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Abstract 1 

Deleterious recessive conditions have primarily been studied in a Mendelian disease context. 2 

Recently, several large effect, deleterious recessive mutations were discovered via non-additive 3 

GWAS of quantitative growth and developmental traits in cattle. This showed quantitative traits 4 

can be used as proxies of genetic disorders if they are indicative of whole animal health status 5 

and susceptible to underlying genetic conditions. Lactation traits might also reflect genetic 6 

disorders in cattle, given the increased energy demands of lactation and the substantial stresses 7 

imposed on the animal. Here, we report a screen of over 124,000 cows for recessive effects 8 

based on lactation traits. We discovered novel loci associated with five large recessive impacts 9 

on milk yield traits represented by missense variants (DOCK8, IL4R, KIAA0556, and SLC25A4) 10 

or premature stop variants (ITGAL, LRCH4, and RBM34) as candidate causal mutations. On milk 11 

composition traits, we identified several small effect dominance contributions to previously 12 

reported additive QTL. In contrasting analyses of milk yield and milk composition phenotypes, we 13 

note differing genetic architectures. Milk yield phenotypes presented lower heritabilities and fewer 14 

additive QTL, but higher non-additive genetic variance and a higher proportion of loci exhibiting 15 

dominance compared to milk composition phenotypes. Large-effect recessive QTL are 16 

segregating at surprisingly high frequencies in cattle. We speculate that the differences in genetic 17 

architecture between milk yield and milk composition phenotypes derive from underlying 18 

dissimilarities in the cellular and molecular representation of these traits. Lactation yields may act 19 

as a better proxy than milk composition traits for a wide range of underlying biological disorders 20 

affecting animal fitness 21 

 22 

 23 

Background 24 

Non-additive genetic effects are best known and studied in Mendelian disease contexts, where 25 

recessive conditions have been shown to have major deleterious impacts on the health and 26 

performance of animals. These studies have mostly used a ‘forward genetics’ approach, where 27 

observation of a disease phenotype precedes fine mapping and sequencing to highlight the 28 
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mutation [1–3]. The reverse approach has also been applied, where candidate loss of function 29 

genotypes were identified and phenotyping was subsequently conducted to detect the impact of 30 

the mutation [4,5]. Though examples remain limited, genome-wide association approaches have 31 

been used to investigate non-additive effects in quantitative traits. Recent studies include the 32 

investigation of complex traits in both humans [6] and cattle [7–11]. Reynolds et al. identified 33 

several recessive mutations in cattle with major negative impacts on growth and developmental 34 

traits, where some of these loci represented underlying genetic disorders [11]. 35 

 36 

The concept of using routinely gathered, quantitative traits as proxies of genetic disorders is 37 

based on the idea that phenotypes such as growth or liveweight can be indicative of whole animal 38 

health status, where reduced growth might be due to some underlying genetic disorder, and that 39 

those effects could be detected via GWAS. It is therefore of interest to consider what other traits 40 

might serve as proxies of animal fitness, with a view to extend the utility of this approach. 41 

Lactation traits such as milk volume comprise one of the most commonly targeted classes of 42 

quantitative traits studied in cattle, where additive analyses of these traits have presented 43 

numerous candidate causative genes such as DGAT1 [12], GHR [13], ABCG2 [14], GPAT4 [15], 44 

and MGST1 [16]. Lactation traits might also be reflective of genetic disorders, given the increased 45 

energy demands of lactation and the substantial metabolic and physiological stresses imposed on 46 

the animal [17]. We wondered therefore whether the application of non-additive models to 47 

lactation data might identify further recessive mutations, and to this end, have conducted non-48 

additive GWAS for milk traits in 124,000 animals. We contrast the additive and non-additive 49 

genetic architectures of milk yield traits and milk composition traits. Finally, we describe the 50 

discovery of novel major effect recessive loci, highlighting candidate mutations that potentially 51 

underlie undiagnosed recessive disorders.  52 

 53 

 54 

Methods 55 

Animal populations 56 
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The dataset reported in this study consists of 124,364 New Zealand dairy cattle.  These animals 57 

come from a mixed breed population, where 20,893 are 16/16th’s Holstein-Friesian (HF), 13,184 58 

are 16/16th’s Jersey (J), 67,520 are crosses involving varying proportions of the two breeds 59 

(HFXJ), and 22,767 are HF or J crossbreeds with minor proportions of other breeds including 60 

Ayrshire, Brown Swiss, or Hereford (and other crosses).  An individual’s breed may be coded as 61 

16/16ths, however, this does not preclude the possibility that an ancestor may be crossbred as 62 

matings between 15/16ths and 16/16ths animals result in 16/16ths offspring. The animals were 63 

born between 1990 and 2018 with a mean birth year of 2010. 64 

 65 

Phenotypes 66 

Five first-lactation milk phenotypes were investigated in this study. These include three milk yield 67 

traits; milk volume (L/Lactation; a lactation refers to a standardised 268 day lactation; N = 68 

124,356), milk protein yield (kg/Lactation; N = 124,356), and milk fat yield (kg/Lactation; N = 69 

124,356), and two milk composition traits; milk protein percentage (%; N = 124,363), and milk fat 70 

percentage (%; N = 124,363). Milk protein yield and milk fat yield are the product of the milk 71 

volume multiplied by the milk protein percentage or milk fat percentage, respectively.  72 

