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Branching morphogenesis governs the formation of many organs such as lung, kidney, and the
neurovascular system. Many studies have explored system-specific molecular and cellular regula-
tory mechanisms, as well as self-organizing rules underlying branching morphogenesis. However, in
addition to local cues, branched tissue growth can also be influenced by global guidance. Here, we
develop a theoretical framework for a stochastic self-organized branching process in the presence
of external cues. Combining analytical theory with numerical simulations, we predict differential
signatures of global vs. local regulatory mechanisms on the branching pattern, such as angle distri-
butions, domain size, and space-filling efficiency. We find that branch alignment follows a generic
scaling law determined by the strength of global guidance, while local interactions influence the tis-
sue density but not its overall territory. Finally, using zebrafish innervation as a model system, we
test these key features of the model experimentally. Our work thus provides quantitative predictions
to disentangle the role of different types of cues in shaping branched structures across scales.

INTRODUCTION

Branching morphogenesis is a ubiquitous developmen-
tal process, where a number of morphogenetic events co-
operate to give rise to complex tree-like morphologies.
Branched structures are observed both at the level of
multi-cellular organs, such as lung, kidney, mammary
gland or vascular system [1–5], and at the level of single
cells such as neurons [6] or tracheal cells [7]. A number
of studies in the past decades have been devoted to un-
derstanding their design principles, with a particular em-
phasis on how given branched topologies and geometries
can optimize properties such as transport and robustness
[8–17].

A complementary question has been to understand the
dynamical mechanisms through which branching com-
plexity can arise during development. It has been shown
in particular that branching morphogenesis proceeds via
tip-driven growth and/or side branching events, which
are shaped by combinations of deterministic and stochas-
tic rules [4, 18–20]. Indeed, different cellular strategies
have been demonstrated to regulate the final branch-
ing pattern, from stereotypic transcription factor ex-
pression [21], stochastic local rules [22, 23], mechanical
forces and local reaction-diffusion mechanisms [2, 3, 24]
to epigenetic mechanisms [25] and codes of cell adhesion
molecules [19, 26]. In addition to these intrinsic mecha-
nisms, branching morphogenesis is also controlled exter-
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nally by a number of guidance cues from the environment
[27–30], including chemical gradients (chemotaxis from
diffusible factors or haptotaxis from substrate-bound ad-
hesion or guidance molecules) or gradients in the me-
chanical stiffness of the environment [31, 32]. However,
a theoretical framework to quantitatively assess the con-
tribution of each intrinsic and/or extrinsic cue in shape,
orientation and size of branched structures, as well as the
relative roles of deterministic vs. stochastic factors dur-
ing branching morphogenesis remains to be established.

Here, we combine numerical simulations with ana-
lytical theory to derive a comprehensive description of
branching morphogenesis in the presence of internal
self-organizing cues (such as self-avoidance of branches,
stochastic exploration of space, and tip termination) and
external guidance cues. Furthermore, we identify sev-
eral metrics, including branch directionality, shape or ef-
ficiency of space filling, which are differentially affected
by different model parameters. These metrics thus pro-
vide generic criteria, measurable from static data on the
final branched structure, to distinguish different dynam-
ical mechanisms at play during morphogenesis. Finally,
we experimentally test our model in peripheral sensory
system focusing on the branching of individual Rohon-
Beard sensory neurons in the zebrafish caudal fin. Thus,
we present a model where the combination of two simple
parameters, for local self-interactions and global guid-
ance, can synergize to generate complex branched struc-
tures both in two and three-dimensions.
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FIG. 1. Morphology and alignment of branching structures in the presence of global guidance cues and local self-repulsion.

(A-B) Schematic of the model and resulting branching morphologies. Top panels: we consider an active tip (orange node) which undergoes

stochastic branching and elongation according to a local angle ϕ to make branch segments (blue solid lines), guided by an external field

(linear guidance, dashed arrows). Self-avoidance or external field are implemented in the simulation by additional displacements of active

tips of the branching network respectively by “sensing” neighboring branch segments (blue nodes) within a radius of repulsion Rs (red

arrow in B), or by a bias towards the external field (large gray arrow in B), respectively. The strength of local self-avoidance and external

guidance are respectively determined by a factor |fs| or fc. Bottom panel: Morphology diagram of branching and annihilating random

walks (BARWs) with linear (axial in one-dimension) external guidance obtained from simulations. Representative networks are displayed

for different values of the external field strength fc and self-avoidance |fs|. (C) Probability distribution of tips growing with an angle ϕ

for different values of fc and without self-repulsion (fs = 0) in the simulations (solid bars). These are well-approximated by the analytical

predictions (dashed lines) following a von Mises distribution centered around zero and with single parameter ν ≡ µfc
D

. With increasing field

strength fc the distributions become sharper, indicating better alignment of the branch segments with the external field. (D) Histograms

of the local angle displayed in (C) rescaled by their corresponding standard deviations (SDs), showing that they all collapse onto the von

Mises distribution with unit SD (dashed line), as predicted analytically. (E) Fluctuations in local angle σϕ decrease monotonically with

increasing field strength fc (top panel), and exhibit a power-law relation (bottom panel) close to the scaling law predicted by the analytical

theory (dashed line) and to the scaling law σϕ ∝
√
D/(µfc) (dotted line).

RESULTS

To analyze the influence of both the local self-
organizing (intrinsic) cues and the global (extrinsic) guid-
ance on the formation of branched structures, we first
turned to a modelling approach inspired by the physics
of branching random walks, which represents tips as par-
ticles undergoing both stochastic and deterministic elon-
gation movements (which generates branches at speed v),
as well as stochastic branching events into two tips with
probability pb. This type of model [20, 22, 33–35] has
the advantage of coarsening many microscopic features
of branching regulation (for instance that have been ad-
dressed via reaction-diffusion models [36, 37]) into simple
sets of rules. In this work, we include both the possibility

for global guidance via gradients quantified by a guidance
strength fc (which acts as a deterministic force on tip
motion) as well as local self-avoidance of neighbouring
branch segments. Such self-avoidance can typically oc-
cur in neurons by cycles of contact-retraction when a tip
touches a neighbouring branch of the same cell [20, 38], or
in branched multicellular organs via diffusible molecules
[39]. Here we concentrate on the morphogenesis of single
neurons, and therefore model self-avoidance effectively
by tips moving deterministically away from neighbour-
ing branches of the same tree at strength fs. If the
tip fails to reorient in close proximity to a neighbouring
branch, it terminates its active growth and becomes irre-
versibly inactive (which we call termination/annihilation,
see Fig. 1A-B for a schematic of the model).
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To determine how the morphology and shape of a
branching structure is affected by local intrinsic vs.
global extrinsic cues, we concentrated on the two key
parameters of local self-avoidance fs and of global gradi-
ent fc, and asked whether each gave rise to qualitatively
different types of morphologies. Indeed, building a phase
diagram of branching morphologies revealed key differ-
ences: in the presence of an external, axially oriented
(linear) gradient, branched structures adopt triangular
shapes, branching in a cone-shape with a well-defined an-
gle that becomes smaller for increasing guidance strength
fc (Fig. 1A, bottom panel). On the other hand, changing
the self-avoidance strength fs gave rise to denser, as well
as visually more aligned branches, but did not markedly
change the overall shape.

To back the qualitative insights of this phase diagram
more quantitatively, we sought to develop an analytical
theory of branching via external guidance, which falls un-
der the class of branching and interacting random walks
[22] with external bias (external field). Starting from
a microscopic description of branching and elongation
events, we derived a (continuum) Fokker-Planck equation
for the tip growth and branching under the influence of
external field guiding elongation (as described in detail
in SI Note). In particular, we obtained an equation for
the time evolution of the probability of a tip to grow in
a given direction, denoted by an angle ψ relative to the
polarity of the external field. This direction is subjected
to two types of random fluctuations: a gradual one aris-
ing from the randomness of tip elongation and abrupt
changes arising from branching events (see section S1 of
the SI Note for details on the methods to treat these
two types of fluctuations based on Ref.[40]). These two
sources of stochasticity are integrated into a diffusion co-
efficient D while the external guidance gradient acts as
an effective velocity term µfc in the Fokker-Planck equa-
tion:

∂tP (ψ, t) = D∂2ψP (ψ, t) + µ∂ψ[P (ψ, t)fc sin(ψ)] , (1)

which reflects a sinusoidal reorientation of the active tips
by the external field [41]. Importantly, this equation at-
tains a steady-state solution (∂tP

st(ψ, t) = 0) that is
largely independent of the form of the external field.
This solution predicts that the alignment of angles with
respect to the polarity of the external field will be de-
termined by the von Mises distribution (circular normal
distribution [42]):

P (ψ)v.M. =
1

2πI0(ν)
exp (νcos(ψ)) , (2)

with a concentration parameter given by ν ≡ µfc/D, and
I0(ν) is the modified Bessel function of the first kind of
order zero. The fluctuations in the angular alignment as
determined by the variance will thus follow a universal
scaling approximately given by σ2 ∝ D/µfc that under-
lines the relative contribution of the local noise to the
external guidance. For an axial (linear) potential paral-

lel to the horizontal axis, for instance, the above solu-
tion applies to the distribution of the local angles ϕ of
the branch segments (Fig. 1C). In a radial external field,
however, the alignment of a branch is determined by the
angle difference ψ ≡ ϕ− θ between its local angle and its
angle θ with respect to the origin of the external field,
and thus ψ, rather than ϕ, is predicted to follow the von
Mises distribution (see Fig. S1A for the alignment angles
in different external fields). Comparing these analytical
criteria with the numerical simulations led to excellent
agreement without using any fit parameter (Fig. 1C-E).

