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Abstract11

Long-term memories and learned behavior are conventionally associated with stable12

neuronal representations. However, recent experiments showed that neural population13

codes in many brain areas continuously change even when animals have fully learned14

and stably perform their tasks. This representational “drift” naturally leads to questions15

about its causes, dynamics, and functions. Here, we explore the hypothesis that neural16

representations optimize a representational objective with a degenerate solution space,17

and noisy synaptic updates drive the network to explore this (near-)optimal space causing18

representational drift. We illustrate this idea in simple, biologically plausible Hebbian/anti-19

Hebbian network models of representation learning, which optimize similarity matching20

objectives, and, when neural outputs are constrained to be nonnegative, learn localized21

receptive fields (RFs) that tile the stimulus manifold. We find that the drifting RFs of in-22

dividual neurons can be characterized by a coordinated random walk, with the effective23

diffusion constants depending on various parameters such as learning rate, noise ampli-24

tude, and input statistics. Despite such drift, the representational similarity of population25

codes is stable over time. Our model recapitulates recent experimental observations in26

hippocampus and posterior parietal cortex, and makes testable predictions that can be27

probed in future experiments.28
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Introduction29

Memories and learned behavior can be stable for a long time. We can recall vividly the memory30

of events that happened years ago. Motor skills, such as riding a bike, once learned, can31

last life-long even without further practice. A natural question is then whether stable task32

performance and memories are related to stable neuronal representations.33

Recent technical advances in electrophysiology and optical imaging enabled researchers34

to address this question by studying the long-term dynamics of neural population activity in35

awake behaving animals (Katlowitz, Picardo, and Long 2018; Li et al. 2017; Luo et al. 2020;36

Schoonover et al. 2021; Ulivi et al. 2019; Y. Ziv et al. 2013). A number of these experiments37

have shown that neuronal activities in cortical areas that are essential for specific tasks un-38

dergo continuous reorganization even after the animals have fully learned their tasks, a phe-39

nomenon termed “representational drift” (Mau, Hasselmo, and Cai 2020; Rule, O’Leary, and40

Harvey 2019). For instance, in sensorimotor tasks, neuronal representations in the posterior41

parietal cortex (PPC) of mice change across days while the performance of animals remain42

stable and high (Driscoll et al. 2017). Place fields of individual place cells in CA1 region of43

hippocampus drift over days and weeks even when the animals remain in the same familiar44

environment (Gonzalez et al. 2019; Lee et al. 2020; Y. Ziv et al. 2013). Individual neurons in45

the primary motor cortex and supplementary motor cortex show unstable tuning while animals46

perform highly stereotyped motor tasks (Rokni et al. 2007) (but see (Chestek et al. 2007; Gal-47

lego et al. 2020)). Representational drift has been observed even in primary sensory cortices,48

such as mouse visual cortex (Deitch, Rubin, and Y. Ziv 2021; Marks and Goard 2021) and49

piriform cortex (Schoonover et al. 2021). The ubiquity of representational drift raises several50

important questions: What is the underlying mechanism of such drift? How can neural cir-51

cuits generate stable coding in the presence of continuous drift? What are the dynamics of52

representational drift?53

To address these issues, we consider a setting where a neural population learns to rep-54

resent stimuli in a way that optimizes a representational objective. Such a normative account55

of sensory representations is common in neuroscience (Atick and Redlich 1992; Attneave56

1954; Barlow 1961; Chalk, Marre, and Tkacik 2018; Hateren 1992; Olshausen and Field57

1997; Pehlevan, Hu, and Chklovskii 2015; Rao and Ballard 1999; Srinivasan, Laughlin, and58

Dubs 1982). Furthermore, the representational objective we consider has many solutions,59

consistent with the notion that there are many optimal neural representations of input stimuli.60

Based on the observations that synapses in the cortex are highly dynamic (Attardo, Fitzgerald,61

and Schnitzer 2015; Hazan and N. E. Ziv 2020; Rumpel and Triesch 2016), we hypothesize62

that noisy synaptic updates during learning will drive the network to explore the synaptic weight63

space that corresponds to (near-)optimal neural representations. In other words, the neural64
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Figure 1: (A) Illustration of localized receptive fields that tile the data manifold. (B) Hebbian/anti-Hebbian network with nonnegative neural

activity can learn localized receptive fields.