Prior to genetic analysis, phenotypes were adjusted based on effects obtained from the national 73 

genetic evaluation of the entire cattle population (30 million animals) which fits mixed linear 74 

models. Fixed effects in that model included contemporary group, age at calving, stage of 75 

lactation, and record type (records may be made at am milkings, pm milkings, or both). Since 76 

animals have varying numbers of herd-test measurements within each milk trait, these were 77 

aggregated to a phenotypic deviation such that each animal has a single record and a 78 

corresponding weighting reflecting the amount of information in the record [18]. 79 

 80 

Sequence-based imputation reference panel 81 

Whole genome sequencing was performed on 1,300 animals that were mostly ancestral sires, 82 

these animals comprised the reference population for sequence-based imputation. Animals 83 

comprising HF (N=306), J (N=219), HFXJ (N=717), or other breeds and crossbreeds (N = 58) 84 
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were sequenced on Illumina HiSeq 2000 instruments targeting 100bp paired-end reads. 85 

Sequence data were aligned to the ARS-UCD1.2 reference genome assembly using BWA 0.7.17 86 

[19] resulting in a mean read depth of 15x. Variant calling was performed using GATK v4.0.6.0 87 

[20], followed by variant filtering via Variant Quality Score Recalibration. Using animals with high 88 

read depth (>10x, N = 850), variants were filtered out if they were singletons, were multi-allelic, 89 

had a map quality score lower than 50, or had a Mendelian error rate above 5%. These criteria 90 

left 21,005,869 whole genome sequence variants from the 850 highest read depth animals, 91 

where these positions were then extracted from the sequence data on all 1,300 animals and 92 

phased using Beagle 5.0 [21] to create the sequence-based imputation reference panel.  93 

 94 

Genotyping 95 

The study animals (N = 124,364) were genotyped using SNP chips, where either ear-punch 96 

tissue samples or blood samples were used for DNA extraction. Genotyping was performed using 97 

a variety of platforms including GeneSeek GGPv1, GGPv2, GGPv2.1, GGPv3, GGPv3.1, GGPv4, 98 

GGP50kv1, GGP50kv1.1, Illumina BovineSNP50v1, Illumina BovineSNP50v2, or BovineHD SNP-99 

chips.  Samples were processed for DNA extraction at GeneMark (Hamilton, New Zealand) using 100 

Qiagen BioSprint kits or GeneSeek (Lincoln, NE, USA) using Life Technologies’ MagMAX 101 

system. 102 

 103 

Consolidation of SNP-chip panels for sequence imputation 104 

Imputation from genotyping panels to sequence resolution was performed as described in Wang 105 

et al. [22]. Genotype panels were grouped into four sets; GGP panels (GGPv1, GGPv2, 106 

GGPv2.1, GGPv3, GGPv3.1, and GGPv4), 50K panels (BovineSNP50v1, and BovineSNP50v2), 107 

GGP50k panels (GGP50kv1, GGP50kv1.1), and the BovineHD panel. Animals genotyped on the 108 

GGP panels were imputed to the BovineSNP50v1 panel, then combined with the physically 109 

genotyped 50K panel animals and further imputed to the BovineHD panel.  Animals genotyped on 110 

the GGP50k panels were separately imputed to the BovineHD panel.  In order to incorporate the 111 

large amount of custom content genotyped on the GGPv3 platform, we conducted similar 112 
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imputation steps to impute all animals to GGPv3. We then combined the imputed and physically 113 

genotyped panels (imputed HD, imputed GGPv3, and physically genotyped HD), and imputed 114 

these animals to sequence resolution using the sequence-based imputation reference population, 115 

described above. Post-imputation filtering to remove very rare variants (homozygous alternate 116 

count ≤ 5) was performed, as well as a filter to remove variants that imputed poorly based on the 117 

dosage R2 statistic (DR2; DR2 < 0.7). After the application of these filters, 16,640,294 variants 118 

remained for GWAS and further analysis. 119 

 120 

Genotypes for population structure adjustment 121 

We used content from the Bovine SNP50 chip platform to account for the population structure of 122 

the sample. From the initial 54,708 autosomal SNPs, we filtered to remove markers with high 123 

missing genotype rates (> 0.01), low minor allele frequency (< 0.02), or high deviations from 124 

expected Hardy-Weinberg equilibrium (> 0.15, calculated within breed). This was followed by 125 

further filtering to remove markers that appeared to impute poorly (DR2 > 0.9), and markers in 126 

high LD with another marker on the panel (pairwise R2 > 0.9, within 1 Mbp). These criteria 127 

resulted in a set of 31,451 SNP chip markers for subsequent analysis. 128 

 129 

Heritability estimates 130 

We estimated breed-specific additive and dominance heritabilities using genomic relationship 131 

matrices (GRMs) using GCTA software [6,23]. Variance components were estimated from 132 

purebred individuals (HF = 20,893, J = 13,184), using the same set of 31,451 filtered 133 

BovineSNP50 SNPs used for population structure adjustment (filters described in the previous 134 

section). GCTA estimates variance components using a restricted maximum likelihood (REML) 135 

approach, where additive heritability (h2) is the ratio of additive genetic variance to phenotypic 136 

variance, and dominance heritability (δ2) is calculated as the ratio of dominance genetic variance 137 

to phenotypic variance.  138 

 139 
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GWAS 140 

Model Overview 141 

We applied a non-additive GWAS method similar to that described in Reynolds et al. [11] to 142 

identify non-additive QTL for milk traits. This two-step method first uses a leave-one-segment-out 143 