To test these predictions, we examined the morphol-
ogy of sensory neurons during zebrafish fin innervation
as a model system, as it has several advantages: i) it is a
simple quasi two-dimensional (see Movie S1) and trans-
parent system, facilitating imaging and reconstruction,
ii) the innervation pattern is complex, with tens to hun-
dreds of branches per neuron, and iii) multiple axons arise
from dorsal part of spinal cord and start branching out
in a simple geometry, i.e. a roughly semi-circular region
(Fig. 2A). To segment and reconstruct single branched
neurons, we used sparse labelling of mCherry positive
neurons (see Fig. S7) at 5 days post-fertilization (a time
when neurons are functional and the fish is able to swim),
and skeletonized the manually traced filaments to gener-
ate hierarchical tree topologies (see section S3 of the SI
Note for details). Interestingly, we found that these neu-
rons, although all appearing to grow radially towards the
outer edge of the fin, were highly stochastic and hetero-
geneous both in shape, size, and morphology (Fig. 2C,
Fig. S8), and covering domains of highly different sizes.
This hints at a highly stochastic pattern of fin innerva-
tion, as expected in our branching random walk model
when we adapted it to a radial external field (Fig. 2B).
Qualitative comparisons with different stochastic simu-
lations with identical model parameters revealed good
visual agreement (Fig. 2C-E), exhibiting similar stochas-
ticity in shape, angles, topology and size of neuronal
trees, as seen in the experimental data. Furthermore,
few crossovers between branches could be observed with
terminal tips residing all over the neuronal structure close
to neighbouring branches (Fig. 2A,C), as qualitatively ex-
pected in the framework of branching and annihilating
random walks. Finally, and more quantitatively, we ex-
tracted the branch length distribution across neurons,
and found that it was very wide (with branches of all
lengths seen in data) and well-described by a simple ex-
ponential, as predicted by a stochastic branching process
(Fig. 2F). Altogether these key features supported the
applicability of our theory of branching and annihilating
random walks to the experimental dataset.

To go further, we turned to the quantitative structure
of the branching patterns, and first analyzed the distribu-
tion of branch angles in the data. As predicted by Eq. (2),
we expected the distribution of the angle difference ψ to
decay with a variance scaling as D/µfc (see Fig. 3B-D
for the distributions P (ψ) obtained from simulations and
analytical theory). Comparing theory and experimen-
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FIG. 2. Branching and annihilating random walks (BARWs) with radial guidance cue reproduces qualitative features

of zebrafish caudal fin innervation. (A) Development of the zebrafish nervous system and innervation of the caudal fin (boxed

area in the top left cartoon) 5 days postfertilization. (Left) Confocal image of neuronal cell membranes in the caudal fin imaged via

red mCherry fluorescence (HUC:Gal4-UAS:mCherry-caax). Imaged Rohon-Beard sensory neurons exhibit a clear directionality towards

the fin edge (indicated by the dashed white lines). (Middle) mCherry labelled neurons (red) visualized together with the manually

reconstructed filament trees (different colors overlaid), showing the overall faithfulness of the reconstructions. (Right) Different neuronal

trees color-coded for visualization. (B) Morphology of branched structures with the same model as in Fig. 1, but in a radial external

potential (dashed arrows, top) obtained from simulations for different values of the external field strength fc and self-avoidance |fs|. (C-D)

Simulations with an intermediate external field strength (fc = 0.6) and no self-avoidance (fs = 0), corresponding to the boxed region

in the morphology diagram (B), capture the overall directionality observed in reconstructed networks (four representative neurons, red

cross indicating “origin” of the axon, C), but also show some stochasticity in the final network structure as in the data. Active tips of

the simulated branching networks are highlighted in orange. (E) Comparison of tree topologies between two exemplary networks obtained

from simulations (right) and experiments (left), emphasizing the common stochasticity and heterogeneity in subtree sizes. (F) Branch

lengths Lj (in normalized units) obtained from simulations (top) and experiments (bottom) are distributed exponentially, as predicted by

our theory of stochastic branching.

tal data revealed very good agreement, with both single neuron distributions (see Fig. S10 in SI Note for the in-
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FIG. 3. Continuum model predicts the alignment of branch segments along the external field both for simulation
and experimental data. (A) Representative cartoon of branch segments in a radial external field (dashed arrows) highlighting
three distinct angles: The local angle ϕ of a branch segment with an active tip (orange node), the angle to origin θ (denoted
by the star symbol, which determines the extrinsic guidance direction at this point), and the angle difference ψ ≡ ϕ− θ (which
tends to be minimized by extrinsic/global guidance). (B) Normalized histograms of the angle difference ψ for different values of
fc and without self-avoidance (fs = 0). The histograms (solid bars) are well-approximated by von Mises distributions (dashed
lines) as for the local angle ϕ in a linear gradient (Fig. 1), and as predicted by the continuum model. (C) Mean standard
deviations (SDs) 〈σψ〉 of the angle difference ψ obtained from simulations are close to the mean SD of the experimental data
(dotted horizontal line) for an external field strength of fc = 0.6. For comparison, the scaling of SD as a function of fc predicted
by the von Mises distribution is displayed (dashed line). (D) Histograms of angle difference ψ rescaled by their corresponding
SDs σψ (solid lines) are well-approximated by the von Mises distribution with unit SD (dashed line). (E) Angle difference
distribution obtained from the experimental data from n = 8 networks (solid bars) compared with the von Mises distribution
predicted by the theory for an external field strength of fc = 0.6 (dashed line). The latter value is inferred from the matching
of theoretical and experimental values of the SDs displayed in (C), and no other fit parameter is used.

dividual distributions) and distributions averaged across
all data (Fig. 3E) closely following the predicted scaling
of a von Mises distribution. Importantly, the single free
parameter in this fit (i.e. the variance of the distribu-
tion) allows us to estimate µfc/D, and thus the relative
strength of the global/extrinsic guidance compared to lo-
cal stochasticity (see section S3.6 in SI Note for details
on the measurements of the other parameters, in par-
ticular the estimation of the branching probability and
branch length). Interestingly, we find intermediate val-
ues of D/µfc ' 0.35, arguing that neuronal morphology
is shaped by a combination of both factors.

Such extrinsic guidance provides a simple theoretical
mechanism to restrict neuronal growth to a domain char-

acterized by a well-defined opening angle θ̄. Turning to
experiments, we found that reconstructed neurons were
typically also characterized by such angle, which we es-
timated as 〈θ̄〉 ' 96◦ ± 28◦. Theoretically, the average
opening angles θ̄ decreased monotonically with increas-
ing field strength fc (see Fig. 4A for an illustration) with
strikingly similar values both in the presence and absence
of self-repulsion (see Fig. 4B). Using a simple geometric
argument we could approximate these opening angles by:

θ̄a ' pb ϕb
log(r)

fc
, (3)

where r is the radial distance of the furthermost branch
from the origin of the network (fixed by the maximal
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FIG. 4. The strength of extrinsic guidance deter-
mines the territory of the branched structures in
simulations, with minimal influence from local self-
avoidance. (A) Representative simulation snapshots high-
lighting the changes in the opening angle θ̄ (a proxy for ter-
ritory size in a radial geometry, gray circular segments) with
increasing external field strength fc. (B) Mean opening an-
gles 〈θ̄〉 of branched networks decrease monotonically with
increasing external field strength fc, and have similar values
for networks with zero (fs = 0, circular markers) or with
strong (fs = −0.3, triangular markers) self-avoidance. Errors
of the averages are determined by the standard deviations
and highlighted by the dashed and dotted lines for fs = 0
and fs = −0.3, respectively. The monotonic decrease of 〈θ̄〉
obtained from simulations is well-described by the analytical
approximation θ̄a (solid line), see Eq. (3), with the fit param-
eter ϕb = π/5.

time of network growth). With this approximation, we
could fit the numerical data by using a single fit param-
eter ϕb (see section S2.5 in SI Note for further details).
From the fitted value of the external field fc = 0.6, we
predict an opening angle of 〈θ̄〉 ' 203◦ ± 85◦ (mean ±
SD). Although this overestimates the experimental value,
we note that this prediction is based on a perfectly ra-
dial gradient in 360◦ without boundary, i.e., assuming
neurons can branch backwards. When we confined the
theory to a 180◦ hemispherical region, which seems to re-
flect the experimental geometries (Fig. S8), we obtained
average opening angles of 〈θ̄〉 ' 110◦, much closer to the
data.

Although the existence of an external gradient has not
yet been characterized in the zebrafish fin, we note that
other features from the comparison between experimental
and theoretical data argue in favour of it. For instance,

even though self-avoidance can lead locally to aligned
branches, these branches grow isotropically in any direc-
tion without global cues (see section S2.3.1 and Fig. S3
in SI for a brief illustration). This is in particular true
in low-density regions (which occur stochastically in the
simulations), where fewer branches would lead to weaker
repulsive cues, and consequently, in the absence of an ex-
ternal gradient, would result in tips deviating from the
radial direction. However, examining the data revealed
that this did not occur: even in sparse branching re-
gions (e.g. Fig. 2B-D), branches appear as directional
towards the fin periphery as in dense branching regions.
Furthermore, sparse neurons also showed the same an-
gle alignment distribution as dense neurons in the data
(Fig. S10C), in contrast to what would happen in the ab-
sence of external guidance.

Finally, we sought a quantitative metric which could
distinguish between networks with weak or strong self-
repulsion fs after having estimated fc. Visually, our
phase diagram of neuronal morphology confirmed the
intuitive idea that larger self-avoidance fs should allow
for denser networks. Furthermore, we tested the less in-
tuitive effect of self-avoidance on the efficiency of space
tiling [43, 44], by quantifying the fractal dimension df of
the branching networks (box-counting method, Fig. 5A)
as a function of model parameters. We found that self-
avoidance markedly improved the space-filling properties
of the branching networks (see Fig. 5B, a fractal dimen-
sion close to df = 1 is expected for very sparse struc-
tures, while a fractal dimension of df = 2 corresponds to
full tiling of space). Then, we again turned to the experi-
mental data to ask whether these signatures could be ob-
served. Because the branching rate/number showed vari-
ability across samples, we first explored this effect, and
found a positive correlation between mean branch prob-
ability in a neuron and its fractal dimension (Fig. S11),
as expected. Focusing on the four densest networks to
remove this confounding effect, we found that measuring
fractal density in experiments yielded robust power-laws
as predicted by the simulations (Fig. 5C), with a typical
exponent in the range of df ' 1.55 ± 0.04 (mean±SD).
This is consistent with our computational screen for rel-
atively small values of self-avoidance (in the range of
|fs| = 0−0.1), a feature which was confirmed by compar-
ing absolute densities between model and data (Fig. 5D-
F). This argues that although we cannot exclude a small
contribution of self-repulsion in locally aligning branches,
global external guidance cues play a dominant role in
shaping these neuronal structures.

