise nucleotide identity between genes was > 99.9 %. Nucleotide identity here is defined as in mummer4.26274

To model the influence of several predictor variables on our outcome variable "target abundance" (total on-target read275

count), including plausible interactions, we fit a Bayesian regression model using brms (v2.13).27 The outcome variable276

was modeled as a Poisson distribution. We conditioned the effect of nucleotide similarity on sequencing state, i.e.,277

whether adaptive sequencing was turned on or off, by introducing an interaction term. Also, we conditioned read length278

on sequencing state and whether a read was derived from a plasmid or the chromosome. Finally, we included a term to279

model the effect of contig coverage, calculated from mapping the reads back to the isolate assemblies. Note that here280

nucleotide identity is defined as in mmseqs2 (v13.45111).17281
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read_count ∼ Normal(µi, σ)

µi = α+ γiadaptivei + δiplasmidi + δiadaptivei + β1coverage

γi = β2 + β3similarity

δi = β4 + β5log(read_length)

Sampling was performed with four chains, each with 2,000 iterations, of which the first half were discarded as warmup,282

for a total of 4,000 post-warmup samples. Samples were drawn using the NUTS algorithm. All chains converged283

(R̂ = 1.00).284

For the simulation experiment, we first determined that a log-normal distribution can adequately model the different285

length distributions (Figure S1). We then selected parameters to model combinations of reads and targets of varying286

length distributions, from long (mean 8,103 bases, or log 9, variance 1.5) to short (mean 665 bases, or log 6.5, variance287

0.25). We could thus, for example, assess the effects of combining long reads with short targets and short reads with long288

targets. Next, we generated ten thousand (read, target) sample pairs for each combination of read and target distributions.289

For each pair, we randomly "placed" a target start on the read with a uniform distribution across read positions, in line290

with how targets are distributed across DNA fragments in realistic single-molecule sequencing experiments. We then291

asked if the first part of the read (as seen by the adaptive sampling algorithm) would have detected the target. Since all292

simulated reads contain a target, failure to detect one in the first number of bases counts as a false negative (Figure S3).293

To estimate effect sizes on the false-negative rate (FNR) we fit a multivariate regression model using brms (see above)294

(Figure S3):295

FNR ∼ Normal(µi, σ)

µi = α+ β1log(read_length) + β2log(target_length)

List of abbreviations296

ARG .. antimicrobial resistance gene, ORF .. open reading frame, MAG .. metagenome-assembled genome, FNR ..297

false negative rate298
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Not applicable; only microbial samples were used, which are not subject to ethical approval. Human DNA sequences300

were removed from the metagenomic stool dataset before analysis by filtering them against the recently published301

complete human reference genome CHM13.24302
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Availability of data and materials305

All basecalled nanopore sequencing data has been deposited with the SRA, NCBI. Metagenomic reads are available306

under project ID PRJNA788147. Reads from isolate genomes, the Flongle flow cell and the experiment alternating307

between adaptive and standard state have been deposited under project ID PRJNA788148 under their respective sample308

ID (Raoultella ornithinolytica: SAMN23928631, Citrobacter freundii: SAMN23928632, Citrobacter amalonaticus:309

SAMN23928633).310

Beyond standard analyses described in the methods, code and referenced assemblies (isolates, metagenome) for the311

following analyses are available from a dedicated code repository at github.com/phiweger/adaptive: Putative horizontal312

gene transfer, creation of the target database for adaptive sequencing, analysis of the experiment that switched adaptive313

sequencing on and off and how to specify a Bayesian regression model of the target count.314
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19 Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected363

reads. Genome Res. 27, 737–746 (2017).364

20 Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).365

21 Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of366

microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).367

22 Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the368

genome taxonomy database. Bioinformatics 36, 1925–1927 (2019).369

23 Pierce, N. T., Irber, L., Reiter, T., Brooks, P. & Brown, C. T. Large-scale sequence comparisons with sourmash.370

F1000Res. 8, 1006 (2019).371

24 Nurk, S. et al. The complete sequence of a human genome (2021).372

25 Van Damme, R. et al. Metagenomics workflow for hybrid assembly, differential coverage binning, metatranscrip-373

tomics and pathway analysis (MUFFIN). PLoS Comput. Biol. 17, e1008716 (2021).374

26 Marçais, G. et al. MUMmer4: A fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944375

(2018).376

27 Bürkner, P.-C. Brms: An R package for bayesian multilevel models using stan. J. Stat. Softw. 80 (2017).377

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2023. ; https://doi.org/10.1101/2021.08.29.458107doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.29.458107
http://creativecommons.org/licenses/by/4.0/


PREPRINT

Supplement378
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Figure S1: Exemplary length distribution of various sequence sets of interest discussed in the study (isolate
A2). Generated reads and target genes in green, simulated sequences in violet. Note that the x-axis is on the
log scale. As expected, reads generated using standard sequencing do not differ in their length distribution
from unrejected reads from adaptive sampling. Only the sequences of rejected reads are truncated, usually
after on average 415 bases (median). The antimicrobial resistance genes in our target database have a
mean length of 1010 bases. All displayed distributions can be modeled using a log-normal distribution.
By varying model parameters, we can simulate unobserved, counterfactual read-target combinations. We
then use these pairs to assess the false-negative rate of target detection (see results). Actual and simulated
sequence length distributions are near-identical, suggesting that the results derived from the simulation are
realistic.
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Figure S2: Relative coverage of reads generated using standard sequencing and the rejected read fraction
from adaptive sequencing (isolate A2). Adaptive sequencing has been shown not to change the relative
abundance of reads outside of target regions.12 Correspondingly, we expect the same coverage from both
groups, which we find, validating the correctness of the adaptive sequencing run. Note that we normalized
the coverage of all contigs within each condition to the coverage of the chromosome because rejected reads
are more numerous and shorter. Comparing unadjusted coverages would artificially inflate coverages from
the rejected reads. The normalized coverage is similar between standard and rejected reads, except for the
smallest contigs. Here we see a slight deviation, which due to the small contig size does not affect the
conclusions in this study.

Figure S3: Simulation of counterfactual read-target pairs for various length distributions shows a large
effect on the number of false-negative read rejections. The shorter a target relative to the median read length
of the sequencing run, the larger the false-negative rate (FNR, left panel, see results). For the use case
discussed in this manuscript, namely the highly multiplexed detection of antimicrobial resistance genes, it
is beneficial then the median read length matches the target size. A multivariate regression on the simulated
pairs estimates this effect in further detail (middle and right panel).
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Figure S4: While the main manuscript analyses the pooled reads from three isolates, we here demonstrate
that the effects observed in aggregate reproduce at the level of the individual isolates (compare Figure 2B).
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