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Highlights 11 

 12 

• Meta-analysis of 27 16S rRNA studies from drinking water systems, comprising 1994 13 

samples, identifying 4556 AVS from full length 16S rRNA gene sequences 14 

• We have demonstrated that DWDS microbiomes are more strongly affected by 15 

stochastic processes. 16 

• Chlorine has a stronger selective pressure on the assembly of the microbiome than 17 

filtration processes 18 

• Pathogens such as Firmicutes form co-exclusionary relationships with other phyla 19 

after the addition of chlorine. 20 

• Legionella abundance may be a good indicator of treatment performance for water 21 

utilities. 22 
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• Changes in species abundance and richness may be useful in detecting contamination 23 

in DWDS for water utilities. 24 

 25 

Abstract 26 

A meta-analysis of existing available Illumina 16S rRNA datasets from drinking water 27 

source, treatment and DWDS were collated to compare changes in abundance and diversity 28 

throughout. Samples from bulk water and biofilm were used to assess principles governing 29 

microbial community assembly and the value of amplicon sequencing to water utilities. 30 

Individual phyla relationships were explored to identify competitive or synergistic factors 31 

governing DWDS microbiomes. The relative importance of stochasticity in the assembly of 32 

the DWDS microbiome was considered to identify the significance of source and treatment in 33 

determining communities in DWDS. Treatment of water significantly reduces overall species 34 

abundance and richness, with chlorination of water providing the most impact to individual 35 

taxa relationships. The assembly of microbial communities in the bulk water of the source, 36 

primary treatment process and DWDS is governed by more stochastic processes, as is the 37 

DWDS biofilm. DWDS biofilm is significantly different to bulk water in terms of local 38 

contribution to beta diversity and in types of taxa present. Water immediately post 39 

chlorination has a more deterministic microbial assembly, highlighting the significance of 40 

this process in changing the microbiome although elevated levels of stochasticity in DWDS 41 

samples suggest that this may not be the case at customer taps. 16S rRNA sequencing is 42 

becoming more routine and may have several uses for water utilities including detection and 43 

risk assessment of emerging pathogens like Legionella, Bacteroides and Mycobacterium; 44 

assessing the risk of nitrification of DWDS; improved indicators of process performance and 45 

monitoring for significant changes in the microbial community to detect contamination. 46 
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Combining this with other quantitative methods like flow cytometry will allow a greater 47 

depth of understanding of the DWDS microbiome. 48 

 49 

Graphical abstract  50 

 51 

Key Words 52 

Drinking water, amplicon sequencing, microbiome, pathogens, bacteria, biofilm 53 

1.Introduction 54 

The safety of drinking water supplies is of paramount importance for public health. Water 55 

utilities are responsible for the treatment and delivery of potable water. While treatment is 56 

highly effective to remove traditional faecal indicator organisms, the microbial challenge 57 

remains significant as water-borne disease outbreaks associated with drinking water 58 

distribution systems (DWDS) still have significant public health implications, which may not 59 
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correlate with traditional water quality metrics1–5. Water treatment processes, such as filtration 60 

and disinfection, are the primary barriers to the presence of harmful pathogens in drinking 61 

water. These are commonly employed strategies for water treatment across the world. 62 

Coagulation of colloidal material and subsequent filtration through rapid gravity sand filters, 63 

followed by disinfection with a chlorine-based biocide remains the most common method of 64 

treatment in many countries. Although there are several other treatment strategies including: 65 

slow sand filtration, biological filtration, ozonation and membrane filtration which satisfy 66 

drinking water regulations.  67 

 68 

Regulations on the microbial safety of drinking water supplies focus on the likelihood of faecal 69 

contamination, using presence of coliform bacteria and specifically E. coli as a surrogate for 70 

the wide range of pathogens potentially present in faeces. These are measured using culture-71 

based tests that isolate and enumerate coliforms and E. coli specifically. These methods have 72 

been broadly unchanged for over 100 years. Compliance with these metrics is high in the UK 73 

(>99%)6, although isolated, sporadic, and low-level total coliform detections remain a problem 74 

for utilities. These indicators are now known to be problematic in that, more than 99% of 75 

bacteria are unculturable7,8; there are emerging pathogens in drinking water which are not 76 

faecal associated, e.g., Mycobacterium and Legionella; and the correlation between total 77 

coliforms and other pathogenic indicators is poor2,9,10. Moreover, culture tests assess a small 78 

volume (~100 mL), and a confirmed result takes over two days, meaning rapid changes in 79 

water quality are unable to be detected. There is therefore a need for alternative high-80 

throughput methods of microbial characterisation to assess the diversity of microbial 81 

communities across space and time. Quantitative polymerase chain reaction (qPCR) methods 82 

are capable of identification of specific pathogens or target organisms but are limited in the 83 

amount of information they give about the overall microbiome. In contrast, Flow Cytometry 84 
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(FCM) is a rapid high-throughput methodology to count all intact and damaged bacterial cells 85 

in situ without the need for culturing. This has been adopted by water utilities in recent years 86 

due to its accuracy and speed but can only give an indirect view of water quality risk as cells 87 

are not taxonomically identified. It should also be stated that despite its limitations culturing 88 

remains the only direct method of determining a cells viability. 89 

 90 

The treatment of drinking water in general reduces the abundance and diversity of micro-91 

