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Abstract 13 

Aim 14 

Climate is an essential element of species’ niche estimates in many current ecological 15 

applications such as species distribution models (SDMs). Climate predictors are often used in 16 

the form of long-term mean values. Yet, climate can also be described as spatial or temporal 17 

variability for variables like temperature or precipitation. Such variability, spatial or temporal, 18 

offers additional insights into niche properties. Here, we test to what degree spatial variability 19 

and long-term temporal variability in temperature and precipitation improve SDM predictions 20 

globally.  21 

Location 22 

Global. 23 

Time period 24 

1979-2013 25 

Major taxa studies 26 

Mammal, Amphibians, Reptiles 27 

Methods 28 

We use three different SDM algorithms, and a set of 833 amphibian, 779 reptile, and 2211 29 

mammal species to quantify the effect of spatial and temporal climate variability in SDMs. All 30 
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SDMs were cross-validated and accessed for their performance using the Area under the Curve 31 

(AUC) and the True Skill Statistic (TSS).  32 

Results 33 

Mean performance of SDMs with climatic means as predictors was TSS=0.71 and AUC=0.90. 34 

The inclusion of spatial variability offers a significant gain in SDM performance (mean 35 

TSS=0.74, mean AUC=0.92), as does the inclusion of temporal variability (mean TSS=0.80, 36 

mean AUC=0.94). Including both spatial and temporal variability in SDMs shows similarly 37 

high TSS and AUC scores.  38 

 39 

Main conclusions 40 

Accounting for temporal rather than spatial variability in climate improved the SDM prediction 41 

especially in exotherm groups such as amphibians and reptiles, while for endotermic mammals 42 

no such improvement was observed. These results indicate that more detailed information about 43 

temporal climate variability offers a highly promising avenue for improving niche estimates 44 

and calls for a new set of standard bioclimatic predictors in SDM research.   45 
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Introduction 46 

Climate is known to influence species’ distributions (Woodward & Woodward, 1987) across 47 

different spatial and temporal scales, thus, detecting the impact of climate on species depends 48 

to a large degree on the spatial and temporal scale at which it is assessed (Wiens, 1989; Rahbek, 49 

2005). While the effect of spatial variability in climate on species distributions has received 50 

heightened attention in recent years due to the ever increasing spatial resolution of freely 51 

available climate data (e.g. Hijmans et al., 2005; Fick & Hijmans, 2017; Karger et al., 2017), 52 

analyses of the effect of temporal climate variability on species ranges have been much less 53 

abundant (Zimmermann et al., 2009). Analytically, an increase in resolution in one dimension 54 

often comes at the cost of decreased resolution in the other dimension due to computational 55 

limitations (Hourdin et al., 2017; Schär et al., 2019). However, a focus on ever increasing 56 

spatial resolution may leave time-dependent phenomena undetected (Wiens, 1989). This is 57 

especially of concern since one of the major components of climate change is an increase in 58 

climate variability and – in consequence – an increase of extremes (Rahmstorf & Coumou, 59 

2011; Seneviratne et al., 2012). Increasing frequencies and severities of extreme events may 60 

cause greater physiological stress and may thus result in rapid responses in many species with 61 

likely severe consequences for their spatial distribution (Reyer et al., 2013; Alexander et al., 62 

2015).  63 

The spatial ranges of species are commonly estimated using empirical species distribution 64 

models (SDMs), sometimes also termed bioclimatic envelope or habitat suitability models 65 