representation will drift within the space of optimal representations.65

To test this hypothesis, we focus on a well-studied biologically plausible network for repre-66

sentation learning: the Hebbian/anti-Hebbian network (Földiak 1990; Pehlevan and Chklovskii67

2019) (Fig. 1B). These networks optimize similarity matching objectives which exhibit a de-68

generacy of optimal representational solutions (Pehlevan, Sengupta, and Chklovskii 2018), all69

of which share the same representational similarity matrix (Kriegeskorte, Mur, and Bandettini70

2008). Hebbian/anti-Hebbian networks have also been shown to learn localized RFs that tile71

the input data manifold (Sengupta et al. 2018), hence they can be used as simplified models for72

brain areas where neurons have localized receptive fields (RFs), such as hippocampal place73

cells and neurons in PPC (Driscoll et al. 2017; Gonzalez et al. 2019; Y. Ziv et al. 2013). In74

these systems, population of neurons with different localized RFs generally tile the parameter75

space they encode (Fig. 1A). The simplicity and mathematical-tractability make Hebbian/anti-76

Hebbian networks an excellent starting point to elucidate the mechanism and properties of77

representational drift due to noise in synaptic updates.78

By numerical and analytical methods, we find that while the RFs of individual neurons79

change significantly over time, the representational similarity of population codes is stable.We80

show that the drift dynamics of individual RFs can be largely captured by a random walk on the81

data manifold, with the effective diffusion constant depending on noise amplitude, learning rate82

and other model parameters such as the number of output neurons. At the population level,83

the drifting RFs are coordinated in a way that preserves representational similarity. Our model84

accounts for many of the recent experimental observations in the hippocampus and PPC, and85

makes testable predictions. Overall, our results show how optimal representation learning and86

noise can lead to representational drift while maintaining representational similarity.87
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Figure 2: Drift dynamics in principal subspace projection (PSP) task. In the simulation, each input xt ∈ R10 is drawn independently

from a joint Gaussian distribution N (0,C). The first three eigenvalues of the covariance matrix C are: 4.5, 3.5, 1 and the rest are 0.1.

A Hebbian/anti-Hebbian network learns to project this input to k = 3 dimensions. (A) PSP error remains stable after the task has been

learned even with noisy synapse update. (B) The learned representation of an example input continuously changes due to noisy updates.

Shown are the 3 component of y(t). (C) Pairwise similarity between learned representations are stable over time, as shown by the almost

identical similarity matrices at t = 0 (left) and t = 2 × 104 (right). (D) Drifting representation as a random walk on a “sphere”, showing

the representation of a single sample yt over time . Color codes for different time steps. (E) Estimating rotational diffusion constant Dϕ

from mean squared angular displacement (MSAD). Grey lines are MSAD estimated based on individual representation trajectory y(t). The

dashed line is a linear fit between 〈(∆ϕ)2〉 ≡ 〈(ϕ(t+ ∆t)− ϕ(t))2〉 and ∆t to estimate the rotational diffusion constant. Inset: illustration

of ∆ϕ. (F) Relationship between Dϕ and noise amplitude σ2. Symbol with error bars are numerical simulation, and the solid line is the

theory Eq.5. (G) Dependence of Dϕ on the eigenspectrum {λi} of the input covariance matrix. Error bars represent standard deviation,

only one side is shown to reduce cluttering. In all the figures t = 0 is the starting point when the representation is learned. Parameters:

n = 10, k = 3, η = 0.1, σ1 = σ2 = 0.01, T = 104.

Results88

Drift dynamics in linear Hebbian/anti-Hebbian networks89

We first study drift in linear Hebbian/anti-Hebbian networks, which compress inputs into a90

lower dimensional space (Pehlevan, Hu, and Chklovskii 2015). While the resulting RFs are not91

localized, it is still instructive to study how learned representations evolve with noisy synaptic92

updates in this analytically tractable model.93

The network we consider minimizes a similarity matching cost function (Pehlevan, Hu, and94

Chklovskii 2015). Here, the similarity between two vectors is defined as their dot product. Let95

xt ∈ Rn, t = 1, · · · , T be a set of network inputs (or sensory stimulus) and yt ∈ Rk, k < n96

be the corresponding outputs constituting a representation. Similarity matching minimizes the97

mismatch between the similarity of pairs of inputs and corresponding pairs of outputs98

min
∀t:yt

1

T 2

T∑
t=1

T∑
t′=1

(x>t xt′ − y>t yt′)
2. (1)
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Optimal solutions to this problem are given by projecting the inputs to their principal subspace99