organisms present, while removing harmful pathogens, yet a diverse microbiome remains 92 

associated with potable water, including pathogenic microbes. The drinking water microbiome 93 

at customer taps may be influenced by a range of factors including source water, treatment, 94 

flow conditions and DWDS biofilms. Water treatment is proposed to have a deterministic 95 

effect, selecting microbes that survive filtration and disinfection processes11,12. This effect is 96 

likely to reduce with distance and time from treatment, where biofilm growth and disturbance 97 

become more prominent. At this point stochastic (random) effects are more likely to govern 98 

the assembly of microbial communities. Thus, drinking water microbiomes are dynamic 99 

through treatment, time, and location. To aid water utilities direct and control these to deliver 100 

safe potable water a deeper understanding of these changes, consequences, and impact on both 101 

the microbiome and the prevalence of pathogens is needed, moving from descriptive to 102 

predictive understanding. 103 

 104 

16S rRNA amplicon sequencing technology can be used to characterise and identify 105 

microbial communities in DWDS across space and time. While the taxonomic resolution that 106 

can be achieved depends on the 16S rRNA hypervariable region sequenced and the type and 107 

abundance of the taxa detected13, the approach has been widely applied in academia since 108 

circa 2010 to explore microbial communities of drinking water to both assess diversity and 109 
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identify pathogens of concern to public health. This method has broad advantages over qPCR 110 

and FCM in the large amount of taxonomic information that it provides, although its 111 

disadvantages are that it is non-quantitative and cell viability is unable to be determined. 112 

Most 16S rRNA studies are discrete, commonly across a single or few DWDS within a 113 

geographical area. Studies tend to focus on one part of a system, e.g., source waters; efficacy 114 

of treatment processes; variations of biofilm communities in space, time, or operating 115 

conditions within a pipe distribution network; influences of domestic plumbing arrangements, 116 

or differences between the bulk water and biofilm communities14–43. While several of these 117 

studies have provided new insight into drinking water microbiome, as aforementioned they 118 

tend to be descriptive and not predictive. There is a need for further insight, at a global level, 119 

into the principles governing drinking water microbiomes to gain further understanding of the 120 

ecological rules determining microbial assembly through the treatment process to the tap if 121 

amplicon sequencing is to be of use to utilities. Here we present a critical review of current 122 

understanding and further conduct a meta-analysis of 16S rRNA studies from source to tap to 123 

explore global distribution and commonalities in the drinking water microbiome. We further 124 

consider the contribution and potential of 16S rRNA amplicon sequencing as an analytical 125 

tool for water utilities as a common conclusion to several studies is that 16S rRNA amplicon 126 

sequencing is beneficial in assessing risk to public health in DWDS, although there are many 127 

areas for further investigation to understand the implications of the results14.   128 

Source Waters 129 

Several studies have sought to assess the impact of source water on the microbial 130 

communities in DWDS, with groundwater sources less phylogenetically diverse than that of 131 

surface waters15. Some studies propose that the composition of taxa in DWDS are strongly 132 

determined by those which are present in the source water15. For example, land-use in the 133 
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catchment of source waters can impact the microbial communities present in terms of 134 

abundance and diversity, as demonstrated by significant differences between urban and 135 

agricultural catchments in Canada. Bacteroides was identified as a potential future indicator 136 

of source contamination for both catchment types37. 16S rRNA amplicon sequencing 137 

combined with microbial source tracking can identify contamination sources, although these 138 

methods correlate poorly with each other and traditional faecal indicators38. Eighty-one 139 

potentially pathogenic bacteria were detected within drinking water source waters using 16S 140 

rRNA amplicon sequencing, with little correlation to indicator organisms like coliforms 141 

and E. coli26. These studies show that amplicon sequencing has the capability to detect 142 

pathogenic microbes in drinking water systems, although further assessment of how this 143 

relates to regulatory parameters like indicator bacteria is required. It also must be noted that 144 

the presence of DNA does not necessarily imply viability, with DNA from dead cells and 145 

extracellular DNA contributing to DNA extractions. Prior sample treatment, for example with 146 

propidium monoazide44,45, may aid inform viability by removing cell with damaged cell walls 147 

prior to DNA extraction. Yet further investigation would still be required to confirm cell 148 

viability, a current limitation of 16S rRNA approaches.  149 

  150 

Water Treatment 151 

Some individual studies have focused on the relative importance of treatment in influencing 152 

downstream microbial communities, with the processes of filtration and chlorination reducing 153 

overall microbial diversity and affecting the abundance of particular phyla39–43. Biofilters can 154 

be extremely microbially diverse with different operational conditions causing changes to 155 

relative taxa abundances39,43,46. The upstream process also significantly affects filter 156 

biomass16,17. Various treatment and disinfectant types have variable effects on the abundance 157 

of different phyla, with no-one treatment type effectively removing all pathogens18,19. 158 
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Although chlorination effectively reduces microbial abundance, pathogens such 159 

as Pseudomonas, Acinetobacter, Citrobacter, Mycobacterium, Salmonella, Staphylococcus, 160 

Legionella, Streptococcus, and Enterococcus have all been detected in treated water, 161 

indicating that further work is needed to assess and improve the robustness of treatment42. 162 

Overall, the microbial diversity in individual published studies were highly specific to the 163 

treatment process employed and a range of study specific pathogens were detected. 164 