(Guisan & Zimmermann, 2000; Guisan & Thuiller, 2005). SDMs characterize the 66 

environmental niche of a species (Hutchinson, 1957) usually with respect to a few key 67 

environmental factors, such as temperature and precipitation. It has become common practice 68 

to use a limited set of climate variables as predictor variables (Araújo & Guisan, 2006) based 69 

on long-term means (climatologies) alone (Ashcroft et al., 2011). Such an aggregation of 70 

climate variability into long-term climatological means fully removes information on the 71 

temporal signal, including inter-annual variability. Species are known to strongly differ in 72 

degree to which they can tolerate climatic extremes, and this affects their life cycles, coping 73 

strategies through functional adaptations and, ultimately, their spatial distribution. Yet when 74 

using long term climatic means, our capacity to distinguish effects from differences in climate 75 

variability on species’ distributions is basically removed.  76 

Climatologies do not only smooth out temporal variabilities in climate but also reduce spatial 77 

variability.  Spatial climate heterogeneity as a result of small-scale topography and other factors 78 

are not represented in gridded datasets of coarse spatial grain. Coarse spatial grains cannot 79 
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resolve the richness in topography, and thus climate, environment, and habitats, that are 80 

essential for quantifying species’ environmental niches (Stein et al., 2014; Stein & Kreft, 2015).   81 

Such misrepresentation of spatial heterogeneity when representing or aggregating climate 82 

predictors at coarse grain might more strongly impact niche estimates in the tropics compared 83 

to temperate or boreal zones (Janzen, 1967). In the tropics, species generally experience a lower 84 

degree of intra- and interannual climatic variation due to the rather stable environmental 85 

conditions they encounter throughout the year (Janzen, 1967; Wiens, 1989). In temperate 86 

climates however, the conditions a species experiences are much more variable due to the larger 87 

intra- and interannual variation in climate (Janzen, 1967). Species occurring in tropical 88 

ecosystems, therefore often have a much narrower climatic niche (Stevens, 1989; Cadena et al., 89 

2012). In turn, this also implies that the influence of temporal variability might be greater in 90 

areas where species are not well adapted to variation in climate. Therefore, along large-scale 91 

geographic gradients both spatial and temporal variability can become important in estimations 92 

of a species environmental niche.  93 

Climate does not only influence the distribution of species, but also has a profound impact on 94 

how specific traits evolve over time as adaptations to climate itself (Kozak & Wiens, 2010; 95 

Rolland et al., 2018; Liu et al., 2020). While climate is an important factor in the diversification 96 

of species (Liu et al., 2020), many adaptations can also be directly linked to environmental 97 

factors. A prominent example is the evolution of endothermy, which allows to some degree, the 98 

decoupling of a species internal temperature from that of its surrounding habitat (McNab, 1978; 99 

Ruben, 1995), which in turn leads to different responses of species to a climatic factor. Hence, 100 

overall, spatial and temporal variabilities may not only act as species range determinants in 101 

isolation, but also interact with each other. With climatic data becoming available at 102 

increasingly higher spatial and temporal resolution, the opportunity arises to generate an 103 

improved understanding of the role of spatial and temporal climatic variability on the 104 

distribution of species. Here, we evaluate if considering temporal, and spatial variation in 105 

addition to classical coarse-grained climate mean values improves the performance of SDMs 106 

when using coarse-grained species distribution data.  107 

Based on the potential effects of spatial and temporal climate variability on species discussed 108 

before, we hypothesize that  109 

i) both the inclusion of spatial and temporal variability positively affect the 110 

performance of SDMs,  111 

ii) the performance of ectotherm SDMs increases more strongly when accounting for 112 

spatial and temporal variability than the performance of endotherm SDMs, and 113 
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iii) SDMs for tropical and mountain species will benefit more strongly from including 114 

variability than SDMs of species from other habitats.  115 

We test these hypotheses by modelling the distribution of 833 amphibian, 779 reptile, and 2211 116 

mammal species as a function of current climate using four different predictor groups composed 117 

of different combinations of input variables: mean climate, spatial climatic variability and 118 

temporal (interannual) climatic variability. 119 

Methods 120 

Species data 121 

We used global distribution maps provided by the Amphibian, Mammal, and Reptile Red List 122 