DISCUSSION

In this work, we have derived an analytical theory,
backed by stochastic numerical simulations, of branching
morphogenesis under both local cues -such as repulsion,
branching, and termination- as well as global guidance
from external cues. Each of these factors can be tuned
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FIG. 5. Effect of self-avoidance and external guidance on branching density and space-filling properties. (A)
Fractal dimension of the networks estimated by the box-counting method: Boxes of decreasing sizes ε are used to count the
total number of boxes that include at least one skeletonized node. (B) Mean fractal dimensions obtained from the box-counting
method increases from 〈df 〉 ' 1.52 to 〈df 〉 ' 1.67 with increasing self-avoidance (fs = 0 to fs = −0.3), whereas large changes
in the external field strength (from fc = 0.4 to fc = 1) have a smaller effect on the mean values. (C) Combined experimental
data from the densest n = 4 networks (circular markers) showing a clear power-law signature as theoretically predicted. We
find a fractal dimension of df ' 1.55, close to the theoretical value df ' 1.57 obtained from the combined data from simulations
with fc = 0.6 and fs = 0 (crosses). In all box plots, mean and median values are given respectively by the plot markers and
horizontal dashed lines (orange), and whiskers indicate 1.5 interquartile range. (D) Average density ρ(S) of a branched network
(ratio of the number of branches to the arc length S spanned by the network). (E) Densities ρ(S) of the simulated networks
increase markedly both for increasing external field strength fc and self-repulsion strength |fs|. (C) Densities ρ(S) obtained
from experimental data for n = 8 filaments (crosses) compared with densities obtained from simulations for fc = 0.6 and fs = 0
(blue box), fs = −0.1 (green box), and fs = −0.2 (purple box). Mean density of the experimental data (red horizontal line) is
on the lower end of the densities obtained from simulations even for low repulsion, indicating a small value for the parameter
fs.

to create a variety of complex branched structures. To
systematically classify these, and try to understand ana-
lytically how each parameter impacts the final structure,
we derived a continuum Fokker-Planck theory, which en-
ables us to coarse-grain the parameters of the numerical
simulation (branching angles, branching rate, stochastic-
ity in elongation, external guidance strength) into a few
relevant coefficients at the macroscopic level. Through
this, we have identified a number of generic features in
the final branched structures. For instance, a combina-
tion of branching/elongation stochasticity in the pres-
ence of global guidance cues generically gives rise to well-
defined scaling laws for the alignment of branch angles,
which only depend on the geometry of the problem, with
a variance that can be used to extract the relative con-
tribution of each effect. Space-filling properties such as
fractal dimension on the other hand are strongly opti-
mized by local parameters such as self-repulsion.

Our approach here is based on a minimal model to un-
derstand the growth of branched structures from simple
rules (elongation, branching, guidance, avoidance) within

a statistical physics framework. At smaller scales, one
would need to take a number of features into account,
for instance the specifics of axonal/substrate mechanics
during neuronal growth [31, 32], to understand what reg-
ulates mechanistically each of the parameters that we
use in the model. A strength of our “mesoscopic” ap-
proach is that it extracts a small number of such coarse-
grained parameters, to identify which ones are key at
the scale of the overall branching pattern, and thus guid-
ing subsequent, more detailed modelling. Our proposed
framework builds upon previous simulations of stochas-
tic branching morphogenesis, which had considered local
cues such as branching and repulsion [20, 22, 33, 35].
We find that adding global extrinsic guidance -a key el-
ement in different contexts to break the isotropy in tis-
sue growth- in the model gives rise to significantly dif-
ferent dynamics, enriching the phase diagram of possi-
ble branching patterns. Furthermore, in addition to the
computational/numerical features of this framework, we
provide a continuum theory for branching morphogene-
sis guided by extrinsic cues, which enables us to make
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simple but generic predictions on testable experimental
metrics such as the orientation of branch segments.

To begin to test this theory, we have examined the in-
nervation of the zebrafish fin, which proceeds in a simple
quasi-2D radial geometry, and, despite the local stochas-
ticity, displays a strong overall radially-oriented bias to-
wards the fin edge. Quantitative reconstructions of sev-
eral neurons allowed us to test a number of metrics pre-
dicted by the theory in the experimental data, such as the
distributions of branch lengths and branching angles, or
the space-filling properties of individual neurons. In par-
ticular, the observation that fin neurons exhibit a clear
directional bias with rather well-defined angles can be
readily explained in our framework by simply emerging
from a global/extrinsic guidance cue which directs single
neuronal tips towards the outer edge of the fin. Identi-
fying such an interaction would be a natural next step.
It has been shown for instance in the zebrafish pectoral
fin that molecules such as BMP or Smoc1 are patterned
in a graded way towards the edge during morphogenesis
[45], and that innervation of the pectoral fin exhibits a
strong variability in sensory neuron morphologies [46].
Overall, a global guidance cue would provide a min-
imal/complementary explanation to the more involved
mechanism of repulsion/tiling between branches of dif-
ferent neurons [47]. Such hetero-avoidance would lead
to more refined boundaries between neighboring neurons
and could in particular play a role in reducing the domain
angles occupied by the individual neurons.

This theoretical framework, although we have applied
it here to a specific geometry in neuronal branching, is
highly general and could be applied to any branching
structure such as in angiogenesis or the branching of ep-
ithelial organs, where similar questions on external guid-
ance vs. local self-organization rules arise [48–50]. Sim-
ilarly, it has recently been proposed that these types of
stochastic tip interaction mechanisms are conserved for
the morphogenesis of various filamentous organisms such
as plants or Fungi [51]. Understanding quantitatively the

relative contribution of each mechanism is also of key im-
portance for the morphogenesis of branched mammalian
organs: Mammary gland or late-kidney morphogenesis
have been proposed to follow a simpler form of these
stochastic models in the absence of external guidance
[22], although kidney morphogenesis has been suggested
to require larger amount of self-avoidance strength (de-
noted by the parameter fs in our framework) at early
stages to avoid premature termination [52]. This hints
at a potentially broad applicability of our framework in
a wide number of systems, which would be a next step
for future research.
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In this Supplementary Note, we provide additional details on the model derivation, on the numerical

simulations of branching with repulsion and external guidance, as well as on the data collection, analysis

and �tting to the model.

S1 Derivation of the continuum model

In the continuum description, we concentrate on incorporating external guidance into a model of

branching and annihilating random walks, in order to make simple predictions for the orientation of

branches/tips during branching morphogenesis.

S1.1 Alignment angle as a random variable

The growth of a branching tissue with active tips in an external potential can be in principle modelled

in the framework of a biased and persistent random walk in two dimensions. However, in such a

framework, a full expression for the time evolution of the probability density p(r, t) for an active

particle to be at location r at time t in general cannot be obtained in a closed form [1], and will involve

several bias and reorientation terms due to di�erent frequencies arising from elongation vs. branching

events. We therefore sought to reformulate the problem in a simpler framework for a single random

variable. After realizing that if we focus on the alignment of branch segments with an external �eld,

rather than their exact position and polarity, we could restate the problem as �nding how much the

local angles of the segments diverge from the local direction of the external �eld. To avoid confusion,

we note that by branch segments we refer to the elementary vectors of a �xed size `, corresponding to

the discrete steps taken by active tips, that are linked together consecutively to de�ne the branches of

a tree.

Angular alignment of a branch segment is quanti�ed by di�erent angles for the two cases of external

�elds discussed in the main text: (i) For a horizontally oriented, axial external gradient (directed

towards the positive x direction), the local angle ϕ of a branch segment with respect to the horizontal

axis determines its alignment along the �eld. (ii) For a radial external �eld emerging from a central

point of origin (which is relevant for the experimental geometry of the zebra�sh �n), however, the

angular alignment will be given by the angle di�erence ψ:

ψ ≡ ϕ− θ , (S1)

where θ denotes the angle of the active tip coordinates with respect to the origin of the external �eld.

Fig. S1(A) illustrates the alignment angles for the two di�erent external potentials. Note that, the

axial potential is a limiting case of a radial �eld where the origin of the external �eld is located at

x → −∞. This choice then corresponds to setting θ = 0 where the alignment angle ψ becomes equal

to the local angle ϕ. Because of its generality, we will derive our model for the radial case using the

angle di�erence ψ as the alignment angle in the following. Expressions for the axial case can then be

obtained simply by setting θ = 0.

S1.1.1 E�ect of an external �eld on the angle di�erence ψ

We now consider an external �eld that will in�uence the directionality of growing tips. At each step,

the angle of a given active tip will be modi�ed both stochastically via the randomness associated to

elongation direction and branching, but also deterministically via guidance from the external �eld. For

a branching network invading a circular region (in two-dimensions) we can de�ne a radial potential

that will displace the tips towards the point P with coordinates given by the vector r+ fc pc, where fc
determines the strength of the external �eld, r is the distance vector of length r ` between the active
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Figure S1: De�nition and schematic of the variables used in the continuum model. (A) Schematic of branch

segments in an axial (left) or radial (right) external �eld (dashed arrows) in two-dimensions (with x, y coordinates

as shown) highlighting the main variables used in the analysis: In a radial �eld (right), for every branch segment

with an active tip (orange node) one can de�ne the local angle ϕ that it makes with the horizontal axis (dotted

lines), its angle θ to origin (star symbol), and the angle di�erence ψ ≡ ϕ − θ. Accordingly, the alignment

of a branch segment with the �eld is determined by the angle di�erence ψ, whereas for an axial �eld (lefty),

the origin of the external �eld is located at x → −∞ (corresponding to θ = 0), and thus the alignment will

be determined by the local angle ϕ only (ψ = ϕ). Blue solid lines represent (static) branch segments of size

` generated by tip elongation (blue circles indicate inactive tips after an annihilation event due to proximity

to other branches) (B) Displacement of an active tip due to a radial �eld. The external �eld acts along the

radial distance r` of the active tip to the origin of the potential (labelled by star) with a strength determined

by the coupling parameter fc. The branch segment is then aligned towards the extended point P but preserves

its length `. The angle di�erence after displacement ψ∗ = ϕ∗ − θ∗ is then given by Eqs.(S2-S4), and can be

approximated as a function of the �eld strength fc and of its value ψ before displacement only, see Eq.(S5).