Therefore, wider assessment of treatment and DWDS is required to understand whether these 165 

pathogens are specific to those systems or a wider problem in drinking water. In addition, 166 

organisms responsible for nitrification such as Nitrospira are also seen to be abundant 167 

throughout treatment and into DWDS20–22. 168 

 169 

Drinking Water Distribution Systems (DWDS) 170 

The majority of 16S rRNA amplicon sequencing studies have focused on microbial 171 

communities within DWDS, in both biofilm and bulk water. These indicate that the microbial 172 

communities within DWDS are unique to that system, influenced by the source and treatment 173 

characteristics outlined above23,24. DWDS microbial communities have significant temporal 174 

fluctuation25,27, with potential diurnal cycles in bulk-water, potentially due to flow patterns28. 175 

The dynamics of microbial communities in bulk water may be seasonal. Higher diversities 176 

and abundances of microbial communities may be more evident in winter compared to 177 

summer months19. DWDS may also have significant spatial variation19. A meta-analysis of 178 

14 pyrosequencing studies of water distribution systems compared the bacterial communities 179 

present under different disinfectant regimes, confirming that the microbial communities in 180 

DWDS are more diverse and abundant than those with a free chlorine residual. Legionella, 181 

Mycobacterium, and Pseudomonas were all significantly reduced by the presence of a free 182 

chlorine residual in one study28. However, it is unknown whether free chlorine residual is 183 
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significant in reducing diversity across all DWDS or whether source and treatment processes 184 

may also play a significant role. 16S rRNA amplicon sequencing is a powerful tool to aid 185 

identify risk, as it can identify potential pathogenic microbes in distribution21,29–32. However, 186 

as mentioned above, it is unable to distinguish between alive or dead cells. What is unclear 187 

from the individual studies is whether certain pathogens are common to DWDS in general, 188 

and what is their source. 189 

 190 

Biofilm vs. Bulk- Water 191 

Biofilm and bulk water samples in distribution have also been shown in several individual 192 

studies to vary significantly30,33–35. Biofilm deposition influences bulk water communities 193 

when loose deposits or biofilm are disturbed30,35,47. Biofilms can significantly contribute to 194 

microbial loading in DWDS, with the composition affected by the presence of a chlorine 195 

residual36. Mechanical cleaning also changes the microbial composition of biofilms, with a 196 

lag effect in bacterial concentrations observed after cleaning followed by a regrowth phase36. 197 

A recent study in Sweden explored how the bulk water and biofilm in DWDS were affected 198 

by ultrafiltration membrane (UF) installation using source tracking software. Bacteria in the 199 

bulk water came from treatment (99.5%) before the installation of UF. Post-UF, there was a 200 

significant reduction in cells, and 58% were quantified to have come from biofilm in the 201 

DWDS22. These results suggest that when large volumes of bacteria are removed throughout 202 

treatment processes, the relative influence of the biofilm may become larger. As biofilms 203 

have been demonstrated to differ from bulk water in terms of taxa and potentially harbour 204 

pathogens, this is likely to affect water quality. Further understanding of how treatment, 205 

source, and biofilm in distribution affect DWDS microbiomes is required for water utilities to 206 

understand the impacts of changing treatment processes. 207 

 208 
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Aims and objectives  209 

 210 

While these studies have provided new understanding of drinking water microbiomes a 211 

limitation is that they are in general descriptive snap shots of a given time/treatment etc that 212 

by themselves limit current ability to define global rules to facilitate predictive management 213 

of water treatment and quality. Add to this variability in the methods used (DNA extraction, 214 

16S rRNA hypervariable region, sequencing platform etc) and the complex system-specific 215 

nature of DWDS, all contribute towards making it difficult to gain a more general 216 

understanding of how drinking water microbial communities change from source to tap and 217 

what are the factors driving these changes that can be utilised by water utilities to manage 218 

water quality. For example, many studies have identified pathogens of concern in individual 219 

systems, but it is still unclear whether these pathogens are common to all DWDS, or an 220 

artifact of specific systems. The relative importance of the deterministic influence of source 221 

and treatment is also an important question as is the need to understand how phyla common 222 

to all DWDS interact with each other as competitive influences between taxa may affect the 223 

microbiome. The lack of understanding of the principles governing the diversity and 224 

abundance of DWDS microbial communities has made it difficult to predict/control drinking 225 

water microbiomes and therefore also for water utilities to adopt the understanding derived 226 

from amplicon sequencing approaches as a tool to aid manage water quality, including 227 

pathogen detection.  228 

 229 

Therefore, the specific aims of this meta-analysis were to identify commonalities in DWDS 230 

microbiomes across the world, which can be used to further understanding of water quality 231 

for utilities; to understand the relative importance of the deterministic effects of source and 232 
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treatment on the microbiomes of DWDS and explore key relationships between phyla 233 

present. 234 

2.Methods 235 

 236 

 237 

Figure 1: An overview of the methodologies to generate Amplicon Sequencing Variants (ASVs) applied in this meta-238 

analysis. 239 

 240 

2.1 Data Gathering 241 

A Scopus search for all papers since 2010 using the following terms: “16S rRNA” and 242 

“Water” was carried out. This search returned 176 results. Each result was individually 243 

assessed to ascertain its relevance to this meta-analysis. Only studies using Illumina MiSeq or 244 