Assessment (IUCN, 2016). Grid cells within the distribution range of each species were 123 

converted to 0.5° grid cells, which is close to 50 km at the equator, a resolution suggested as 124 

appropriate (Hurlbert & Jetz, 2007) and often used (Fritz & Rahbek, 2012; Zurell et al., 2018; 125 

Thuiller et al., 2019) when gridding polygon range maps at the global scale. Grid cells 126 

intersecting with a range map polygon were assigned as presence cells, while those not 127 

intersecting where treated as absence cells. We only considered species for which the presences 128 

cover at least 72 0.5° grid cells so that a minimum of six data points per predictor variable 129 

(including quadratic terms) was available for model building. We also removed domestic and 130 

aquatic species.  131 

Climate predictor groups 132 

We used global climate data from CHELSA V1.2 (Karger et al., 2017a,b) and built several 133 

groups of predictors (Fig. 1, Table 1) by aggregating CHELSA to the 0.5° grid of the species 134 

data by taking the mean of all 30 arc second grid cells overlapping with a 0.5° grid cell. To 135 

calculate sub-grid heterogeneity of a climatic variable (hereafter: spatial) within a 0.5° grid cell, 136 

we used the standard deviation of all CHELSA 30 arc second grid cells overlapping with 0.5° 137 

grid cells. To calculate the interannual variability (hereafter: temporal) we calculated the 138 

standard deviation of mean annual 2m air temperature for each year from 1979 to 2013 from 139 

CHELSA V1.2 per grid cell. For temporal precipitation variability we used the relative standard 140 

deviation (temporal RSD, equivalent to the coefficient of variation) of the annual precipitation 141 

sum across all years from 1979 to 2013 from CHELSA V1.2 per grid cell. Based on the data 142 

aggregated as explained above, we generated four different groups of predictors for annual 143 
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temperature and precipitation, with different combinations of spatial and temporal variabilities 144 

(Table 1).  145 
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Table 1. Characterization of the four predictor groups used with the respective variables 146 

included in each group as well as the temporal or spatial unit over which they were aggregated. 147 

All variables are based on CHELSA V1.2 (Karger et al., 2017a). 148 

Predictor group variables included aggregation unit 

mean mean annual 2m air temperature 1979-2013 - 
 

mean annual precipitation sum 1979-2013 - 

spatial mean annual 2m air temperature 1979-2013 - 
 

mean annual precipitation sum 1979-2013 - 
 

standard deviation mean annual 2m air 

temperature 1979-2013 

all 0.0083334° grid cells 

within a 0.5° grid cell 
 

standard deviation mean annual precipitation 

sum 1979-2013 

all 0.0083334° grid cells 

within a 0.5° grid cell 

temporal mean annual 2m air temperature 1979-2013 - 
 

mean annual precipitation sum 1979-2013 - 
 

standard deviation mean annual 2m air 

temperature 1979-2013 

all years from 1979-2013 

 
coefficient of variation mean annual 

precipitation sum 1979-2013 

all years from 1979-2013 

sp-temp mean annual 2m air temperature 1979-2013 - 
 

mean annual precipitation sum 1979-2013 - 
 

standard deviation mean annual 2m air 

temperature 1979-2013 

all 0.0083334° grid cells 

within a 0.5° grid cell 
 

standard deviation mean annual precipitation 

sum 1979-2013 

all 0.0083334° grid cells 

within a 0.5° grid cell 
 

standard deviation mean annual 2m air 

temperature 1979-2013 

all years from 1979-2013 

  

coefficient of variation mean annual 

precipitation sum 1979-2013 all years from 1979-2013 
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 149 

 150 

Fig. 1. Schematic representation of the analytical setup. Four predictor groups where formed 151 

and three algorithms for species distribution models (SDMs) were fitted from range maps for 152 