(C) Plot of the changes in the angle di�erence ∆ψ after the displacement due to the external �eld fc. The

exact expression given by Eqs.(S2-S4) is compared with the approximation ∆ψ = −fc sin(ψ) for a value of

fc = 0.3, showing good overall agreement. For smaller values of fc that are explored in the implementation of

tip displacement-based simulations, the two expressions converge onto each other.

tip and the �eld origin, and pc is a vector of length ` parallel to r. We note that we discretise the

problem by having tip elongation by a small length ` = 1 (relative to the overall size of the network)

without loss of generality. After such a displacement by the external �eld, the angle di�erence is given

by

ψ∗ = ψ + ∆θ −∆ϕ = ϕ∗ − θ∗ , (S2)

where ∆ϕ ≡ ϕ − ϕ∗ and ∆θ ≡ θ − θ∗ denote respectively the changes in the local angle and in the

angle to origin values. To express the new angle ψ∗ in terms of ψ and the external �eld strength fc,

we deduce the following trigonometric relations from simple geometric arguments, see Fig. S1(B):

∆ϕ = arcsin

(
fc
b
sin(ψ)

)
, (S3)
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and

∆θ = arcsin

(
b− 1

r∗b
sin(ψ)

)
, (S4)

where r∗ represents the distance of the active tip to the �eld origin after the displacement by the

external �eld, and b determines the distance b ` between the point P and the branch node Q, see

Fig. S1(B). For a wide range of values of fc, variations in the local angle ∆ϕ strongly dominate over

the term ∆θ, such that the latter can be neglected. Furthermore, for the weak �eld case that we

investigate here, i.e., for low values of fc, the term ∆ϕ can be simply expressed by fc sin(ψ) because

the length scale b takes values close to 1. The change in the angle di�erence after displacement can

then be approximated by the following expression:

∆ψ ≡ ψ∗ − ψ = −fc sin(ψ) , (S5)

which is a function of fc and ψ only. Fig. S1(C) provides a comparison between this approximation

and the exact relation determined by Eqs.(S2-S4). This dependency on the external �eld fc re�ects

a sinusoidal reorientation model for the angle di�erence ψ which was previously demonstrated for the

gyrotaxis of spherical microswimmers [2], for cyanobacterial circadian oscillators [3] and for dipoles in

a constant external �eld [4].

S1.2 Fokker-Planck equation with non-local jumps

In simulations of branching and annihilating random walks (BARWs), elongation events lead to a small

rotational di�usion of the branch segments, whereas branching events lead to large, abrupt changes

in the local angle values of the active tips, as illustrated in Fig. S2(A). These two di�erent sources

of noises are described by an a priori probability distribution λ(ϕ − ϕ′) for the di�erence in the

local angles before ϕ′ and after ϕ a jump. The external �eld then subsequently acts to modify these

jump probabilities. This simulation setup can thus be described by separating the jumps arising from

elongation and branching events from the bias arising through the external potential. Because of the

large, non-local jumps in the local angle values ϕ, the standard method of reaching the continuum limit

by expanding around small ∆ϕ cannot be performed. We will therefore follow a generalized method

developed for Lévy �ights in Refs.[5, 6] to derive the Fokker-Planck equation.

We �rst derive the central result of Ref.[6] for generic non-local jumps in one spatial dimension

(represented by the continuous variable x) and then apply it to the angle di�erence ψ. We start with

the continuum version of the di�erence equation for the probability distribution P (x, t + ∆t) after a

jump from site x′ to x within the time interval ∆t:

P (x, t+ ∆t) =

∫
dx′Λ(x, x′)P (x′, t) , (S6)

where the transfer kernel

Λ(x, x′) ≡ 2λ(x− x′)[A(x′)H(x− x′) +B(x′)H(x′ − x)] (S7)

encodes both the distance between the jumps x−x′ via the corresponding probability density function
λ(x − x′), and the spatial dependency of the transition probabilities A(x) and B(x). H(z) denotes

the Heaviside step function de�ned as H(z) = 1 for z ≥ 0 and H(z) = 0 otherwise. We furthermore

assume symmetric jump distance distributions of the form λ(x− x′) = λ(x′ − x), i.e., the probability

for di�erent jump sizes only depends on the size of the jump and not on the direction. The directional

biases are governed by the transition probabilities A(x) and B(x). The normalization for the transfer

kernel is de�ned by integrating Eq.(S7) over the jump di�erences z ≡ x− x′ :

2

(
A(x′)

∫ ∞
0

dz λ(z) +B(x′)

∫ 0

−∞
dz λ(z)

)
= A(x′) +B(x′) = 1 , (S8)
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where we used the symmetry of λ(z) together with its normalization
∫∞
−∞ dz λ(z) = 1. We now multiply

Eq.(S6) by eikx and integrate over dx to obtain∫ ∞
−∞

dx eikxP (x, t+ ∆t) = 2

∫ ∞
−∞

dx′P (x′, t)A(x′)

∫ ∞
−∞

dx eikxλ(x− x′)H(x− x′)

+2

∫ ∞
−∞

dx′P (x′, t)B(x′)

∫ ∞
−∞

dx eikxλ(x− x′)H(x′ − x) .

(S9)

Substituting z = x− x′ in the integrals over x and using the Euler identity we get:

P (k, t+ ∆t) =

∫ ∞
−∞

dx′P (x′, t)A(x′)eikx
′
λ+(k)

+

∫ ∞
−∞

dx′P (x′, t)B(x′)eikx
′
λ−(k) ,

(S10)

where we introduced the Fourier transform of P (x, t) and de�ne

λ+(k) ≡ 2

(∫ ∞
0

dz cos(kz)λ(z) + i

∫ ∞
0

dz sin(kz)λ(z)

)
,

λ−(k) ≡ 2

(∫ 0

−∞
dz cos(kz)λ(z) + i

∫ 0

−∞
dz sin(kz)λ(z)

)
.

(S11)

By switching the integration bounds for λ−(k) and using symmetry properties of sine and cosine

functions, we can express Eq.(S10) as follows

P (k, t+ ∆t) = 2

∫ ∞
0

dz cos(kz)λ(z)

∫ ∞
−∞

dx′P (x′, t)(A(x′) +B(x′))eikx
′

+ 2i

∫ ∞
0

dz sin(kz)λ(z)

∫ ∞
−∞

dx′P (x′, t)(A(x′)−B(x′))eikx
′
.

(S12)

We now introduce the cosine and sine transforms

λc(k) ≡ 2

∫ ∞
0

dz cos(kz)λ(z) , and λs(k) ≡ 2

∫ ∞
0

dz sin(kz)λ(z) . (S13)

Using the convolution theorem for the second term in Eq.(S12) and recalling the relation A(x)+B(x) =

1, see Eq.(S8), we obtain the simple expression

P (k, t+ ∆t) = λc(k)P (k, t) + iλs(k)[P (k, t) ∗ (A(k)−B(k))] , (S14)

where ∗ denotes convolution in Fourier space, as derived previously in Ref.[6].

S1.3 Fokker-Planck equation for the angle di�erence ψ

We now use this framework for non-local jumps to obtain an equation describing the temporal evolution

of the probability distribution for the angle ψ. In general, changes in ψ after each elongation or

branching event depend on the changes in the local angle ϕ−ϕ′ as well as on the changes in the angle

to origin θ− θ′ values. However, after a small number of steps taken from the origin, the θ-dependent

terms become negligible compared to changes in the local angle ϕ. The probability distribution for

the jumps sizes of the angle di�erence ψ can therefore be approximated by that of the local angle ϕ.

In fact, as we will show later, see Fig. S2(B) and (C), the mean-squared displacements for these two

angles will attain the same linear form for su�ciently large times, indicating that the free di�usion of

these two angular variables follow the same dynamics in this regime. As illustrated in Fig. S2(A), the

jumps in the angle values are described by uniform distributions with maximal jump sizes determined

by δϕe ' ψe = π/10 and δϕb ' ψb = π/2 for elongation and branching events, respectively. Denoting

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.30.458198doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.30.458198
http://creativecommons.org/licenses/by-nc-nd/4.0/


the branching and elongation probabilities by pb and pe, respectively, and the change in the angle

di�erence after each jump by ψ̄ = ψ − ψ′, we can express the jump size distribution as

λ(ψ̄) =
pe

2ψe

[
H(ψ̄)−H(ψ̄ − ψe)

]
+

pb
2(ψb − ψe)

[
H(ψ̄ − ψe)−H(ψ̄ − ψb)

]
, (S15)

where for clarity we only express the positive part of the symmetric jump distribution, i.e. for ψ̄ ≥ 0.

Fourier cosine and sine transforms of λ(ψ̄) are then given by

λc(k) =
pe
kψe

sin(kψe) +
pb

k(ψb − ψe)
(sin(kψb)− sin(kψe)) ,

λs(k) = − pe
kψe

(cos(kψe)− 1)− pb
k(ψb − ψe)

(cos(kψb)− cos(kψe)) .
(S16)

Now we use the Taylor expansions up to O(k3) for the cosine and sine functions to obtain:

λc(k) ' 1− k2D, and λs(k) ' kµ (S17)

where

D ≡ 1
6

(
pb(ψ

2
b + ψbψe) + ψ2

e

)
, and µ ≡ 1

2 (pbψb + ψe) (S18)

can be de�ned as the di�usion and mobility/advection coe�cients based on microscopic variables.

Inserting these expressions into Eq.(S14) and taking the inverse Fourier transform leads to

P (ψ, t+ ∆t)− P (ψ, t) = D∂2ψP (ψ, t)− µ∂ψ[P (ψ, t)(A(ψ)−B(ψ))] , (S19)

We must now de�ne A and B to model the external �eld which acts to reduce the alignment angle

|ψ| at each jump. Recalling our discussion on a radial external �eld, we introduce a sinusoidal force as

described by Eq.(S5). Because A(ψ) +B(ψ) = 1, see Eq.(S8), and we want the drift on the particle to

be determined by A(ψ)−B(ψ) = −fcsin(ψ), we get

A(ψ) ≡ [1− fc sin(ψ)]/2 , and B(ψ) ≡ [1 + fc sin(ψ)]/2 , (S20)

Inserting these expressions into Eq.(S19), and assuming identical mean stepping times τ ≡ t/n in the

limit of large step numbers n, we obtain the Fokker-Planck equation

∂tP (ψ, t) = D∂2ψP (ψ, t) + µ∂ψ[P (ψ, t)fc sin(ψ)] (S21)

In the steady state we impose no-�ux boundary conditions such that

∂ψP (ψ, t) = −µfc
D

sin(ψ)P (ψ) . (S22)

At steady state, using the normalization condition
∫ π
−π P (ψ)dψ = 1 as well as the symmetry of the

cosine function, this predict that P (ψ, t) should follow a von Mises distribution

P st(ψ) =
1

2πI0(ν)
exp (νcos(ψ)) , (S23)

where

I0(ν) = π−1
∫ π

0
exp(νcos(ψ))dψ (S24)

is the modi�ed Bessel function of the �rst kind of order zero and

ν ≡ µfc
D

(S25)

takes the role of the concentration parameter of the von Mises distribution. This is a central result

of our analytical model, which we confront to experimental data in the main text. Importantly, this
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predicts the distribution of angles up to a single rescaled parameter ν, which in analogy to the Péclet

number quanti�es the respective contribution of advection (arising from an extrinsic guiding �eld) to

di�usion (arising from the intrinsic stochasticity of branching/elongation events) in the Fokker-Planck

equation.