(LOSO) approach to fit genomic marker effects to adjust for population structure, and a second-144 

step Markov chain Monte Carlo (MCMC) method to test the effects of all imputed-to-sequence 145 

variants, one at a time.  In general, for each sequence variant the method fits the following model: 146 

 𝑦 = 1µ + 𝑇𝑏 + 𝑀𝛼𝛼 + 𝑀𝛿𝛿 +  𝑒 1 

 147 

Where y indicates a vector of one of the 5 phenotypes of interest, pre-adjusted as described in 148 

the ‘Phenotypes’ section above, µ is the overall mean, 1 is a vector of ones, b is a vector of 149 

genotype class effects for the sequence variant of interest, and T is the design matrix relating 150 

records to genotype class for the sequence variant.  The vector α represents random SNP chip 151 

additive marker effects spanning the whole genome except the segment of interest such that α ~ 152 

N(0, Iσα
2), where I is an identity matrix of order equal to the number of marker effects and σα

2 153 

represents the additive marker effect variance, δ is a vector of random SNP chip dominance 154 

marker effects spanning the whole genome except the segment of interest such that δ ~ N(0, 155 

Iσδ
2), where σδ

2 represents the dominance marker effect variance. Mα and Mδ are matrices with 156 

each column representing the covariate values for a marker locus ([0, 1, 2] and [0, 1, 0], 157 

respectively). The vector e represents residuals with e ~ N(0, R), where for a simple model based 158 

on single observations R = Iσe
2, where I is an identity matrix of order equal to the number of 159 

phenotypic records and σe
2 represents the residual error variance.  Since the traits investigated 160 

here are represented by the mean of a variable number of repeated observations, the diagonal 161 

elements of R varied according to the number of observations contributing to the yield deviation.  162 

One notable contrast to the model implemented in Reynolds et al., is that in the current model, we 163 

fit both additive (Mα) and dominance (Mδ) effects of the genomic markers to adjust for population 164 

structure. This modification was made to better control the inflation observed when analysing milk 165 

traits in a population larger than that studied in Reynolds et al. [11].   166 
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 167 

Population structure adjustment 168 

500 samples of vectors of plausible marker effects, �̃� and �̃�, for the 31,451 SNP-chip markers, 169 

were generated using single-site Gibbs sampling from an extension of the BayesC0 algorithm 170 

implemented in GenSel using standard priors [24]. That algorithm was performed while omitting 171 

the Tb term from (1) and convergence of the Markov chain of plausible marker effects was 172 

determined using the Geweke diagnostic [25]. LOSO was used to avoid fitting SNP-chip marker 173 

effects in linkage disequilibrium with the sequence variant being tested. The genome was 174 

partitioned into 10Mbp LOSO intervals and, for each interval, phenotypes were adjusted for the 175 

samples of SNP chip marker effects except those within the relevant LOSO interval. This 176 

produced distinct LOSO-adjusted phenotypic deviations for each 10Mbp interval for each sample 177 

of plausible marker effects. 178 

  179 

Association analysis 180 

For each sequence variant, we sampled genotype class effects for each plausible sample of 181 

LOSO-adjusted phenotypic deviations. We obtained MCMC chains of additive and dominance 182 

genotypic effects, and standard-additive effects as contrasts of these plausible genotype class 183 

effects. These posterior distributions were summarised by their posterior means, posterior 184 

standard deviations, and z-statistics following a standard Normal distribution [26].  The statistical 185 

significance of standard-additive, additive, and dominance genetic effects were evaluated using a 186 

Z-test.  187 

 188 

QTL identification, significance criteria, and annotation 189 

We primarily aimed to detect non-additive QTL, as such we declared variants significant if the 190 

dominance genotypic effect, d, passed a false discovery rate (FDR) threshold of 1×10-3. For each 191 

phenotype, this FDR threshold was calculated using q-values [27] as implemented in the qvalue 192 

package in R [28]. Since we were particularly interested in medium- to large-effect QTL, only loci 193 

with effect sizes (a, or d) greater than 5% the phenotypic standard deviation of the trait were 194 
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considered for further downstream analyses.  We calculated the dominance coefficient 𝑘 =
𝑑

|𝑎|
   for 195 

each significant QTL to characterise the non-additive mechanism presented, where k ≈ 0 196 

represents a completely additive locus, k ≈ 1 represents a completely recessive locus, k < 1 a 197 

partially dominant locus, and k > 1 an over-dominant locus.    198 

For standard-additive effects, α, we used GCTA-COJO [29] to detect tag variants for QTL 199 

identified in our standard-additive GWAS. GCTA-COJO utilises LD structure and GWAS 200 

summary statistics to iteratively identify significant QTL at the FDR threshold of 1×10-3. We used 201 

sequence annotations from variant effect predictor (Ensembl 97, [30]) to highlight mutations that 202 

might be responsible for non-additive QTL identified, where the potential impact of missense 203 

mutations on protein function was judged using SIFT scores [31].  204 

 205 

Iterative GWAS 206 

We aimed to investigate whether multiple dominance QTL might segregate at associated loci, so 207 

implemented an iterative GWAS approach to differentiate QTL. Here, we first identified the 208 

variants on each chromosome that surpassed the false discovery threshold. We then adjusted the 209 

phenotype for the genotype class effects of the most significant variant (or candidate causal 210 

variant if identified) and then re-ran the GWAS model on the chromosome of interest using the 211 

residual phenotype. This process was iterated until there were no further significant QTL on the 212 