3823 species of mammals, amphibians, and reptiles. The different SDMs were predicted 153 

spatially and their predictive performance assessed within a buffer of 3000 km around observed 154 

ranges, using the area under the curve (AUC) and the true skill statistic (TSS) as performance 155 

measures. 156 

 157 

Species distribution modelling 158 

We used three algorithms to relate presences and absences with the selected environmental 159 

predictor sets: Generalized Linear models (GLM) (Nelder & Wedderburn, 1972), Genearlized 160 

Additive Models (GAM) (Hastie & Tibshirani, 1990), and Random Forests (RF) (Breiman, 161 

2001). GLMs were run using linear and quadratic terms, GAMs was run using thin plate splines 162 

setting an upper limit of 4 degrees of freedom (k=5). In both cases, we set weights such that the 163 

sum of weights of presences equaled the sum of weights of absences (Barbet‐Massin et al., 164 
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2012). A classification RF was fitted using 1500 trees, while sub-sampling was restricted to 165 

contain equal numbers of presences and absences.  166 

To assess model performance, we tested SDM predictions only within a buffer around each 167 

species’ range polygon. By doing so we account for biogeographic history and explicitly test 168 

how well a model predicts the actual range of a species rather than how well it also makes 169 

predictions far outside a species’ range, yet with suitable climate. We applied a buffer of 170 

3000km around each range polygon and fitted and tested SDMs only within this extent. 171 

We evaluated the predictive performance of the SDMs using repeated split-sample tests: we 172 

split the data repeatedly into 80% training and 20% test data, fitted the model on the training 173 

data, and predicted it to the test data. This procedure was repeated 30 times, while we recorded 174 

predictive performance of each repeat. Predictive performance was assessed using a) the true 175 

skills statistic (TSS) (Allouche et al., 2006), after thresholding the predictions into 176 

presence/absence using a TSS-optimized threshold, and b) the area under the curve (AUC) 177 

(Swets, 1988). We provide the full SDM description following the ODMAP protocol (Zurell et 178 

al., 2020)(Zurell et al. 2020) in Appendix S2. 179 

Performance tests of predictor groups 180 

We used a linear mixed effects model (Bates et al., 2015) with either TSS or AUC as response 181 

variable and the predictor group as fixed effects together with the SDM algorithm (GLM, GAM, 182 

RF) and the species identity as random effects. Adding the type of SDM (GLM, GAM, or RF) 183 

as random effect on the intercept considers that algorithms can perform differently well (e.g. 184 

have a different mean performance between AUC or TSS, Thuiller et al., 2019). To always 185 

compare the same species, but modeled with different sets of predictor groups, we also added 186 

the identity of the species as random affect to the intercept. To check if there are differences in 187 

SDM performance across climatologies, we ran a paired Wilcoxon test. By this, we tested if 188 

one climatology performs better then another.  189 

All analyses have been performed using the R language for statistical computing (R Core Team, 190 

2015, version 3.6.1), the R packages raster (Hijmans & van Etten, 2014), mgcv (Wood & Wood, 191 

2015), and randomForest (randomForest: Breiman and Cutler’s Random Forests for 192 

Classification and Regression). 193 

Spatial performance of different predictor groups 194 

To test if different predictor groups have different performances in different regions, we used 195 

the gridded range map at 0.5° resolution from IUCN and assigned the value of the respective 196 
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test metric (TSS, AUC) to the entire range in which a species is present. All ranges were then 197 

stacked and the mean of all TSS and AUC values covering a 0.5° grid cell calculated.  198 

Results 199 

Spatial patterns of the predictor groups 200 

While mean annual 2m air temperatures and annual precipitation sums were generally higher 201 

in the tropics and decrease towards the poles (Fig. 2, upper), the spatial SD of these two 202 

variables is usually highest in mountainous terrain (Fig. 2, middle). Interannual variability 203 

(temporal SD) of temperature is generally higher in the northern hemisphere compared to the 204 

southern hemisphere, and increases from tropics to continental artic or boreal areas.  Variability 205 