Note that the variance of the angle distribution ψ at steady state is thus directly related to this

rescaled parameter:

σ2 = 1−R(ν), with R(ν) ≡ I1(ν)

I0(ν)
, (S26)

whereas the circular standard deviation takes the form [7]

σv.M. ≡
√
−2 ln(R(ν)) . (S27)

As fc → 0, this expression deviates from a power-law relationship between fc and σ, in contrast with

the standard deviation of the equilibrium distribution for a particle in a harmonic potential, which

corresponds to a normal distribution for ψ and depends on the external �eld fc as

σnormal ∝

√
D

µfc
. (S28)

However, for su�ciently large values of ν that we investigate here, the von Mises SD given by Eq. (S27)

exhibits a power-law behavior with a slightly larger decay coe�cient, see Fig.1 (E) for a comparison of

the two scaling laws.

S2 Simulation details

Next, we brie�y summarize the details for the numerical algorithm to simulate branching and annihi-

lating random walks (BARWs) in the absence of external �eld or self-avoidance.

S2.1 Branching and annihilating random walks (BARWs)

Similar to Ref.[8], we de�ne active tips that will elongate and branch randomly, taking discrete steps

of unit size ` = 1 per discrete time interval τ = 1 and leaving behing inactive branch segments that

remain immobile at coordinate r ≡ (x, y) on a two-dimensional plane. When an active tip comes in

close proximity of an inactive branch segment, i.e., when the inactive branch is within an annihilation

radius Ra of the active tip, the latter will become inactive and immobile. We choose a rather small

annihilation radius of Ra = 1.5` to mimic contact-dependent membrane recognition. Note that the

speci�c choice of the annihilation radius in two dimensions does not in�uence the overall topology (up

to global rescaling) of the networks because intersection of two branches occurs with probability 1 for

all su�ciently small radii. In the case of neurons, as discussed in the main text, this radius could

be e�ectively higher to take into account the cycles of tip growth and retraction when encountering

neighboring branches. Coarsening this in the model by running simulations for larger Ra = 8` (see

next section) did not qualitatively change the results for small self-repulsion, but for large fs, the angle

distributions became markedly sharper with faster decaying tails than the von Mises scaling -a case

we did not observe in experimental data.

Simulations start with a single active tip at an initial position r0 ≡ r(τ = 0) = (0, y0) with a

pre-de�ned polarity p0 ≡ (1, 0), i.e., which is directed horizontally towards the right (higher x values),

and proceed until a certain maximal time τmax = 200τ is reached. Because the active tips take a single

step at each time interval τ , the maximal time τmax of the simulation also determines the maximal

distance Rmax from the origin r0 that the last surviving active tips can attain. For the experimental
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data, this parameter is therefore strongly constrained by the geometrical properties (overall size and

shape) of the �n, which we determine by counting the maximal number of steps in the coarse-grained

reconstruction of the �laments, see section S3.5.2. The initial polarity of the starting active tip allows

us to de�ne an initial local angle ϕ0 = 0 with respect to the x-axis associated with the tip. The key

parameter in this simulation setup is the branching probability pb, which will determine the frequency

of branching events and thus also the �nal density of the network.

The (i) elongation and (ii) branching events for the active tips are implemented in the simulation

as follows: At each time point t, we draw na (pseudo-)random numbers rj ∈ (0, 1) with j = 1, . . . , na,

where na is the number of active tips at t. For each active tip, the elongation or branching occurs for

rj > pb or rj ≤ pb, respectively. (i) When an active tip at coordinate r with local angle ϕ undergoes

an elongation event, it takes one step �forward� such that its new local angle ϕ′ will take a random

value uniformly distributed between ϕ ± δϕe with δϕe = π/10. The latter rule leads to a small

rotational di�usion of the tip during elongation events. The new position of the active tip will then

be given by r′ = r + (`cos(ϕ′), `sin(ϕ′)). Note that for δϕe = 0 the rotational di�usion vanishes and

the random walk becomes in�nitely persistent. (ii) When an active tip with local angle ϕ undergoes

a branching event, it will produce two new active tips at positions r′1 = r + (`cos(ϕ′1), `sin(ϕ′1)) and

r′2 = r + (`cos(ϕ′2), `sin(ϕ′2)), respectively, and will become inactive itself. The local angles ϕ′1 and

ϕ′2 of the two new active tips respectively take values uniformly distributed in [ϕ+ δϕe, ϕ+ δϕb] and

[ϕ − δϕe, ϕ − δϕb] with δϕb = π/2, i.e., the two new tips will be located on the two di�erent sides

of the line determined by the polarity vector p = (`cos(ϕ), `sin(ϕ)) of their parent while preserving

a minimal angle of ∆ϕ′min = ϕ′1 − ϕ′2 = 2δϕe = π/5 between each other. The latter rule enforces

a minimal distance between the two new tips to reduce the frequency of immediate annihilation of

the two new tips. Fig. S2(A) illustrates the elementary steps implemented in the simulation for the

branching, elongation and annihilation of the active tips.

To test our analytical predictions for the �free� di�usion of branch segments, we �rst ran simulations

for single branches that perform elongation and branching jumps without generating additional new

active tips. We found that the mean-squared displacements of the �nal local angle ϕ of single branches

at time tmax closely follow the relation 〈∆ϕ(tmax)2〉 = 2Dtmax with the di�usion constant D given

by the �microscopic� expression Eq. (S18), see Fig. S2(B). We also obtained the same relation for the

mean-squared displacements of the angle di�erences, i.e., 〈∆ψ(tmax)2〉 = 2Dtmax for large values of

tmax, see Fig. S2(C). The latter results justi�ed our hypothesis that for su�ciently large times, the

instantaneous jumps in the angle di�erence values ψ are dominated by the changes in the local angle

ϕ, and thus do not depend on the angle θ to origin.

For the full BARW simulations, we could then set a branching probability pb, the initial position

r0, and the initial polarity vector p0, and produced branching networks that radially grow in all

directions over time with active tips forming a front, leaving inactive branches of constant density

in the �inner� regions. When the network growth is constrained within a spatial region delineated

by �xed boundaries, we observe an apparent directionality as predicted previously [8], see Fig. S3(A).

However, tissue growth in the absence of spatial boundaries always remains isotropic, see Fig. S3(B),

which also remains valid for branching networks with strong self-avoidance. We concluded that one

needs to de�ne an external �eld to guide the tips for a directed (anisotropic) spatial invasion such as

seen in the experiments.

S2.2 BARWs with external guidance and/or self-avoidance

In this subsection, we describe di�erent possible microscopic ways to implement external guidance in

the simulations of branching and annihilating random walks, and show importantly that the two give

rise to the same qualitative predictions in the continuum model in terms of overall branch alignment.
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A

Branching Elongation Annihilation

A1 A2 A3

B C

Figure S2: (A) Elementary steps in the implementation of the BARW simulations: (A1) With a given a priori

branching probability pb, an active tip (orange node) of a branch segment at time t′ generates two additional

active tips at the next time step t′ + τ , where τ is a discrete time interval (set to τ = 1 in the simulations).

The angles between the new branch segments with the previous segment take values uniformly distributed in

±[δϕe, δϕb] (gray shaded areas), where we use δϕe = π/10 and δϕb = π/2. (A2) Elongation of an existing

branch segment occurs with the probability pe = 1− pb and leads to a small rotational di�usion of the branch

con�ned within a cone determined by the angle 2δϕe (gray shaded area). (A3) If an active tip comes in

close proximity of existing inactive branch segment (blue nodes) it will annihilate, i.e., become inactive. The

local neighborhood (dashed circle) for sensing inactive branches is determined by an annihilation radius Ra
(green arrow). (B) Simulated trajectories of a single branch segment freely di�using without external potential

and annihilation displays a mean-squared displacement (MSD) for the local angle ϕ that obeys the relation

〈∆ϕ(tmax)2〉 = 2Dtmax with the di�usion constant D predicted by the microscopic theory, see Eq. (S18). (C)

MSD for the angle di�erence ψ of a single branch segment approaches the analytical prediction for large times

(tmax ≥ 100). Plot markers represent the mean values and the shaded regions denote circular SDs around the

mean values (n = 1000 and n = 2000 runs for (B) and (C), respectively).

S2.2.1 Microscopic mechanisms for implementing external guidance

Observations of the movement of single neuronal tips in the presence of chemical cues (such as Netrin)

indicate that the neuronal tips can reorient themselves even without neighboring tips or other branches

in close proximity [9]. This change in the directionality can be e�ectively modelled as a displacement

of the tip towards the external �eld, as we discussed in section S1.1.1 and represent in Fig. S1. Note
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Figure S3: Time evolution of BARWs in the absence of an external �eld (fc = 0). All networks start growing

from the initial point denoted by the cross symbol (black). (A) Simulation of BARWs con�ned in a bounded

region (represented by the dashed rectangular half-open box) exhibits directed growth of the branched network

e�ectively towards the opening on the right. (B) When the boundary is removed, the branching network grows

isotropically in all directions, where active tips leave passive branch segments in the inner regions of the network.

(C) BARWs with a rather strong self-avoidance (fs = −0.3) generate a dense network with e�cient space-�lling

(as described in Fig. 5 of the main text), where active tips seem to de�ne a sharp front that propagates

isotropically. (D) Reducing the branching probability results in a network with a small number of active tips

and a well-de�ned front does not emerge. Despite the strong self-avoidance, an anisotropic growth cannot be

observed in this purely local, self-organized model in the absence of external �eld.

that, however, such a displacement would lead to an instantaneous shift (jump) in the angle di�erence

value ψ of the active tip due to the external �eld in contrast with the the continuum model developed

in section S1.3, according to which the external �eld in�uences the jump probabilities for the angle

di�erence ψ via the forward and backward bias terms de�ned in Eq. (S20). We will therefore discuss

these two di�erent ways of implementing the external �eld, and show that they generically result in

the same behavior and the angular alignments follow the same statistics up to a constant prefactor for

the �eld strength.

External �eld via biased probabilities. To closely follow the continuum model, we �rst imple-

mented biased jump probabilities in the simulation as follows: For each elongation event, we weighted

the elongation probability pe = 1−pb by the bias terms such that a �forward� and �backward� step that

respectively increases or decreases the angle di�erence value ψ occurs with the probability peA(ψ) and

peB(ψ) with A(ψ) = [1− fc sin(ψ)]/2 and B(ψ) = [1 + fc sin(ψ)]/2 as previously de�ned in Eq. (S20).