chromosome. 213 

 214 

 215 

Results 216 

Heritabilities of lactation traits 217 

We first estimated additive and dominance heritabilities for each phenotype within each breed to 218 

investigate the additive and non-additive genetic architecture of each trait. These results are 219 

shown in Table 1, additive heritabilities far outweighed dominance heritabilities, though presented 220 

ratios of similar magnitude to those previously reported for other traits and populations [8,32]. Milk 221 
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fat yield in Jersey cows had the highest dominance heritability at 0.074, and milk protein 222 

percentage in Holstein-Friesian cows had the lowest dominance heritability at 0. Of note, a 223 

distinct contrast in relative heritabilities was apparent between milk composition and milk yield 224 

traits, where composition traits had high additive heritabilities but near zero dominance 225 

heritabilities, and yield traits presented lower additive heritabilities but higher dominance 226 

heritabilities (Table 1).  227 

 228 

Table 1 | Heritability estimates for lactation traits     

Trait h2 
HF δ2 

HF h2 
J δ2 

J 

Milk Volume 0.296 0.044 0.312 0.064 

Milk-Fat Yield 0.261 0.059 0.232 0.074 

Milk-Protein Yield 0.235 0.053 0.236 0.073 

Milk-Fat Percentage 0.7 0.006 0.616 0.015 

Milk-Protein Percentage 0.642 0 0.636 0.005 

     
h2 - Additive heritability, δ2 - dominance heritability, HF - Holstein-Friesian, J - 
Jersey 

 229 

Lactation trait GWAS  230 

We performed GWAS’ across the five milk traits of interest, namely milk volume, milk protein 231 

yield, milk fat yield, milk protein percentage, and milk fat percentage to identify non-additive QTL 232 

(Figure 1). Both additive and dominance effects are included in these plots, where iterative 233 

analysis identified 23 dominance QTL signals that passed our FDR threshold. These included 10, 234 

11, 12, 8, and 7 QTL from 4,618, 2,706, 8,525, 8,987, and 5,800 significant variants across milk 235 

volume, milk protein yield, milk fat yield, milk protein percentage, and milk fat percentage, 236 

respectively. These signals spanned 13 discrete autosomes. In standard-additive GWAS, 237 

following iterative COJO analysis, we identified 217, 152, 142, 673, and 457 QTL across milk 238 

volume, milk protein yield, milk fat yield, milk protein percentage, and milk fat percentage, 239 

respectively.  240 

 241 

Dominance QTL  242 
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We identified 15 significant dominance QTL for milk yield traits, and 11 for milk composition traits 243 

(Table 2, Supplementary Table 1). Across the milk yield dominance QTL, the majority (N=12) 244 

were recessive effects and they were located on chromosomes 2, 4, 5, 8, 12, 25, 28, and 29. 245 

Seven of these signals appear to be novel to the current study, the remainder having been 246 

recently highlighted in our analysis [11] of growth and developmental traits in an overlapping 247 

population to that described here.  Across the 11 milk composition dominance QTL, the majority 248 

(N=8) presented partial dominance effects, with six of these representing loci identified from 249 

previously published additive GWAS (Supplementary Table 1).  250 

Figure 2a contrasts the minor allele frequency and effect size of dominance components for all of 251 

these effects. Interestingly, milk composition trait QTL appeared to be tagged by high minor allele 252 

frequency variants with comparatively small effect sizes, whereas milk yield QTL tag variants had 253 

low minor allele frequencies and larger effects. The type of effects also appeared to differ 254 

between traits (Figure 2b), where we noted an abundance of recessive QTL in milk yield traits, 255 

whereas milk composition traits mostly comprised partially dominant QTL.  256 
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Candidate causal mutation identification 258 

Given the status of recessive milk yield QTL as potentially representing novel bovine disorders, 259 

we prioritised these QTL for further investigation, selecting QTL where the dominance coefficient 260 

(k) was near 1 (0.7 < k < 1.3). We used sequence annotations from variant effect predictor to 261 

highlight mutations that might be responsible for these effects (Ensembl 97, [30]), highlighting 262 

variants that were in strong to moderate LD (R2 > 0.7) with the lead variant per locus, and that 263 

were also predicted to alter or disrupt protein function. We identified 5 novel recessive QTL 264 

(including one biologically compelling near-significant recessive QTL), and several other 265 

recessive QTL previously identified and attributed to mutations in the PLCD4, FGD4, MTRF1, 266 

GALNT2, DPF2, and MUS81 genes [11]. Figure 3 presents the position, regional LD, and 267 

association statistics for the QTL novel to the current study. Note that we have applied relatively 268 

simple annotation criteria and only highlight protein-coding variants as candidates since, for 269 

recessive signals at least, we consider protein altering mutations primary candidates given the 270 

loss of function connotation for these effects. Supplementary Table 1 shows all significant QTL 271 

identified, including those not expanded upon here. 272 

 273 

Chromosome 8 274 

Chromosome 8 presented a significant signal at 45Mbp for milk protein yield and milk fat yield. 275 

The most significant variants for these signals (g.45878531A>C and g.45880948C>T) were in 276 

strong LD (R2=0.99), and we note an annotated missense variant (g.44119667T>A, 277 

rs483207034) in high LD with both top-associated variants (R2 = 0.85 and 0.85, respectively; 278 