(temporal RSD) of precipitation is more idiosyncratic, with lowest values estimated in desert 206 

areas. 207 

 208 

Fig. 2. Spatio-temporal variation in 2m air temperature and precipitation used as predictors in 209 

the different SDMs based on CHELSA V1.2. Mean annual values (upper row) show the annual 210 

mean for temperature, and the mean annual sum for precipitation averaged over the years 1979-211 

2013 and aggregated to 0.5° from a 30 arc second spatial grain by taking the mean of a 0.5° 212 

grid cell. Spatial variation (middle) indicates the standard deviation (SD) of all temperature 213 
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values of a 30 arc second grid of temperature or precipitation overlapping with a 0.5° grid cell. 214 

Temporal variation (lower row) shows the standard deviation (SD) of temperature over years 215 

between 1979-2013, and the relative standard deviation (RSD) calculated as the coefficient of 216 

variation for precipitation over the same time period. 217 

 218 

Performance scores of the SDMs with different predictor groups 219 

Overall the predictive performance of the SDMs was high with an average AUC of 0.92 and 220 

ranging on from 0.90 to 0.95 between different groups of predictors, SDMs, and climatologies. 221 

For TSS, values averaged 0.75 with a minimum 0.68 and a maximum of 0.82 for the different 222 

predictor groups.  223 

SDMs based on mean climate predictors performed worst among all groups, with average AUC 224 

and TSS scores of 0.90 and 0.71, respectively (GAM: 0.91; 0.73, GLM: 0.90; 0.73, RF: 0.90; 225 

0.68). SDMs based on mean climate predictors plus spatial predictors performed slightly better, 226 

with average AUC and TSS scores of 0.92 and 0.74 (GAM: 0.93; 0.77, GLM: 0.92; 0.76, RF: 227 

0.91; 0.70). SDMs based on mean climate predictors plus temporal predictors performed 228 

slightly better, with average AUC and TSS scores of 0.94 and 0.80 (GAM: 0.94; 0.81, GLM: 229 

0.94; 0.81, RF: 0.94; 0.77). SDMs containing mean climate predictors plus spatial and temporal 230 

predictors performed similar as the SDMs with mean and temporal predictors, with average 231 

AUC and TSS scores of 0.94 and 0.80 (GAM: 0.95; 0.82, GLM: 0.93; 0.81, RF: 0.94; 0.77). 232 

The results of the linear mixed effects model to assess the SDM performance with different 233 

predictor groups showed that adding predictors that account for either spatial or temporal 234 

variation increased predictive performance of models across all groups of vertebrates. Models 235 

based on the temporal predictor group outperformed models based on the spatial predictor 236 

group for amphibians and reptiles, but not for mammals (equal performance). Models that 237 

included predictors that accounted for both spatial and temporal variation (sp-temp predictor 238 

group) performed best across all vertebrate groups. Fig. 3 illustrates these results using effect-239 

size plots (below boxplots) for TSS, while results for AUC are equivalent (see Supplemental 240 

Figure S1). 241 
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Fig. 3. Comparison of the performance of three different SDM algorithms (GLM = Generalized 243 

linear model, GAM = Generalized additive model, RF = Random Forests) calculated with four 244 

different sets of predictors for amphibians, reptiles, and mammals measured by the True Skill 245 

Statistic (TSS). Colored lines connect pairs of SDMs based on different predictor sets for the 246 

same species, with red and blue lines indicating pairs in which TSS values increased and 247 

decreased between predictor groups from left to right. Plots below the boxplots shows the 248 

coefficient estimates of a linear mixed effects model with TSS as response, the groups (mean, 249 

spatial, temporal, sp-temp) as predictor, and the model (GLM, GAM, RF) as well as the species 250 