Here, fc denotes the strength of the external �eld. Because A(ψ) + B(ψ) = 1, the joint probability
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of a forward and backward elongation event is equal to pe which is the a priori value �xed by setting

the branching probability pb. For instance, for an active tip with a positive angle di�erence value

0 < ψ < π, this implementation of the biased jumps implies that it is more likely for the tip to reduce

its local angle than to increase it upon elongation. For branching events we do not implement the e�ect

of the external �eld fc on the angle values of the tip because the bifurcation event in the simulation

corresponds to two opposite jumps in the local angle values (the two tips branch into di�erent sides

of the polarity vector). In contrast, the jumps corresponding both to elongation and branching events

in the continuum model are in�uenced by the external �eld via the bias terms A(ψ) and B(ψ). Even

though we omit the bias for the branching events, we obtained a good agreement with the analytical

predictions for the angle distributions obtained using this simulation setup, as shown in the main text.

External �eld via tip displacement. We also wanted to explore the modelling of the external

�eld in a di�erent way, to show the generality of our approach and the insensitivity to the details

of the microscopic tip behavior, and thus implemented guidance via tip displacements. In this sim-

ulation setup, the active tips would now be displaced at each time step by a factor fc pc, where

pc ≡ (`cos(θ), `sin(θ)) is the unit vector pointing along the �eld lines, and θ denotes the angle to origin

of the tip before displacement. In this second case, the �eld thus directly �corrected� the directionality

of the tip migration, as opposed to the �e�ective correction� which arose from the biased transition

probabilities of the previous approach. Even though these two ways of implementing the external �eld

are quite di�erent, we found that they generated both qualitatively and quantitatively very similar

network structures, see section S2.4 for a comparison of the results. Crucially, we observed that one

only needs to tune the external �eld strength fc by a constant prefactor α to obtain similar results

using the two di�erent algorithms.

S2.2.2 Implementing self-avoidance

An additional feature observed in some branching tissues is the presence of self-avoidance of growing

tips, e.g., as clearly evidenced in morphogenesis of starburst amacrine cells [10], where active tips sense,

and are repulsed by, existing branch segments in close proximity. For neuronal branching it was shown

that this self-avoidance of the growing dendrites is based on isoform recognition of the membrane

proteins [11]. We modelled this e�ect by considering that active tips sense an average density vector

ps [8] depending on the number of branch segments within a certain radius Rs of �self-recognition�:

ps ≡
Σj(r− rj)

|Σj(r− rj)|
, with |r− rj | < Rs . (S29)

Here, for notational simplicity, we denote the position of the active tip by r and that of the remaining

particles within Rs by rj . The density vector ps will thus de�ne a normalized vector pointing away

from nearby particles. We can now de�ne a self-recognition force by −fsps, where fs determines the

strength of interaction with fs > 0 and fs < 0 corresponding to attraction and repulsion, respectively.

Note that this self-repulsion force can e�ectively correspond to sequential recognition vs. retraction

events such as seen in neuronal dendrites and as modelled e.g. in Ref.[12]. In contrast with the latter

study, here we do not focus on the statistics of the retraction events and could therefore describe

the self-recognition via a more simpli�ed e�ective modelling. The position of the active tip after

displacement by this self-recognition force will then simply change to r∗ = r− fsps. However, in order

to preserve the step length `, we will also correct the �nal position such that the distance between

the �nal position r∗ after displacement and the position at the previous time step is equal to `, i.e.,

|r∗(t)− r(t− τ)| = `.
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Figure S4: E�ects of strong self-avoidance (fs = −0.3) on the angular alignment. (A) Normalized histograms

for the angle di�erence ψ for di�erent values of the external �eld strength fc. Dashed lines represent the

theoretical predictions given by the von Mises distribution with the concentration parameter ν = µfc
D . Presence

of strong self-avoidance leads to narrower distributions for ψ and to a strong deviation from the analytical

prediction for large fc, in contrast with the case without self-avoidance, see Fig. 3B in the main text. (B)

Normalized histograms for ψ rescaled by their corresponding mean standard deviations (SDs) σψ (solid lines)

compared to the von Mises distribution with unit SD (dased line) exhibit a sharper peak and pronounced

deviations at the tails for large fc. (C) Mean SDs of the normalized histograms for ψ decay monotonically as a

function of fc and attain larger values than the SDs corresponding to the von Mises distribution (dashed line,

C1). (C2) Scaling of the SDs obeys a power-law 〈σψ〉 ∝ f−0.47c close to the scaling precited by the von Mises

distribution (dashed line).

S2.3 Simulation results for BARWs with self-avoidance

S2.3.1 Strong self-avoidance without external �eld

To clarify whether directed growth can arise in a self-organized way in the absence of an external

�eld just by the self-avoidance mechanism, we performed simulations with a strong self-avoidance of

fs = −0.3 but setting the external �eld strength to fc = 0. In the density regime set by a branching

probability of pb = 0.1, we again observed isotropic growth of the networks, see Fig. S3(C). However,

due to the the rather strong self-avoidance potential, the �nal network exhibited a qualitatively much

�ordered� structure, in agreement with the predictions in [8]. Interestingly, the active tips formed a

sharper propagating front in contrast to the case without self-avoidance. We �nally analyzed the low-

density case by reducing the branching probability to pb = 0.02 to see if the network could preserve its

pre-de�ned directionality uninterrupted by the �outwards push� due to branching events. However, such

a self-organized anisotropic growth also could not be obtained for the low-density case, see Fig. S3(D),

which indicated that an external �eld is required to break the isotropy in the tissue growth.

S2.3.2 Strong self-avoidance with external �eld

Here we provide further results for simulations with a high self-avoidance potential and in the presence

of external guidance. For increasing values of fs, we observed that the density and the space-�lling

properties of the network markedly increased, as shown in Fig. 5 in the main text. We also qualitatively

observed that the networks with high self-avoidance exhibit better alignment with the external �eld.

This increased alignment is indeed re�ected in the angle distributions, where the distributions for

the angle di�erence become narrower compared with those from simulations without self-avoidance,

see Fig. S4. The mechanism can presumably be linked to the high density of the network and its
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space-�lling properties, where self-avoidance competes against annihilation events, thus the network

e�ectively generates more segments in dense regions that are forced to be aligned with the external

�eld. Supporting this hypothesis further, we see faster decaying tails for large values of fc and for

strong-repulsion, as exhibited by the rescaled angle di�erence histograms in Fig. S4(B).

E

A B CRadial field, large radius 
of avoidance

D

C1

C2

B1

B2

B3

0.1 0.20

0.6

1

1.4

Figure S5: E�ects of a large radius of self-repulsion (Rs = 8`) on the alignment and morphology of branching

networks. (A) Morphology diagram of branching networks in a radial �eld. For strong self-repulsion, individual

branches exhibit pronounced alignment with characteristic gaps larger than those seen for smaller radius of

avoidance as used in the main text (see Fig. 2A in the main text with Rs = 3`). (B) Normalized histograms for

the angle di�erence ψ for fs = −0.2 display sharper peaks than those of the von Mises distributions predicted

by theory (dashed lines). (C1) Mean standard deviations (SDs) for ψ are close to theoretically predicted values

(dashed line) but their scaling with increasing �eld strength fc deviates strongly from the scaling relation for the

SD σv.M. of the von Mises distribution (C2). (D) Histograms for ψ rescaled by their SDs (solid lines) illustrate

sharper peaks and faster decaying tails compared to the von Mises distribution with unit SD (dashed line).

(E) Mean opening angles 〈θ̄〉 for branching networks with a large radius of repulsion for a repulsion strength

of fs = −0.1 (circular markers) and fs = −0.2 (triangular markers) as a function of the �eld strength fc. For

large fc, the opening angles saturate and deviate from the predicted decay θ̄a (solid line), in contrast with the

case for a small radius of avoidance (compare Fig. 4 in the main text).

S2.3.3 Large radius of self-avoidance

To explore the alternative of self-interactions that are controlled at larger distances (for instance e.g.

longer retraction events after contact-mediated self-recognition) we set a large radius of self-recognition

Rs = 8` as compared with the radius Rs = 3` we used otherwise. Interestingly, even on a visual level,

we could observe strongly aligned branches in the morphology diagram, see Fig. S5(A), which became

quite pronounced for a large value of self-repulsion (fs = −0.2, rightmost column). Analysis of the angle

distributions revealed that this case indeed leads to large deviations from the analytical predictions,

and the standard deviations decay also rather slowly with increasing fc, see Fig. S5(B) and (C). For

large fc, these e�ects of self-repulsion become rather dominant and lead to a saturation of the mean
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Figure S6: Statistics of BARWs with external guidance via deterministic displacement of active tips. (A)

Normalized histograms for the angle di�erence ψ for di�erent values of the external �eld strength fc are well-

approximated by von Mises distributions (dashed lines) with a concentration parameter ν = µ
Dαfc with an

additional prefactor α = 6 used as a �t parameter. (B) Histograms for ψ rescaled by their corresponding

standard deviations (SDs) are well-described by the von Mises distribution with unit SD (dashed line). For

large fc the tails of rescaled histograms (solid lines) decay faster than that of the von Mises distribution. (C)

Mean SDs 〈σψ〉 of the angle di�erence distributions decay monotonically with fc (C1) with values close to the

analytical prediction (dashed line), and exhibit a power-law relation 〈σψ〉 ∝ f−0.55c (C2) well-approximated by

the analytical relation σv.M. corresponding to the von Mises distribution (dashed line).

opening angles 〈θ̄〉 of the networks as shown in Fig. S5(E). Together, these results indicate that such

long-range self-interaction e�ects can indeed in�uence the angular alignment and morphology of the

�nal networks, especially in the presence of strong external potentials (although our data indicates that

this it not the experimentally relevant limit, see Fig. 5 of the main text, this would be an interesting

metric to test in other branched organs).

S2.4 Simulation of BARWs with external guidance via tip displacement

Next, we performed simulations with the alternative implementation of the external guidance via

direct tip displacements, as we brie�y described in section S2.2. First, we qualitatively observed a high

similarity between the �nal network topologies generated using the two methods for di�erent values

of the external �eld strength. We then quanti�ed this similarity by analyzing the angle distributions

and the scaling of the alignment �uctuations, see Fig. S6. We found that the two methods generically

provide the same statistics after tuning the �eld strength fc by a constant prefactor α. Note that

for di�erent choices of the branching probability, this pre-factor needed to be changed slightly but

recovered the statistics for di�erent fc values. To probe the relevance of direct tip displacement-based

simulations, live-imaging dataset would be needed to investigate more systematically the microscopic

mechanisms of tip elongation, repulsion and guidance.