HiSeq® platforms were included to minimise the different errors and biases associated with 245 
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alternative sequencing platforms such as Nanopore®, Ion Torrent® or older technologies 246 

such as Pyrosequencing. After this manual filter, 44 studies remained and were checked to 247 

ascertain sequence data availability. 26 studies had publicly available raw sequence data. For 248 

the remainder, requests to authors were made for data. A list of the papers used in the 249 

analysis can be found in the supplementary information. All raw data downloads used the 250 

SRA Toolkit provided by NCBI, except for one study from QIITA. Metadata for samples 251 

from NCBI’s Run Selector included: sequencing platform; the hypervariable region of the 252 

16S rRNA gene sequenced; sample ID; sample date and time; and geolocation. Other 253 

relevant metadata from the published papers: sample location, disinfection type (if 254 

applicable), and whether the sample was from bulk water or biofilm was recorded. Before 255 

processing, studies were grouped by the hypervariable region of the 16S rRNA gene 256 

sequence. All studies included in this meta-analysis and relevant sample information are 257 

listed in the Supplementary Information section. In total 27 studies, with 1994 samples, from 258 

over 50 different DWDS were compared. 259 

 260 

2.2 Sequence Processing 261 

QIIME2 processed collated amplicon sequences for each platform and hypervariable V-262 

region in Earth Microbiome Project Paired-end Sequencing Format (.fastq). QIIME2 can 263 

generate both Operational Taxonomic Units (OTUs) and Amplicon Sequencing Variants 264 

(ASVs) using a user-defined threshold (97% in this case). QIIME2 improves QIIME1 in 265 

terms of quality control of sequences using DADA2 and Deblur software, both of which were 266 

employed here. To provide enough overlap of forward and reverse reads to facilitate paired 267 

end reads, DADA2 was employed where amplicons were <250bp long and the quality score 268 

was >20. For amplicons spanning multiple V regions, DEBLUR commands allowed for the 269 

pairing of longer amplicons without significant loss of sequence length, as an explicit 270 
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threshold is not required. Output alpha diversity profiles may be significantly different when 271 

using different denoising software to generate ASVs48, so, runs of DEBLUR and DADA2 272 

were carried out for all regions and platforms. The final analyses generated 3.32 X 108 273 

demultiplexed reads and 829713 ASVs in total from 1994 samples. 274 

 275 

To identify the best taxonomic assignment, biome files and phylogenetic tree output from 276 

QIIME2 had taxonomy assigned using three approaches. These were: Naïve Bayesian 277 

Classification system (NBC), Bayesian Least Common Ancestor (BLCA) approach (using 278 

SILVA138 database), and the TaxAss database. TaxAss uses SILVA to generate a first pass 279 

of taxonomic assignment then a curated database of freshwater sequences to assign the 280 

remainder of ASVs. TaxAss was selected for downstream statistical processing as it provided 281 

the highest level of taxonomic recovery to the genus level (Appendix 1 Table 1). Finally, 282 

ASVs from all V regions were collated together in a single biome file. Sequences without 283 

species-level resolution were removed so that full-length 16S rRNA sequences could be 284 

obtained for all taxa as per the method used by49 Of the 4858 taxa originally classified by 285 

TaxAss in the collated dataset, 4556 had available full-length sequences (loss of 6.2%). A 286 

final phylogenetic tree and biome file with taxonomy generated in QIIME2.  287 

 288 

2.3 Statistical Analyses 289 

The collated biome with taxonomy, phylogenetic tree, and metadata was then processed. 290 

Meta-sample groupings defined the sample location in the treatment and distribution process 291 

and if the sample originated from biofilm or bulk water. Shannon and Richness indexes were 292 

calculated for each meta-grouping to estimate alpha diversity (diversity within a sample). An 293 

analysis of the core microbiome was carried out in the R package Bioconductor, using an 294 

absolute detection method and a minimum prevalence of 85% for all groups except 295 
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Distributed and Untreated Water. These groups had significantly more samples and required 296 

a higher threshold of 95% (Lahti et al. 2017-202050). 297 

 298 

Beta diversity (or between-sample diversity) metrics were more complicated to assess, given 299 

the substantial number of samples (n=1994), their varying environments as well as spatial 300 

and temporal locations. Instead, calculation of Local Contribution to Beta Diversity (LCBD) 301 

for each group was made51. The Nearest Taxon Index (NTI) and Net Relatedness Index (NRI) 302 

from the Picante package in R (http://kembellab.ca/r-303 

workshop/biodivR/SK_Biodiversity_R.html) were used to quantify Environmental filtering 304 

and stochasticity on community assembly. Higher NRI/NTI (above 0) values indicate 305 

deterministic factors influencing community assembly, lower values (below 0) indicate 306 

stochastic influences. 307 

 308 

Patterns in beta diversity may not be continual, as multiple relationships may be affecting an 309 

organism at a specific time or place. Therefore, a new methodology by Golovko et al. (2020) 310 

was employed using Boolean patterns to assess relationships between individual ASVs in all 311 

meta-sample groups. This method uses a pattern-specific method to identify 2-dimensional 312 

relationships between 2 ASVs at a defined threshold, including one-way relationships, co-313 

occurrence, and co-exclusion. This method can also quantify 3-dimensional relationships 314 

between ASVs. These are categorised as: all alone (type 1 co-exclusion); exclusion of ASV1 315 

by ASV2 or 3 (type 2 co-exclusion); If ASV1 is present, ASV2 and ASV3 are present, and 316 

finally, all three altogether. This method was applied to the ASVs in the dataset to identify 317 

any significant relationships at a phyla level. 318 

 319 
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3.Results 320 

 321 

3.1 Taxonomic Profile 322 

 323 

Within this analysis, taxonomic classification was resolved for a total of 4556 ASVs. The 25 324 

most abundant genera are shown in Figure 1. 1293 samples were from water distribution 325 

systems in bulk water, the largest meta-sample group. Bulk water from different distribution 326 

systems, as expected, is variable with differences in the abundances of the top 25 genera 327 