Figure 3a). This variant in the DOCK8 gene results in an amino acid (p.His649Leu) change and 279 

has a predicted deleterious impact (SIFT = 0).  280 

 281 

Chromosome 25 282 

A dispersed QTL signal is apparent on chromosome 25 at 24-27Mbp across the three lactation 283 

yield traits, with the top variants at g.25921991AT>T for milk fat yield, and g.27868969C>T for 284 

milk protein yield and milk volume.  Effect prediction highlighted three candidate causal mutations 285 
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in the region. These included a p.Pro151Leu substitution in the IL4R gene (g.24904939C>T, 286 

rs453138457) with R2 = 0.74, and 0.62, for the milk fat and milk protein/milk volume top variants, 287 

respectively, another missense variant (p.Arg158His) in the KIAA0556 gene (g.25161613G>A, 288 

rs471945767) with R2 = 0.89, and 0.74, respectively, and a nonsense variant (p.Trp731*) in the 289 

ITGAL gene (g.26689392G>A, rs1116814780) with R2 = 0.76, and 0.70, respectively (Figure 3b).  290 

While these are plausible candidates to explain the QTL, we were not able to distinguish between 291 

the candidates through iterative analysis, where fitting any one of these candidates removed the 292 

majority of the association at this locus. 293 

 294 

A second signal for protein yield on chromosome 25 was observed at 35Mbp. This locus 295 

maintained its significance after accounting for the chromosome 25 25Mbp QTL through iterative 296 

analysis, suggesting it was a discrete effect. The locus presented a strong candidate causative 297 

mutation as potentially underlying the effect, comprising a stop gain mutation (g.35975573C>T; 298 

Arg123*) in the LRCH4 gene that was the third most highly associated variant at this locus overall 299 

(Figure 3c).  We observed a mostly recessive effect for this variant (k = 0.74), where animals 300 

carrying the heterozygote and homozygous alternate genotypes produce 1.44kg, and 11.21kg 301 

less milk protein per lactation compared to the homozygous reference genotype. When fitting 302 

g.35975573C>T as a fixed effect, the significance of the QTL is removed, and no further QTL are 303 

apparent on the chromosome (Supplementary Figure 1).  304 

 305 

Chromosome 27 306 

We observed a signal at 15Mbp on chromosome 27 for milk protein yield. Although this did not 307 

surpass our q-value FDR threshold of 1x10-3 (equivalent to P = 1.65×10-7), this signal was 308 

conspicuous given that the lead variant (g.15491451C>T; rs523126258, p-value = 1.30×10-6) is a 309 

predicted deleterious missense mutation (p.Thr197Met) in the SLC25A4 gene. Figure 3d shows a 310 

Manhattan plot for this region.  311 

 312 

Chromosome 28 313 
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We previously reported a major recessive bodyweight QTL on Chromosome 28 represented by a 314 

likely causative splice acceptor mutation in GALNT2 (g.2281801G>A) [11]. This QTL was 315 

apparent in the current analysis, impacting all three milk yield traits. However, the application of 316 

iterative association analysis revealed a secondary QTL approximately 4Mb downstream of the 317 

GALNT2 mutation at Chr28:6-7Mbp (top variant at g.6223350G>A). This residual signal 318 

highlighted a stop-gain non-sense mutation (g.7922207G>A) strongly linked to the 319 

g.6223350G>A variant (R2 = 0.89; Figure 3e). This stop-gain mutation (p.Arg55*) is in the RBM34 320 

gene, and appears to be in linkage equilibrium with the GALNT2 causal mutation (R2 < 0.001), 321 

having little association with bodyweight in our previous analysis (p=0.37;[11]). Upon the second 322 

chromosome 28 GWAS iteration (fitting both GALNT2 and RBM34 mutations as fixed effects), 323 

there were no further significant QTL on the chromosome (Supplementary Figure 2).  324 

 325 

Dominance QTL for composition traits 326 

In addition to the recessive QTL identified for milk yield traits, we also identified dominance QTL 327 

for milk composition traits. We investigated these effects and observed several partial dominance 328 

QTL in close proximity to previously described additive loci. The tag variants of these QTL were 329 

adjacent the genes; CSF2RB [33], MGST1 [16], DGAT1 [12], GHR [13], GPAT4 [15], and 330 

PICALM [34] and, in each case, these variants were in high linkage disequilibrium (R2 > 0.8) with 331 

previously identified causal and/or tag variants (Supplementary Table 1).   332 

 333 

Milk protein percentage presented multiple dominance QTL on Chromosome 6 within the 334 

Chr6:80-85Mbp region (Supplementary Table 1). The most significant of these QTL presented the 335 

top variant g.84112451C>A and shows a partial dominance effect. Unlike the examples 336 

highlighted above, no very strongly linked candidate mutation was identified, though we note that 337 

this variant is in moderate LD with a previously proposed causative variant in CSN1S1 (R2 = 0.53; 338 

p.Glu192Gly mutation; g.85427427A>G) [35].  Chromosome 12 presented a significant 339 

dominance QTL, where we observed a partial dominance effect at 68Mbp for milk protein 340 

percentage with the top variant at g.68763031T>TG. As with the chromosome 6 locus, no 341 
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particularly obvious candidate causal variant or gene was identified that might account for this 342 

signal.  343 

 344 

Contrasting additive and dominance GWAS results 345 

Figure 4 compares minor allele frequency (MAF) and the effect sizes between homozygous 346 

genotypes across all traits and genetic mechanisms.  As might be expected, we observed many 347 

more additive QTL than dominance QTL across all traits. Notably however, mutations detected 348 

via dominance GWAS in milk yield traits presented very large effects compared to the additive 349 