S2.5 Estimating the average opening angle

As brie�y discussed in the main text, the area of invasion of a branching network in a radial external

�eld will be proportional to the average opening angle θ̄ between the outermost branch segments of the

network. To quantify this, we conjectured that the overall opening angle is very likely to be dependent

on the local dynamics at the growing boundary of a branching network. Indeed, using again simple

geometric arguments for the displacement of active tips by an external �eld, similar to our analysis in
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section S1.1.1, we infer

δθ ' fc + r

fc r2
sin(∆ϕ) , (S30)

where δθ ≡ θ(t)−θ(t−τ) denotes the changes in the angle to origin values of the active tip between two

consecutive time intervals, ∆ϕ ≡ ϕ−ϕ∗ is the change in the local angle after the displacement by the

external �eld fc at time t, and r(t) ' r(t− τ) ≡ r is the radial distance of the active tip from the �eld

origin. For the dynamics �orthogonal� to the growth direction that we are interested here, the changes

in the radial distance between consecutive time steps can be neglected and thus described e�ectively

by a single parameter r replacing the temporal parameter t. After these simplifying assumptions (and

assuming δθ/dr is a well-de�ned in�nitesimal), we can integrate Eq. (S30) to obtain

θ̄(r) =

∫
drδθ ' sin(∆ϕ)

(
log(r)

fc
− 1

r

)
. (S31)

Arguing that ∆ϕ is likely to be proportional to the branching probability pb (because at large time

scales the branching events simply will act to gradually increase the local angle values ϕ), we can

approximate the prefactor sin(∆ϕ) ' pbϕb with a free parameter ϕb. For large times, the second term

in Eq. (S31) inversely proportional to r becomes smaller and thus we arrive at Eq. (3) of the main text.

S3 Experimental model system and methods

S3.1 Zebra�sh transgenic lines and husbandry

Zebra�sh were raised and housed in the Karolinska Institutet core facility following established and

approved procedures. The study was performed in accordance with local guidelines and regulations and

approved by Stockholms djurförsöksetiska nämnd. The new transgenic zebra�sh strain was generated

by injecting UAS:mCherry-caax to Tg(HuC:Gal4; UAS:synaptophysin-GFP) as described below. The

resulting F0 transgenic �sh express red �uorescent reporter mCherry in cell membranes of a sparse

number of neurons, allowing visualization and analysis of neuronal arborization in vivo.

S3.2 Cloning

The expression construct of UAS:mCherry-caax was generated with tol2 kit [13] by recombining p5E-

UAS (tol2 kit #327), pME-mCherryCAAX (tol2 kit #550), p3E-polyA (tol2 kit #302), and pDest-

Tol2pA2 (tol2 kit #394). The mRNA of alpha-bungarotoxin was prepared using Addgene plasmid,

#69542 as a template and mRNA of pCS2FA-transposase using tol2 kit #396 as a template [14]; in vitro

transcription was performed with mMessage mMachine SP6 kit (Thermo Fisher Scienti�c) and RNA

was puri�ed with RNeasy Mini Kit (Qiagen). Zebra�sh embryos of Tg(Huc:gal4VP16;UAS:synaptophysin-

GFP) were injected with 90 pg of alpha-bungarotoxin mRNA with 10% phenol red and 0.13 M KCl

into yolk at one cell stage. Then 20 pg of UAS:mCherry-caax and 20 pg of transposase mRNA were

injected with 10% phenol red and 0.13 M KCl into one of the cells at 4-8 cell stage.

S3.3 Immunostaining

For the whole-mount imaging, we anesthetized �sh at the 24 hpf, 48 hpf and 5 dpf stages with Tricaine

in the same manner as described above, followed by �xation with 4% PFA for 4h at room temperature.

Subsequently, the specimens were permeabilized with three 30 min washes in 100% methanol, washed

with PBS supplemented with 0.1% Tween 20 (PBST) �ve times for 15 min, stained with the primary

antibodies in blocking solution (5% normal donkey serum, 10% DMSO, 0.1% Tween-20, in PBS) for

48h, washed 5 times in PBST for 30 min, stained with secondary antibodies for 24h, washed in PBST
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Figure S7: Developmental stages of caudal �n innervation, schematic of the mCherry-based experimental strategy

and in vivo caudal �n imaging. (A) Developmental stages of zebra�sh caudal �n innervation. Top panel - 5 dpf

zebra�sh wholemount with red box indicating the Region of Interest (ROI): caudal �n. Several other features such as

neuromasts and lateral line are visible. All tubulin positive �bers are stained with anti-acetylated tubulin antibody and

presented in cyan and HuC positive cell bodies are presented in red. Di�erent developmental stages are presented �24

hpf, 48 hpf and 5 dpf. First sensory innervation starts to appear in the caudal �n area at 24 hpf, developing into a

dense network of innervation by 48 hpf (egg hatching) and reaches maximum density at 5 dpf (swimming behavior).

HuC/D positive cell bodies and Tubulin positive neuronal projections are visible on all stages. Caudal �n outline is

marked with the dashed lines. Magni�ed inset on 5 dpf stage reveals the puncta-like tubulin immunostaining which

compromised potential 3D reconstruction of single neuron peripheral arborization. Indeed, a continuous signal would

be preferable for reliable reconstructions, as well as sparse labelling of neurons, justifying our mCherry-based strategy.

(B) Experimental scheme of our Mosaic transient transgenic strategy that lead to mCherry mosaic labelling of neurons

in 5 dpf zebra�sh. (1) Using GAL4-Upstream Activating Sequence (GAL4-UAS) methodology, we generated transient

transgenic �sh in which a sparse number of neurons will express mCherry. Injection of genetic vector carrying UAS-

mCherry-caax construction to 1-4 cell stage fertilized egg of Tg(HUC:GAL4;UAS:synaptophysin-GFP) lead to mosaic

UAS-mCherry caax incorporation in some cells, while in the transgenic �sh line Tg(HUC:GAL4;UAS:synaptophysin-

GFP) synaptophysin fused GFP is expressed at the presynaptic site in presumably all HUC expressing cells (arrowhead

direction corresponds to transcription and translation processes). As a result, mCherry mosaic expression will be visible

in cell membranes in occasional neurons. (2) During selection process only zebra�sh with labelled neurons in the caudal

�n were considered for further analysis. Selection was performed at 5 dpf to ensure developed branching of caudal �n

neurons. Zebra�sh with mCherry �uorescence in the caudal �n were manually collected and used for the analysis. (C)

In vivo confocal imaging of 5 dfp mCherry-caax-XHUC:GAL4:synaptophysin-GFP zebra�sh caudal �n. Magni�ed inset

shows lack of punctiform artifacts. This feature makes our mCherry reporter line preferable for neuronal branching

reconstruction and thus was used in all experiments to visualize generation of neuronal trees.

as described above, and �nally dehydrated in 100% methanol with two 30 min washes and rendered

transparent with clearing solution consisting of one part benzyl alcohol and two parts of benzyl benzoate

(BABB). The primary antibodies utilized were anti-acetylated tubulin (Neuronal marker, Gene Tex),

anti-HuC/HuD neuronal protein and (Abcam), all diluted 1/800 in blocking solution. Alexa �uor 555

donkey anti-rabbit and Alexa �uor 647 donkey anti-mouse (all from Invitrogen) were used as secondary

antibodies at a dilution of 1/1000 in blocking solution. Note that tubulin staining was punctiform at

high magni�cation therefore only �sh of the mCherry line were used for 3D reconstruction.
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S3.4 Imaging of live animals

The expression of mCherry in cell membranes of zebra�sh neurons is not uniform, including in the region

of the caudal �n, therefore we �rst screened multiple animals and selected �sh which presented mCherry

positive signals in the caudal �n. 5dpf �sh were anesthetized with tricaine (MS-222, Sigma) in �nal

concentration 200 ug/ml in E3 PTU treated medium. Then 5 �sh samples per dish were immobilized

in 500 ul of 0.5% low melting agarose (LMA, Sigma), supplemented with tricaine (200 ug/ml) and

placed laterally on glass bottom microwell dish (MatTek, uncoated, 35mm) using tungsten forceps.

After complete polymerization of LMA (40-60 min at room temperature), the droplets containing live

�sh were covered with Tricaine supplemented with E3-PTU medium to prevent desiccation of the

immobilized �sh during imaging. Confocal images were acquired using Z-stacks with a Zeiss LSM 800

confocal microscope equipped with Diod lasers 405 nm, 488 nm, 555 nm and 639 nm, Plan Apochromat

10x, Plan Apochromat 20x, and C-Apochromat 40x. Images were processed in Bitplane Imaris 8.0 and

exported as .ti� �les for further analysis.

S3.5 Reconstruction of neuronal �laments

S3.5.1 Initial (manual) reconstruction of the �laments

Arborization trees of all visible neurons �the transient Rohon-Beard sensory neurons located in the

dorsal spinal cord and innervating the caudal �n integuments [15] � were reconstructed using the

pipeline described below. Raw images acquired on live animals were exported from ZEN software to

Bitplane Imaris 8.0. For initial reconstruction, Bitplane Imaris tool �Filaments� was used. Resulting

images are referred to as ��lament trees� in the following. For each image multiple �lament trees were

acquired. Each tree corresponds to a unique neuron arborization. Each �lament tree was then manu-

ally analyzed, using native mCherry �uorescence channel as a reference, to eliminate false connections

between branches. After manual correction, the tools �smooth �laments� and �center �laments� were

applied to further co-localize obtained reconstructions with �uorescence signal. Filaments with con-

�rmed branching pattern and no cross-connectivity artifacts were taken to the next step of analysis

(see below for details). All �laments which could not be clearly traced were eliminated from the further

analysis. 2D Images of the selected �lament trees were exported as separate .ti� �les and transferred

to ImageJ software. The same set of tools was applied to all �laments: conversion to 8-bit black and

white image, skeletonize, analyze skeleton.