DWDS. However, there does appear to be some commonalities in taxa among DWDS with 328 

the same disinfectant residual: Nitrosomonas and Pseudomonas were abundant only in 329 

systems using a chloraminated residual. Pathogenic microbes such as Mycobacterium were 330 

common in both chlorinated and chloraminated systems. Biofilm samples in distribution were 331 

less numerous (n=193) and had a much higher taxonomic diversity than the bulk 332 

water. Pseudomonas was common in many samples in both chlorinated and chloraminated 333 

biofilms, but less so in those with no disinfectant residual. 334 

 335 

Samples from water sources and treatment systems made up a much smaller proportion of the 336 

dataset and had differences in the most abundant taxa. Again, the most common genera were 337 

less abundant, except Nitrospira, which was more abundant throughout treatment than in 338 

distribution. Burkholderiales were also present throughout treatment and highly abundant in 339 

one bulk water study in the distribution. Source water samples were generally from surface 340 

waters, although a small proportion came from groundwater. Several untreated water samples 341 

show similar taxonomic profiles to each other. Globally all untreated water samples were 342 

highly diverse in comparison to treated water.  343 
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 344 

 345 

Figure 2: Proportion of most abundant genera for all samples in this meta-analysis, grouped by: A untreated water; B water 346 

and biofilm isolated throughout treatment processes; C biofilm and bulk water sampled from distribution pipes. Where 347 

appropriate, samples have been colour-coded by disinfectant residual: Free chlorine (blue); Chloraminated (green); None 348 

(yellow); Super-chlorinated (grey). 349 

 350 

3.2 Alpha Diversity & Core Microbiome 351 

 352 
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 353 

Figure 3: A. Core microbiome analysis of the different meta-sample groups from source through treatment and distribution 354 

for bulk water and B for biofilm. Minimum prevalence was set at 0.85 for all groups except Distributed Bulk Water and 355 

Untreated water, set at 0.95 due to the high number of samples in those groups. C: the alpha diversity of the various meta-356 

sample groups, displaying i) Shannon values and ii) Richness. 357 

 358 

The amount of diversity within each sample, or alpha diversity, can be seen in Figure 3(C). 359 

Across the different sample groups, the within-sample Richness values were significantly 360 

different. The highest degree of sequence diversity in terms of Richness and Shannon index 361 

values came from untreated water. A reduction in these values was evident in the treatment 362 

and distribution groups, in biofilm and bulk water. Biofilm samples have elevated Shannon 363 

values compared to bulk water, although Richness was remarkably similar. Core microbiome 364 

analysis proposed several prevalent taxa within more than one sample group, although the 365 

overall taxa prevalence reduced in distribution samples. Pseudomonas was the only taxa 366 

common to all stages of water treatment and distribution. Nitrospira was prevalent within 367 

water treatment works and in distribution biofilm, but not bulk water. Legionella was 368 
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abundant in bulk water only, in untreated and in treatment samples. Burkholderiales betI-A 369 

was prevalent in source water and distribution biofilm samples. 370 

 371 

3.3 Local Contribution to Beta Diversity 372 

 373 

Due to the unequal data classes with high degrees of spatial and temporal variation, estimates 374 

of beta diversity used Local Contribution to Beta diversity (LCBD) for all meta-sample 375 

groups (Figure 4) rather than a direct measure of beta diversity. LCBD values were only 376 

above the significance threshold for two categories when calculated using Unifrac distance: 377 

untreated water and distribution biofilm. For Bray-Curtis, all groups had greater than the 378 

calculated threshold (0.00052) LCBD except distribution water, with biofilm samples having 379 

the highest value. NTI and NRI values for the meta-sample groups were similar except for 380 

untreated water, which was the only category with values <0, indicating the taxa present are 381 

more dissimilar than in the other categories. Biofilm and bulk water in distribution had 382 

almost equal NRI/NTI indicating no significant difference in the amount of species 383 

relatedness between these groups.  384 

 385 

 386 
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Figure 4: a) Local contribution to beta diversity values for all meta-sample groups using Unifrac (i)) and Bray (ii)). B) net 387 

relatedness index (NRI) and nearest taxon index (NTI) of all meta-sample groups in this meta-analysis. 388 

  389 

3.4 Normalised Stochasticity Ratio 390 

 391 

The NST and MST displayed in Figure 5 quantify the relative importance of stochasticity for 392 

each meta-sample group. Phylogenetic distances calculated using Jaccard with and without 393 

abundances (Ruzicka approach). Both measures produced comparable results. NST values of 394 

>0.5 are considered to be more stochastic. Untreated and samples prior to disinfection had 395 