QTL detected for these traits, and most presented a recessive mechanism.  On the other hand, 350 

the largest effects presented for the two milk composition traits were mostly additive QTL, where 351 

dominance effects tended to be higher MAF and incompletely dominant in their presentation of 352 

effect.  353 

 354 

 355 

Discussion 356 

The results in this study highlight the presence of many non-additive QTL for milk traits in cattle. 357 

The majority of these signals for milk yield traits present recessive QTL, identifying five novel loci 358 

and several previously described recessive QTL [11]. Although milk protein percentage and milk 359 

fat percentage traits also yielded many dominance GWAS signals, most presented partially 360 

dominant QTL that appeared to represent minor dominance components to previously reported 361 

additive QTL. 362 

 363 

Different trait classes present contrasting additive and non-additive genetic architectures  364 

One remarkable observation from the current study is the apparent difference in additive and non-365 

additive genetic architectures between milk yield traits and milk composition traits.  Dominance 366 

heritabilities of yield traits ranged from 3% to 7%, whereas composition traits have dominance 367 

heritabilities at or near zero. By contrast, additive heritabilities ranged from 23% to 31% for yield 368 
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traits, compared to composition traits which ranged from 64% to 70%. These findings are 369 

consistent with Sun et al. [8] where they observed similar additive and dominance heritabilities 370 

and suggest dominance, in particular recessive mechanisms, may play a bigger role in the 371 

regulation of yield traits than composition traits.  372 

 373 

These architecture contrasts were also apparent when comparing the properties of individual 374 

dominance QTL between milk yield and milk composition traits. Dominance QTL identified in milk 375 

yield traits manifested primarily with recessive genetic mechanisms, while milk composition traits 376 

presented primarily partial dominance effects. Of further note, milk yield trait dominance QTL 377 

typically had low minor allele frequencies and large effect sizes, whereas dominance QTL for milk 378 

composition traits were typically characterised by high minor allele frequencies and smaller effect 379 

sizes. We theorise that these observations may be due to the way in which the different traits are 380 

able to reflect underlying deleterious recessive syndromes – i.e., their utility to serve as proxies of 381 

genetic disorders. Of all recessive QTL detected in the current study, we previously validated a 382 

subset of these as representing new genetic disorders [11]. Although we did not investigate the 383 

novel recessive loci in this study with the same rigour as those investigated in Reynolds et al., 384 

their very large, uniformly negative effects suggest some at least will similarly validate as new 385 

recessive syndromes. Notably, none of these loci (new or old) show substantial effects on milk 386 

composition, suggesting milk fat and protein percentage traits do not readily reflect recessive 387 

effects. This finding can be rationalised by the comparatively broad range of biological processes 388 

reflected by milk yield traits (or the growth and development traits investigated in Reynolds et al. 389 

2021), where the energy demands of lactation (or growth) might be expected to manifest a wide 390 

range of other organismal stresses. The relative composition of milk components, by contrast, 391 

likely represents a narrower spectrum of mammary-specific biology that we hypothesise is less 392 

able to serve as a proxy of animal fitness. 393 

 394 

It should be acknowledged that given protein yield and fat yield are the products of milk volume 395 

and their respective percentages, these traits are not independent. We observe the variance 396 
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components and genetic architectures of milk fat yield and milk protein yield are more 397 

comparable to milk volume than their respective composition traits. This suggests milk volume 398 

has a greater influence on milk fat yield and milk protein yield due to the additional environmental 399 

factors and measurement errors affecting milk volume.  400 

 401 

Previous studies highlighting recessive effects on quantitative traits 402 

As discussed above, we recently reported an investigation of growth and developmental traits 403 

that identified non-additive QTL using similar approaches to those presented here [11].  That 404 

study demonstrated how quantitative traits can be used as proxies to map genetic disorders 405 

without prior disease identification. In doing so, using sequence-resolution variants, the research 406 

highlighted several recessive QTL represented by variants in the PLCD4, FGD4, MTRF1, 407 

GALNT2, DPF2, and MUS81 genes, each with large effects on bodyweight and other quantitative 408 

traits. The work presented here builds on those findings; we identified many of the same 409 

recessive mutations as well as several additional recessive QTL. The additional discoveries made 410 

here can be assumed to reflect the increased sample size leveraged in the current study.  411 

 412 

Aside from the Reynolds et al. study discussed above, few other studies have highlighted major 413 

effect recessive impacts using quantitative trait data. Although non-additive GWAS with large 414 

sample sizes has been performed in cattle [10,32], low marker densities in these earlier studies 415 

may have hampered the ability to directly resolve candidate causative variants [11]. This 416 

challenge arises due to the different linkage disequilibrium (LD) properties between causal and 417 

observed variants for additive and non-additive QTL, where LD of an observed marker tagging a 418 

causal variant will manifest at R2 for an additive effect, compared to R4 for a recessive signal.  419 

This means observed tag variants need to be more closely linked to causal dominance variants to 420 

capture the QTL [36,37]. Despite limited prior literature on the use of non-additive GWAS to this 421 

end, one noteworthy study suggesting the importance of recessive variants to animal breeding 422 

traits was recently reported in the context of male fertility and semen traits in cattle [38]. Here, the 423 

researchers identified recessive QTL and candidate causal mutations in several genes including 424 
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a missense variant in SPATA16.  That study used imputed genotypes at high density (based on 425 

the Illumina BovineHD platform), though it is noteworthy that the study population used was quite 426 

small (N=3,736 bulls). It seems likely that the discovery of these QTL was aided in part by the 427 

remarkable frequency of the deleterious haplotypes identified in that study, presenting allele 428 

frequencies ranging from 9-34% [38].  429 

 430 

Recessive QTL of interest 431 

Although many non-additive signals were identified in this study, we were particularly interested in 432 

recessive QTL with large effects, given that these might represent underlying genetic disorders.  433 