ID as random effects. Coefficients are in relation to the performance of SDMs with the predictor 251 

set: mean. 252 

Spatial comparison 253 

The performance of SDMs is highly variable across the globe (Fig. 4). The mean predictor 254 

group generally performed worst in mountainous terrain, such as the Andes or the Himalayas, 255 

but also Madagascar showed low TSS and AUC scores (Fig. 4, Supplementary Fig. S2 for 256 

AUC). Including spatial variability in temperature and precipitation in SDMs improved the 257 

models in these areas, but showed a slight decline in performance in desert and arctic areas (Fig. 258 

4: TSS differences spatial-mean). Adding temporal variability to the models containing mean 259 

predictors resulted in improved SDM performance in almost all areas (Fig. 4: temporal-mean). 260 

Including all spatial and temporal predictors resulted in a slight improvement in the spatial 261 

model accuracies compared to including the temporal group with the mean predictor group (Fig. 262 

4: spatio temporal), yet the improvement compared to mean plus temporal SDM were small.  263 

 264 

 265 
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Fig 4. Spatial variation in mean TSS values per grid cell and TSS differences between models 266 

using different predictor groups. The upper row illustrates TSS averaged for all mammals, 267 

reptiles, and amphibians modeled for the four models using different predictor groups. The 268 

lower row illustrates the averaged TSS difference among all SDMs when adding either spatial, 269 

temporal or both spatial and temporal (spatiotemp.) predictors to SDMs based on mean 270 

predictors only.  271 

Discussion 272 

Including temporal variability of predictors into broad-scale SDMs leads to a greater 273 

improvement of model performance than the inclusion of sub-grain spatial variability of these 274 

predictors. These findings suggest that especially the inclusion of interannual climate variability 275 

has a large potential of improving the estimation of niche characteristics across a large range of 276 

taxa. Including temporal predictor variability increased the performance of SDMs in almost all 277 

areas across the globe, though to differing degrees. Especially prominent is the increase in areas 278 

with marked seasonality such as in tropical monsoon climates, tropical wet and dry climate, or 279 

areas that receive very infrequent precipitation such as the Horn of Africa (Beck et al., 2018). 280 

Temporal variability does also increase the performance of SDMs in mountainous regions 281 

potentially indicating that temporal variability in a climate variable is also capable to capture 282 

the niche limitations that are otherwise captured by spatial heterogeneity. One reason for the 283 

performance gain when including temporal variability is that it expresses the degree of climatic 284 

extremes which can physiologically limit the distribution of species (Zimmermann et al., 2009). 285 

Although, the degree to which extremes are represented in such variability predictors certainly 286 

depends on the temporal resolution of the climatic input dataset. In the case presented here, we 287 

used interannual variation, which means that extreme events are restricted to extremely dry or 288 

wet years, or extremely hot or cold years. Using more detailed temporal analyses would allow 289 

to refine the representation of climatic extremes further. 290 

As expected, the inclusion of the spatial variability improves SDMs mainly in mountainous 291 

areas where climate is extremely heterogeneous over short distances. The improvement was 292 

specifically strong in tropical mountains where species usually occur in narrow elevational 293 

bands with little or no intra-annual variability (Janzen, 1967; Ghalambor et al., 2006). In 294 

topographically less heterogenous terrain however, we observed a decline in the predictive 295 

power of SDMs. Almost all over Africa, Australia, and the low elevation parts of Eurasia, and 296 

North America spatial variability has no effect, or even a negative effect on the performance of 297 

SDMs. In these areas spatial heterogeneity is low and inclusion of spatial variability in climate 298 

predictors seems biologically unimportant, which leads to a decrease in their performance 299 
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(Loehle & LeBlanc, 1996; Davis et al., 1998; Vaughan & Ormerod, 2003; Dormann et al., 300 