NST values greater than 0.5, as did those in distributed bulk water. Meta-samples 396 

immediately post disinfection (treated water) had reduced stochasticity (0.45), indicating a 397 

greater degree of determinism in community assembly at this stage of the process. Biofilms 398 

in water treatment works had the lowest NST values, 0.42, showing higher determinism 399 

within these samples. MST values (modified ratio) are much lower, although the most 400 

deterministic groups are the same as in the NST. Untreated water samples have the highest 401 

degree of stochasticity when using MST compared to distributed bulk water and biofilm 402 

samples when using NST. 403 

 404 

 405 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.30.457654doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.30.457654


   
 

   
 

19 

Figure 5: Normalised Stochasticity ratio (NST) and b) Modified Stochasticity Ratio MST) values for all meta-sample groups 406 

using a): Jaccard measures of phylogenetic distance and b) Ruzicka measures. Ruzicka is as Jaccard except those relative 407 

abundances are not considered. 408 

 409 

3.5 Boolean Relationships 410 

The results of the Boolean analysis to identify individual relationships between ASVs in the 411 

dataset at 2 and 3-dimensional levels is displayed in Figure 6. 412 

  413 

 414 

Figure 6: Visual representation of individual Boolean relationships identified between Phyla for all meta-sample groups in 415 

this study, using methodology from Golovko et al. (2020). Minimal presence threshold set at 0.05%, maximum at 0.1%. 416 

Groups are a) Untreated water; b) i) samples taken from bulk water throughout treatment; b) ii) biofilm from water treatment 417 

processes; c) disinfected water; d) i) water from distribution systems and d) ii) biofilm from pipes in distribution. 2-418 

dimensional relationships detected included one-way relationships (blue arrow); co-presence (orange arrow), and co-419 

exclusion (red dashed line). There was one 3-dimensional relationship if ASV 1 is present, ASV 2 and 3 are also present 420 

(long dashed line). 421 

 422 

The analysis identified many one-way relationships between individual phyla across all 423 

stages of the treatment and distribution process, many of which were present in several 424 
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groups. These phyla were common to all sample groups 425 

except Nanoarchaeota and Crenoarchaeota, present only in distribution bulk water and 426 

biofilm, respectively. Many of these phyla exhibited this relationship in all groups, such 427 

as Acidobacteriota and Actinobacteriota. When Acidobacteriota is 428 

present, Actinobacteriota is also present. This relationship is one-way in all categories except 429 

biofilm in the distribution system, where they exhibit a co-presence relationship. Treated 430 

water samples had the lowest number of phyla relationships within the dataset, and this was 431 

the only meta-group to have any co-exclusion relationships detected. Cyanobacteria were in 432 

a co-exclusionary relationship with three other phyla: Verrucomicrobiota, Firmicutes, 433 

Nitrospirota, and Patescibacteria. Acidobacteriota and Firmicutes were also co-excluded. 434 

Relationships from samples in distribution were more like those in the untreated and partially 435 

treated samples, with large numbers of one-way relationships between the Phyla in biofilm 436 

and bulk water. 437 

 438 

4.Discussion 439 

 440 

4.1 Principles governing microbiomes in DWDS 441 

Taxonomic profiles of the various meta-sample groups identified significant differences in 442 

abundances of genera throughout the source, treatment, and distribution of water. There are 443 

higher degrees of species richness and alpha diversity of taxa in the source waters that are 444 

reduced throughout treatment. This reduction is consistent with both the individual studies 445 

included in this analysis and several other pyrosequencing studies23,31,52. The reduction in 446 

LCBD from untreated to treated water samples supports the reduction in alpha diversity and 447 

richness. A wide-scale study of 49 distribution systems in China had reduced diversity and 448 
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Richness in tap compared to source waters15. The similarity of taxa increases throughout 449 

treatment and distribution, indicative of selective processes driven by filtration and 450 

chlorination from which only some organisms can survive39–43. 451 

 452 

Biofilm and bulk water samples from DWDS are quite different in terms of types and 453 

abundance of taxa. The core microbiomes for both these groups had only Pseudomonas 454 

common to both. Although Pseudomonas was the most abundant organism within biofilm 455 

core microbiome, it was the least abundant in bulk water samples. Local contribution to beta 456 

diversity was also most elevated in biofilm samples and was the only sample above the 457 

calculated threshold. This indicates that biofilm microbiomes contribute more to overall 458 

biodiversity within the pipe than the bulk water samples. This is important to consider, as the 459 

biofilm contains a quite different microbial profile than that of the bulk water, and sampling 460 

only bulk water may give a limited picture of the overall microbiome.  461 

 462 

Modelling of microbiomes concentrates on the relative importance of random events on 463 

assembly, such as births, deaths, and environmental disturbance, this is compared to more 464 

deterministic events such as selection. As treatment and sources may be significant in 465 

determining the organisms in the treated water, this is an important measure to consider. All 466 

meta-sample groups, except treated water and distributed biofilm, had more stochastic values 467 

suggesting a greater degree of randomness in microbiome assembly. However, samples 468 

immediately after disinfection with chlorine had a more deterministic value. Proteobacteria, 469 

in particular: Pseudomonas, Actinobacter, and Rheinheimera have been demonstrated to 470 

dominate post disinfection, supporting the deterministic influence of treatment53. It also 471 