The five novel recessive QTL on chromosomes 8, 25, 27, and 28 are presented and discussed 434 

below.   435 

 436 

Chromosome 8 - DOCK8 437 

Our results present a missense mutation in the DOCK8 gene as potentially having a deleterious 438 

recessive impact on milk yield traits. The QTL appears to operate in a completely recessive 439 

manner, with the DOCK8 variant present at low allele frequencies in each breed (Holstein-440 

Friesian MAF = 0.013, Jersey MAF = 0.059). DOCK8, dedicator of cytokinesis 8, is involved with 441 

guanine nucleotide exchange factors and influences intracellular signalling networks, and is 442 

important in immune responses and lymphocyte regulation in humans and mice [39].  Recessive 443 

mutations in DOCK8 have been associated with hyper Immunoglobulin E syndrome leading to the 444 

onset of combined immunodeficiency disease and other health complications [40]. In mice, 445 

compromised immune responses are also observed including negative impacts on B cell 446 

migration [41], and T cell migration and viability [42,43]. DOCK8 variants have not previously 447 

been associated with cattle performance traits, though if this missense mutation underlies the 448 

chromosome 8 QTL, it could be presumed to act through similar negative impacts on the immune 449 

system. Under this hypothesis, it is unknown whether the lactation effects are due to mammary 450 

immune function or secondary impacts, though given that higher levels of circulating 451 

immunoglobulin E and lymphocyte profiling can indicate DOCK8 deficiency in humans [40,44], 452 
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future work to sample and profile homozygous animals could be used to definitively establish the 453 

causality of the DOCK8 missense mutation for this QTL.   454 

 455 

Chromosome 25 - IL4R, KIAA0556, ITGAL 456 

The QTL identified on chromosome 25 at 24-27Mbp presented three candidate mutations in 457 

genes: IL4R, KIAA0556, and ITGAL.  IL4R, Interleukin 4 receptor, is a transmembrane protein 458 

involved in immune responses in humans [45]. KIAA0556 is associated with microtubule 459 

regulation in humans, and knockout mutations in humans and mice have been associated with 460 

the neurological disorder, Joubert syndrome [46]. ITGAL encodes integrin alpha L chain, and loss 461 

of function variants in this gene have been associated with compromised immunity including 462 

increased susceptibility to infection to Salmonella in mice [47]. Given that iterative association 463 

analysis failed to prioritise one of these variants over the other, it is unknown which of these 464 

variants might be responsible for the QTL, and our focus on protein-coding variants as candidates 465 

may have also overlooked alternative non-coding or structural mutations as responsible. These 466 

variants are nevertheless in moderately strong, though not perfect LD (max. pairwise R2= 0.79), 467 

so physical genotyping for fine mapping and future functional testing should help to resolve the 468 

identity of the gene (or genes) underpinning this QTL. 469 

 470 

Chromosome 25 - LRCH4 471 

Although iterative GWAS did not resolve candidates in the above example, this approach did 472 

highlight a second QTL on chromosome 25 represented by a nonsense mutation in the LRCH4 473 

gene. LRCH4, leucine-rich repeats and calponin homology containing protein 4, regulates the 474 

signalling of toll-like receptors (TLRs) and has been shown to influence innate immune responses 475 

in mice [48]. In that study, researchers showed LRCH4-silenced cells presented reduced 476 

expression across pro-inflammatory cytokines produced in the TLR4 pathway, most notably that 477 

of IL-10 and MCP-1. This suggests a knockout mutation, like that observed here, may have 478 

negative impacts on innate immunity in cattle that may drive negative impacts on milk volume, 479 

milk fat yield, and milk protein yield. 480 
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 481 

Chromosome 27 - SLC25A4 482 

While non-significant at the genome-wide level (c.f. P = 1.65×10-7 vs P = 1.30×10-6), the 483 

chromosome 27 15.5Mbp locus presented a conserved amino acid mutation in SLC25A4 as the 484 

lead associated variant and was therefore of note. This variant demonstrated a complete 485 

recessive effect on all three lactation yield traits. The SLC25A4 gene, solute carrier family 25 486 

member 4, encodes the Adenine nucleotide translocator (Ant1) protein, responsible for the 487 

translocation of ATP and ADP between the cytoplasm and mitochondria.  In mice, knockouts of 488 

SLC25A4 result in mitochondrial myopathy and cardiomyopathy, and a severe intolerance to 489 

exercise [49]. Similarly, in humans, childhood-onset mitochondrial disease and exercise 490 

intolerance have been observed for both dominant [50] and recessive mutations [51] in SLC25A4. 491 

If future association studies confirm the non-significant associations highlighted in the current 492 

study, it would be intriguing to examine the phenotypes of homozygous cows further, given the 493 

implication that mitochondrial functional deficits and exercise intolerance might underlie these 494 

lactation performance impacts.  495 

 496 

Chromosome 28 - RBM34 497 

On first appearance, the strong associations with lactation yield traits near the beginning of 498 

chromosome 28 might reasonably be attributed to the GALNT2 splice site mutation reported and 499 

investigated previously [11]. However, upon fitting this mutation as a covariate in our iterative 500 