Limitations of the experiment: Prior to the manual reconstruction of the �laments, we performed

raw image quality assessment, based on the following parameters. Neurons chosen for reconstruction

had a minimal optical overlapping with its neighbors. All raw images were acquired using the same

confocal microscopy settings to ensure uniform data resolution. We note that, however, based on the

pinhole settings, we could not reliably distinguish between two dots if the Z distance was less than

one pinhole, which was set for 1 AU (airy unit) and equal to 1.75 um at 20x objective and to 6.45 at

10x objective. Therefore, any neurites (from two di�erent neuron trees) closer than this distance were

discarded from the analysis, creating a small loss in the reconstruction. In a su�ciently dense region

of the �n, this loss was evaluated post-hoc to amount to 8.9% of the overall length of all mCherry

positive axon arbors (using Imaris tool ��lament statistics�). Overall, considering these limitations, a

total number of 8 �laments from about 50 �sh scanned were quali�ed for analysis.

S3.5.2 Coarse-grained reconstruction of the �laments

To obtain quantitative information on the branch numbers, branch lengths and probabilities of branch-

ing events, we needed to convert the manually reconstructed �lament images into skeletonized datasets
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Figure S8: Reconstruction of experimental data after applying the coarse-graining algorithm. The data points

shown in black correspond to the �nal coarse-grained coordinates that are used in the analysis, whereas the

skeletonized data from the reconstructed images are shown in blue. Filaments from the same �sh are displayed

in the same box. The �n edges were identi�ed manually and are indicated by the thin dashed lines. Data

acquisition corresponds to 5 dpf for all 8 samples.

to extract coordinates. To achieve this, we �rst conducted the following analysis using custom scripts

in Python: The manual reconstruction images of �lament and �n borders were loaded and separated

according to the channel information. After binarization, images were skeletonized with Lee's algo-

rithm [16] implemented in scikit-image (v. 0.17.1) [17]. The Skan module (v. 0.9) [18] yielded a vector

representation of �laments and border outlines. Finally, vector size and position were adjusted to

correct for di�erences in input image resolution.

After the skeletonization with the Skan module, we still had to de�ne hierarchical trees with a well-

de�ned orientation for the branches. Moreover, the skeletonized networks now consisted of elementary

vectors that only attained a discrete set of local angle values (integer multiples of π/4) and had a length

of about a single pixel. We therefore developed an algorithm in order to coarse-grain the networks

starting from an initial point of origin. The resulting networks then consisted of discrete vectors of a

pre-de�ned stepsize `, which had local angles with a �ner distribution of values.

For the coarse-graining algorithm, we �rst label all branching points in the network by identifying

the three-valent vertices. We then start the coarse-graining loop by de�ning an �active tip� which is

the vector closest to the origin. This active tip will evolve by �scanning� an area of a certain radius R

for the underlying skeletonized data points and taking discrete steps (of average size 〈s〉 determined

mainly by the scanned radius R) according to the following rules:

(i) Transition towards branching point : If there is a branching point in the scanned area of radius

R, the active tip will jump towards this point in the next time step.

(ii) Elongation: If there is no branching point in the scanned neighborhood, the active tip will try

to move forward with respect to its current polarity by de�ning a �polarity cone� that provides

a radial slice of the scanned neighborhood in the direction of the tip, and selecting the furthest

data point of the underlying skeletonized network within the polarity cone in the next time step.

(iii) Branching : If the active tip itself is a branching point (which will necessarily be the case for a
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Figure S9: (A) Normalized histograms of branch lengths (in pixels) of individual �laments after the recon-

struction of experimental data with the coarse-graining algorithm. The number of branches N for each sample

are indicated in the inset. Dashed vertical lines represent the mean branch length 〈Lj〉 with j = 1, . . . , N for

the individual samples. (B) Normalized histogram of branch lengths for the combined data from all n = 8

�laments. Dashed vertical line represents the average branch length 〈Lj〉 of the combined data. (C) Bar chart

visualizing the individual average step sizes of the coarse-graining algorithm for each sample. The mean branch

size 〈Lj〉 (dashed line in B) and the average step size 〈s〉 of the combined dataset (dashed horizontal line) can

be used to estimate the average number of steps in a typical branch via 〈Lj〉/〈s〉 ' 14.

tip that undergoes the transition (i) above), it will search for two data points as progenies and

produce two active tips at these coordinates in the next time step. The triangle connecting the

two progenies and the active tip is required to have a minimal angle value at the vertex of the

active tip in order to prevent branching events into the same branch of the underlying network.

(iv) Annihilation: If the above conditions are not ful�lled, the active tip will become inactive in the

next time step, i.e., it will not be iterated further in the loop.

In some cases, two active tips start �invading� the same branch due to noisy regions in the original

raw images. In order to prevent such events, we implement the additional rule that when an active tip

�moves� on an already processed data point, it will immediately terminate. In the �nal data processing

step, we then revise the data of the corresponding branch such that it acquires the generation label

and orientation of the �older� active tip that has a longer ancestral lineage.

This set of rules closely resembles the simulation setup for BARWs and provided a hierarchical tree

for each sample from the experiments. After the coarse-graining loop, each processed datapoint was

assigned a generation label and a local angle value determined by the vector connecting its positions

at time t and in the previous time step t − τ . The resulting coarse-grained coordinates for the n = 8

networks analyzed here are shown in Fig. S8 in black, where the underlying skeletonized networks are

presented in blue.
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Figure S10: (A-C) Angle distributions obtained from experimental data. Normalized histograms of the (A)

local angle ϕ, (B) angle to origin θ, and (C) angle di�erence ψ values for the individual �laments. Despite

signi�cant �uctuations, the latter histograms can be well-described by the von Mises distributions (dashed

lines) with an estimated branching probability of pb = 0.05 and a �eld strength of fc = 0.6. (D) Estimation of

the branching probability pb for the experimental data from the ratio of the number of branching events nb to

the number of steps ns until the endpoint (�leaf�) of each branch lineage is reached. (D1) Histogram of the ratio

nb/ns for the combined data from n = 8 �laments. (D2) Estimates for pb for the individual �laments. Average

branching probability of the combined data is estimated as 〈pb〉 ' 0.049 (dashed horizontal line). Error bars

indicate the standard deviations of the individual distributions.

S3.6 Analysis of experimental data

S3.6.1 Distribution of branch lengths

A measure that is intimately linked to the probability of branching is the average branch length 〈Lj〉 of
a �lament with j = 1, . . . , N , where N denotes the total number of branches in the tree. For a network

with a high a priori branching probability, one would expect to �nd short branches on average due to

the frequent branching events. To quantify this, we estimated the branch lengths Lj by calculating the

total length Σksk of all branch segments (discrete steps of size sk) between the starting and end points

of each branch. The normalized histograms of branch lengths for the individual �laments are displayed

in Fig. S9(A). Importantly, the combined data from n = 8 samples showed an exponentially decaying

tail (see Fig. 2(F) in the main text) with an average branch length of 〈Lj〉 ' 46, see Fig. S9(B). This
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Figure S11: (A) Fractal dimensions of the individual �laments obtained from experimental data using the

box-counting method: Box sizes of varying sizes (from εmin ' 3〈s〉 to εmax ' 3〈Lj〉) are used to count the

number of nonempty boxes N(ε) for individual networks. (B) Estimated fractal dimensions correlate with the

mean inverse branch lengths 1/〈Lj〉 and (C) with the estimated branching probabilities 〈pb〉 of the individual

samples. Note that the latter values are not strictly proportional to the inverse branch lengths.

is what is expected in a stochastic branching process, validating a key assumption of the framework of

BARWs. We also calculated the average step sizes corresponding to single steps of the coarse-graining

algorithm described above, and obtained a mean step size of 〈s〉 ' 3.2 from the combined dataset, see

Fig. S9(C). The mean step size can be used to determine the normalized branch lengths 〈Lj〉/〈s〉 ' 14

to compare the lengths with the simulation data (as shown in Fig. 2F in the main text).

S3.6.2 Estimation of the branching probability

A key parameter to determine for the comparison of our theoretical results with the experimental data

is the branching probability pb of the networks. One can estimate pb from the measured distributions

of branch lengths because the average branch length depends in general inversely on the branching

probability, i.e. 〈Lj〉 ∝ 1/pb. However, due to the frequent annihilation events the distributions of

branch lengths in fact underestimate the average branch length, and thus lead to a high branching

probability pb that generate networks qualitatively di�erent from the experimental observations. We

therefore decided to estimate pb by directly counting the number of branching events nb for each lineage

and taking its ratio to the total number of branch segments (steps) ns for that lineage. The branching

probability pb of a network then corresponds to the average ratio 〈nb
ns
〉 from all lineages of branches

ending at a leaf. Fig. S10(D) displays the normalized histograms for the ratio nb
ns

obtained from the

combined dataset of n = 8 �laments (D1) and the estimates of pb for the individual samples (D2).

The average branching probability obtained from the combined data of 〈pb〉 ' 0.05 was �nally used

to generate the branching networks of the BARW simulations and to compare the results on angular

alignment by determining the di�usion and mobility coe�cients given in Eq. (S18).
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S3.6.3 Angle distributions and fractal dimensions for individual samples

To obtain the angle distributions we �rst needed to clarify the coordinate of the origin for each in-

dividual sample. Because the initial branch of some �laments was located in the spinal cord outside

of the �n region, we did not take the starting point of the initial branches as the origin. Instead, an

alternative choice which had the advantage of being systematic was to �rst locate the boundary of the

�n tissue with respect to the anterior-posterior axis, and then �x a central point that has the same

distance to the boundary for all samples. After this identi�cation, angles to origin θ and angle di�er-

ences ψ could be calculated for each node in the coarse-grained networks. The normalized histograms

for the local angles ϕ, angles to origin θ, and the angle di�erences ψ for the individual �laments are

shown in Fig. S10(A-C). The histograms for the local angle ϕ and the angle to the origin θ attained

rather irregular shapes, whereas the histograms for the angle di�erences ψ for most of the individual

samples could be well-approximated by the analytical predictions (Fig. S10(C), dashed lines). Impor-

tantly, the prediction held for both denser and sparser networks, which is a key prediction of the model,

and wouldn't hold if for instance the directionality was emerging from the repulsion between a dense

network of tip/branches (see Fig. S3(D)).

Finally, in Fig. S11 we display the fractal dimensions for the individual samples obtained by the

box-counting method. For this purpose, we selected box sizes gradually increasing from εmin ' 3〈s〉 to
εmax ' 3〈Lj〉 to describe a well-de�ned scaling behavior (i.e. to omit boundary e�ects arising from too

large or too small boxes). The fractal dimensions showed a rather robust correlation with the inverse

of the mean branch lengths and with the branching probability, even though these two measures were

not strictly proportional for all samples, see Fig. S11(B) and (C).
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