suggests that although filtration is important in defining taxa in DWDS, chlorine has a more 472 

strongly selective effect. This hypothesis supports a study comparing two identical treatment 473 
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systems treating the same source water, where chlorine and chloramine produced different 474 

bacterial communities23. Biofilms in water treatment works also had higher NST values, 475 

indicating a higher degree of determinism. The higher value supports the hypothesis that the 476 

effects of treatment and source reduce with distance and time from treatment15,19,52. This 477 

increased determinism could be due to the influence of prior treatment and source water on 478 

the biofilm, but also the material and conditions within the pipe. There may be other factors 479 

too, such as the flow conditions, within the DWDS influencing the biofilm. This had been 480 

demonstrated by laboratory experiments using experimental pipe loops with the same influent 481 

water under different flow rates resulting in biofilms containing some shared core taxa but 482 

with differences in their relative abundances, influenced by the flow conditions within each 483 

loop30. 484 

 485 

Identification of significant one, two, and three-way relationships between individual Phyla 486 

in the meta-sample groups demonstrates the complexity of the drinking water microbiome. 487 

Several Phyla are proposed to be important in DWDS. A long-term study of a drinking water 488 

microbiome identified seven dominant phyla (Proteobacteria, Bacteroidetes, Actinobacteria, 489 

Nitrospira, OD1, Planctomycetes, and Acidobacteria)12. Six further phyla were also proposed 490 

by an Ion torrent study of DWDS in the Netherlands (Chloroflexi, Elusimicrobia, 491 

Chlamydiae, Firmicutes, TM7, and Verrucomicrobia)54. A number of these Phyla are 492 

involved in at least one one-way relationship with other phyla within all meta-sample 493 

groups: Actinobacteria; Bacteriodetes; Planctomycetes; Chloroflexi; Firmicutes; 494 

Verrucomicrobiota. This further supports their importance in the microbiome of DWDS. 495 

Understanding these relationships may be a crucial first step in shaping a biostable 496 

microbiome throughout the DWDS which in turn could be exploited to control pathogens. 497 

For example, Firmicutes, which may contain several known pathogenic organisms, form co-498 
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exclusionary relationships with other phyla, post disinfection with chlorine, suggesting 499 

competition between them and Cyanobacteria, Acidobacteriota, and Patescibacteriota. The 500 

Boolean analysis confirmed that overall, phyla relationships are reduced by the addition of 501 

chlorine. In the future can this new understanding as shown here be exploited to shape 502 

microbial communities to the exclusion of pathogens. 503 

 504 

This key finding was revealed from a limited comparison of studies primarily focused on the 505 

DWDS bulk water. Therefore, there is a need to explore further the influences of source and 506 

treatment processes on treatment, DWDS bulk water and biofilm to explore further the 507 

ecological rules and relationships between taxa. Further sampling of these stages is required 508 

for water authorities to understand the drivers of overall diversity, implication of treatment 509 

and distributions and the influence on pathogenic microbes within DWDS. 510 

 511 

4.2 Applying 16S rRNA Amplicon Sequencing for Water Utilities 512 

 513 

As expected, the 25 most abundant taxa in the analysis did not contain any organisms 514 

traditionally used to indicate contamination, as these should be in low abundance in treated 515 

water. There were no coliforms identified in the core microbiome for any meta-sample 516 

groups. There was also a lack of any Enterobacteria in the most abundant taxa for any meta-517 

groups’ taxa profile or core microbiome analysis, demonstrating that faecal organisms are in 518 

low abundance in DWDS. An analysis of untreated water samples in isolation also failed to 519 

identify any highly abundant Enterobacteriaceae.  These results suggest that 16S rRNA 520 

amplicon sequencing is not appropriate for the detection of traditional indicator organisms 521 

like coliforms but does suggest that these organisms are not a part of the microbiome under 522 

normal operating conditions, although whether their detection is indicative of contamination 523 
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is not covered by this study. Coliform bacteria are considered indicators of process 524 

performance, rather than faecal contamination (except E. coli) due to their prevalence in 525 

some environments and lack of correlation to other enteric pathogens9,55,56. This study further 526 

suggests that their overall lack of abundance in untreated water makes them a poor indicator 527 

of process performance.  528 

 529 

This analysis did reveal some organisms of concern as abundant in DWDS, although 530 

different organisms were of concern in different DWDS, consistent with the proposed 531 

system-specific nature of DWDS microbiomes54. Of note, Mycobacterium was abundant in 532 

both chlorinated and chloraminated DWDS, but was not prevalent in non-chlorine distributed 533 

water. Mycobacterium is an emerging pathogen of concern for water utilities and dominates 534 

in some DWDS32,57. Nitrosomonas and Nitrospira were also highly prevalent in the biofilm 535 

of chloraminated DWDS, supporting the results of individual studies21,22.  Improving 536 

understanding of the processes that select for and remove nitrifiers 537 

like Nitrosomonas and Nitrospira, is also important to assess the risk of nitrification within 538 

DWDS. Burkholderiales was a highly prevalent member of the core microbiome, consistent 539 

with other results proposing that this organism is under selection by treatment processes and 540 

is resistant to chlorination21,58. Although the high abundance of these organisms was only in 541 

one DWDS in this analysis, it highlights the need for more studies to be added to understand 542 

if this is a general finding. 543 

 544 

If water utilities can optimise processes to select for non-pathogenic microbes, this can 545 

reduce the risk of illness from drinking water, something suggested in several studies30,35,36. 546 