GWAS approach, a secondary peak was still strongly apparent, highlighting a nonsense mutation 501 

in the RBM34 gene as potentially responsible for the effect. The RBM34 gene encodes an RNA 502 

recognition motif protein with an RNA-binding domain. There appears to be little previous 503 

research in humans or model organisms on RBM34, with limited recent literature probing its 504 

involvement in embryonic stem cell differentiation [52]. Here we observed a predicted 505 

homozygous knockout of the gene that may influence milk volume, milk protein yield, and milk fat 506 

yield in a recessive manner, though its status as a largely uncharacterised RNA-binding protein 507 

leaves little room for speculation as to how those effects might manifest. Mechanism aside, 508 
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identification of two uncorrelated recessive QTL demonstrates the utility of using iterative GWAS 509 

approaches, given that ‘peaks’ with compelling causative mutations presented by previous 510 

analyses might otherwise go un-investigated. Of further note at this locus, other researchers 511 

appear to have observed lactation effects at the 6-10Mb locus previously [53]. However, there 512 

appears to be very low LD (R2 with RBM34 = 0.04, GALNT2 = 0.02) between the tag variant 513 

identified by Raven et al. (rs41607517) and the nonsense mutations identified here, suggesting 514 

these are likely different effects. 515 

 516 

Previously described additive QTL present partial dominance 517 

We observed several partial dominance QTL closely linked to previously described QTL identified 518 

from standard-additive analyses.  As described in Supplementary Table 1, we identified 519 

dominance components in high LD with variants associated with the genes; CSF2RB [33], 520 

MGST1 [16], DGAT1 [12], GHR [13], AGPAT6 [15], PLAG1 [54,55], and PICALM [34] (and in 521 

moderate LD with a CSN1S1 variant [35]). These partial dominance associations were mostly 522 

identified in percentage traits. These observations suggest that many well-known major-effect 523 

QTL identified from additive analyses incorporate some level of non-additivity, in agreement with 524 

the analyses of milk traits reported by Jiang et al. (2017;2019) [10,32].  525 

 526 

Conclusion  527 

In this study, we have highlighted that different classes of lactation traits (yield compared to 528 

composition traits) present differing additive and non-additive genetic architectures. We 529 

speculate, that these differences derive from underlying contrasts in the cellular and molecular 530 

representation of these traits, where despite comparatively low additive heritabilities, lactation 531 

yield effects may better reflect whole-animal energy and fitness status and be a better proxy of a 532 

wider range of underlying biological disorders. At a single locus level, we identified five QTL 533 

presenting seven candidate causative variants in the DOCK8, IL4R, KIAA0556, ITGAL, LRCH4, 534 

SLC25A4, and RBM34 genes, highlighting medium to large effect recessive variants that may 535 

provide future opportunity for diagnostic testing and animal improvement.  536 
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Figure Legends 537 

Figure 1 – Dominance and additive Manhattan plots for lactation traits. 538 

a-e, Manhattan plots for milk volume (a), milk protein yield (b), milk fat yield (c), milk protein 539 

percentage (d), and milk fat percentage (e) showing significance of genotypic dominance (blue 540 

and light blue), and additive (grey and light grey) estimates for ~16.6 million imputed sequence 541 

variants. Chromosomes are differentiated by alternating colours and a grey line indicates the 542 

false discovery rate of 1×10-3, used to account for multiple testing. The y-axes are truncated for 543 

display purposes (indicated by 3 dots). 544 

Figure 2 545 

Plots presenting genetic architecture of significant dominance QTL from GWAS on milk volume 546 

(milk), milk protein yield (prot), milk fat yield (fat), milk protein percentage (protper), milk fat 547 

percentage (fatper), and. The plots contrast the minor allele frequency (MAF) against the 548 

dominance effect size (a), and the absolute value of k, where k = d/|a| against the dominance 549 

effect size (b).  550 

Figure 3 551 

Manhattan plots for the five novel milk protein yield QTL representing the chr8:44Mbp (a), 552 

chr25:24-27Mbp (b), chr25:35Mbp (c), chr27:15Mbp (d), and chr28:7Mbp (e) loci. Variants are 553 

coloured by LD (R2) values with the top tag variant per locus, protein coding variants are shown 554 

as outlined triangles.  Gene tracks are presented below each plot based on Ensembl 97, where 555 

gene names have been filtered on size.  556 

Figure 4 557 

Plots contrasting minor allele frequency (MAF) and the absolute effect size between homozygote 558 

genotype classes (Effect size) for additive (blue) and dominance (red) QTL detected via GWAS 559 

across lactation traits.    560 
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Supplementary Figure Legends 565 

Supplementary Figure 1 566 

Iterative Manhattan plots for milk-protein yield on chromosome 25. Blue indicates the candidate 567 

causal variants in genes; IL4R, KIAA0556, and ITGAL, and red indicates the candidate causal 568 

variant in the LRCH4 gene. A grey line indicates the false discovery rate of 1×10-3, used to 569 

account for multiple testing. 570 

Supplementary Figure 2 571 

Iterative Manhattan plots for milk-protein yield on chromosome 28. Blue indicates the candidate 572 

causal variant in the GALNT2 gene, and red indicates the candidate causal variant in the RBM34 573 

gene. A grey line indicates the false discovery rate of 1×10-3, used to account for multiple testing. 574 
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