2012). 301 

 302 

The increase in SDM performance is however not equal across the three taxonomic groups 303 

analyzed here. While amphibians and reptiles show a significantly higher SDM performance of 304 

the temporal predictor group over the spatial predictor group, mammal SDMs do not 305 

significantly differ when either spatial or temporal predictors are added to the mean predictor 306 

group. This difference might be explained by the differences in physiology between these 307 

groups. All three groups have evolved differently in response to their environment, with 308 

ectothermic groups being much less adaptable to climatic variations than endothermic groups 309 

(Rolland et al., 2018). Such evolved differences in physiology ultimately affect how organisms 310 

interact with and are constrained by their environment (Buckley et al., 2012). Ectothermic 311 

species for example cannot buffer climate variation as well as endothermic species (Clusella-312 

Trullas et al., 2011; Sunday et al., 2011; Hoffmann et al., 2013; Gunderson & Stillman, 2015) 313 

which have evolved the physiological capacity to regulate temperatures to some extent (Pither, 314 

2003). When building SDMs from climate means alone, thus neglecting the temporal dimension 315 

of predictors, we miss out on important climatic constraint especially for endothermic species 316 

distributions, ultimately limiting the accuracy of niche estimations (Zimmermann et al., 2009). 317 

Model formulation and parametrization certainly plays a role in the observed differences 318 

between predictor groups. More predictors in a model usually lead to a better overall fit of a 319 

model (Brun et al., 2019) which can partly explain the increase in predictive power when the 320 

predictors based on mean climate are complemented with either spatial or temporal variability. 321 

As both, the spatial and the temporal predictor groups have the same number of variables, this 322 

effect does not hold when comparing these two. Combining mean with spatial and temporal 323 

predictor groups however, lead to an additional improvement. At this point however, the 324 

parametrization of has not yet plateaued (Randin et al., 2006; Chala et al., 2016; Brun et al., 325 

2019; Gregr et al., 2019) and model performance still increases when using both spatial and 326 

temporal variability as predictors. Using different SDM algorithms mainly affects the absolute 327 

performance of the SDMs in terms of the specific test metric (AUC, TSS). However, it did not 328 

affect the relative difference in model performance between SDMs calculated from different 329 

predictor groups.  330 

With an increasing need in biodiversity modeling for current, past, and future predictions a 331 

better understanding of the climatic predictors that quantify the ecological niche of a species is 332 

needed. Here, we show that specifically the inclusion of temporal variability offers a promising 333 
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improvement in modelling the current distribution of species. Yet, also the inclusion of spatial 334 

(sub-grain) variabilities can improve model accuracies, primarily mountains and most clearly 335 

in tropical mountains. In summary, we anticipate that a more detailed inclusion of the temporal 336 

variability of climate variables offers a highly promising avenue for improving species 337 

distribution modelling in the future. 338 
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Fig. S1. Comparison of the performance of three different SDM algorithms (GLM = 525 

Generalized linear model, GAM = Generalized additive model, RF = Random Forests) 526 

calculated with four different sets of predictors for amphibians, reptiles, and mammals 527 

measured by the Area Under the Curve (AUV). Colored lines connect pairs of SDMs based on 528 

different predictor sets for the same species, with red and blue lines indicating pairs in which 529 

AUC values increased and decreased between predictor groups from left to right. Plots below 530 

the boxplots shows the coefficient estimates of a linear mixed effects model with AUC as 531 

response, the groups (mean, spatial, temporal, spatiotemp.) as predictor, and the model (GLM, 532 

GAM, RF) as well as the species ID as random effects. Coefficients are in relation to the 533 

performance of SDMs with the predictor set: mean. 534 
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 536 
Fig S2. Spatial variation in mean AUC values per grid cell and AUC differences between 537 

models using different predictor groups. The upper row illustrates AUC averaged for all 538 

mammals, reptiles, and amphibians modeled for the four models using different predictor 539 

groups. The lower row illustrates the averaged AUC difference among all SDMs when adding 540 

either spatial, temporal or both spatial and temporal (spatiotemp.) predictors to SDMs based on 541 

mean predictors only.  542 
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