An overview of microbial communities’ dynamics, as ascertained by 16S rRNA amplicon 547 

studies aids inform a holistic view and response of water treatment and DWDS system 548 
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microbiology. This understanding will aid management to maintain water quality and will 549 

enable control of the drinking water microbiome and pathogens.  550 

 551 

16S rRNA studies are becoming more popular and routine for the molecular analysis of water 552 

treatment and distribution. As demonstrated here, they provide extensive information 553 

revealing diverse communities that are influenced by the treatment process. However, 554 

translating this information into practice to inform and predict water quality is not always 555 

obvious to water utilities. However, taking a global meta-analysis view, this analysis 556 

highlighted several ways in which water utilities might employ 16S rRNA sequencing to 557 

improve drinking water quality. Considering whole microbial community dynamics from 558 

source to water, bulk and biofilm, this review has identified several organisms highly 559 

abundant throughout source and treatment, that can be potentially used to benchmark 560 

performance and monitor risk. Pseudomonas and Mycobacterium were all abundant in 561 

DWDS, while Legionella was abundant in source and treatment stages. Members of these 562 

group are known pathogens of concern for drinking water quality. In particular, the higher 563 

abundance of Legionella in source waters and treatment in this analysis may make it a good 564 

indicator of treatment performance, especially as other studies have detected Legionella in 565 

treated water samples41,42,57. Legionella is an emerging pathogen of concern to the water 566 

industry, and in the UK may be included in future water quality regulations. Amplicon 567 

sequencing can also allow water utilities to assess the risk of non-compliance with these 568 

regulations, although the viability of the organisms must also be considered using an 569 

alternative method. 570 

 571 

Flow Cytometry (FCM) may provide the appropriate information to compliment 16S rRNA 572 

sequencing. Using FCM with the intercalating dyes SYBr Green and propidium iodide to 573 
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stain genetic material in situ within a sample gives a quantitative measure of the intact cells 574 

within the microbiome of DWDS. This is due to the ability of SYBr green to permeate intact 575 

cell membranes, whereas propidium iodide cannot. Dead cells therefore appear red, where 576 

intact cells fluoresce green, allowing each to be distinguished by the FCM. This approach has 577 

been extensively explored in studies assessing water treatment cell removal, DWDS regrowth 578 

and seasonal changes within microbiomes59–62. FCM can also provide more information than 579 

just the count of cells within a sample, using the relative fluorescence and a statistical binning 580 

process, cells can be grouped into populations which can then be tracked63,64. A quantitative 581 

measure of the intact cell population in relation to the total count of cells within a sample 582 

could be used by utilities to quantify the viability of the organisms identified using a 16S 583 

rRNA amplicon sequencing, enhancing the benefits of both analyses. 584 

 585 

Measures of species richness and abundance such as alpha diversity and LCBD at treatment 586 

and distribution stages are useful to water utilities when comparing DWDS performance. 587 

Although monitoring the relative abundance of specific taxa in a single DWDS may not be 588 

able to detect a risk to public health directly, an understanding of these values across different 589 

DWDS allow water utilities to assess the impacts of source, treatment and distribution 590 

conditions on water quality and make more informed choices on asset investment.  591 

Understanding the relative impacts of stochasticity in DWDS microbiomes is also a useful 592 

exercise for water utilities. Higher stochastic values in bulk water and biofilm of DWDS 593 

suggest that random events are more important than treatment processes or other prior 594 

deterministic events in determining the bacterial communities. In contrast, biofilm 595 

communities in water treatment works and bulk treated water are more deterministic, affected 596 

by the abiotic conditions (e.g., chlorine, pH, pipe material) and prior treatment processes. 597 
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Managing biofilm and ensuring treatment processes remove microbes of concern is where 598 

water utilities can most effectively minimise risk to public health. 599 

5. Conclusions 600 

There are copious quantities of data from amplicon sequencing studies in drinking water 601 

treatment and distribution. Although many of these studies provide only a descriptive 602 

understanding of the microbiome. As a result, this information has yet to be used to predict 603 

and direct microbial water quality. There has been a reluctance to adopt the technology 604 

among water utilities, as the benefits are not immediately clear. Using a meta-analysis 605 

approach, we have shown that while treatment and distribution of water significantly reduces 606 

the diversity and abundance of taxa present in the source the subsequent assembly of 607 

microbiomes in drinking water is a stochastic process, particularly in the DWDS. This 608 

demonstrates that the effects of source and treatment diminish with distance from treatment 609 

and time. Only the assembly of microbiomes at the point of chlorination are more 610 

deterministic, due to selection pressures on organisms that cannot survive oxidation. 611 

Although 16S rRNA amplicon sequencing cannot satisfy current water quality regulation, it 612 

can assess the risk from emerging pathogens such as Legionella or Mycobacterium - which 613 

may be in high abundance in DWDS - and track significant changes in the microbiome, 614 

which may be associated with contamination or changes in process performance. These are 615 

benefits which traditional culture-tests cannot provide. However, further work is required to 616 

standardise sequencing and data analysis methods for 16S rRNA amplicon sequencing 617 

methods to enable them to be applied within the water industry as standard practice. 618 

 619 
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