(Pehlevan, Hu, and Chklovskii 2015). However, there is a continuum of such projections each100

corresponding to a basis in the subspace. This degeneracy can be seen from the rotational101

symmetry of the similarity matching cost function, (1). For any set of yt, Ryt has the same102

cost, where R is an orthogonal matrix.103

Previous work showed that this cost function can be minimized by a neural network in an104

online manner, where each input xt is presented sequentially and an output yt is produced105

(Pehlevan, Hu, and Chklovskii 2015) (Materials and Methods) by running the following neural106

dynamics until convergence:107

ẏt = Wxt −Myt. (2)

Here, W holds the feedforward synaptic weights and M the lateral weights. We note that108

at the fixed point of the neural dynamics yt = M−1Wxt = Fxt, where we define a filter109

matrix, F ≡ M−1W, whose rows are neural filters. After each presentation of an input and110

convergence of the neural dynamics, the weights W and M are updated with a Hebbian and111

anti-Hebbian rule, respectively:112

∆W = η(ytxt −W), ∆M = η(yty
>
t −M). (3)

The learning rule is local in the sense that synaptic update only depends on activities of presy-113

naptic and postsynaptic neurons. The update of M is anti-Hebbian due to the negation in (2).114

As the number of samples increases, these weights converge to a configuration where neural115

filters learn an orthonormal basis for the principal space (Pehlevan, Hu, and Chklovskii 2015;116

Pehlevan, Sengupta, and Chklovskii 2018).117

Here, we model biological noise during learning by introducing noise to the weight updates,118

and examine the consequences of this noise. The updates are119

∆W(t) = η(ytx
>
t −W(t)) + ξW , ∆M(t) = η(yty

>
t −M(t)) + ξM , (4)

where the noise terms ξWij , ξ
M
ij are independent Gaussian noise, with the following statistics:120

〈ξWij (t)〉 = 〈ξMij (t)〉 = 0 and 〈(ξWij (t)ξWkl (t′)〉 = ησ2
1δikδjlδ(t− t′), 〈ξMij (t)ξMkl (t

′)〉 = ησ2
2δikδjlδ(t−121

t′).122

As expected, the network learns the principle subspace and maintains a stable perfor-123

mance, as quantified by the principle subspace projection (PSP) error: ||F>t Ft−UU>||F/||UU>||F124

where U is a n×k matrix whose columns are the top k left singular vector of X (Fig. 2A). Due125

to the synaptic noise, network weights do not settle down to fixed points but roam around in the126

subspace that gives equally good solutions to the similarity matching problem. Consequently,127

the representation of a given stimulus yt drifts over time (Fig. 2B). However, the similarity128

between any two outputs yt and yt′ remains stable (Fig. 2C, SI Appendix Fig. S1A). As a129
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consequence, the drift does not change the length of the output vectors, yt, which undergo130

a random walk on a spherical surface (Fig. 2D). The drift of the representation ensemble131

Yt ≡ [y1, · · · ,yT ] behaves like a randomly-rotating rigid body consisting of a cloud of points132

(SI Appendix Fig. S1B).133

These observations motivated us to quantify the drift rate by the rotational diffusion con-134

stant Dϕ (Kämmerer, Kob, and Schilling 1997; Mazza et al. 2006) (Materials and Methods).135

We can derive an approximate analytical formula for Dϕ from a linear stability analysis of the136

filter matrix (F) (Materials and Methods, and SI Appendix for details):137

Dϕ ≈
1

8
η(σ2

1 + σ2
2)

k∑
i=1

1

λ2
i

. (5)

Here, λ1 ≥ λ2 ≥ · · · ≥ λk are the ordered eigenvalues of the input covariance matrix. (5)138

indicates that Dϕ is proportional to the noise amplitude (Fig. 2F). Further, the drift amplitude139

along each eigenvector is proportional to 1/λ2
i . This is analogous to the rotation of an ellipsoid140

rigid body due to torque. In that system, the rotation around the axis with smaller moment of141

inertia is easier. Predictions of (5) is well in agreement with simulations (Fig. 2E-G).142

The above simulation and analysis demonstrate that, in this model, while the network’s out-143

put is drifting over time, similarity of representation is preserved. This is due to a coordinated144

random walk in the representational space, which in the linear case can be described by a rigid145

body rotation. This coordinated drift explores equally optimal representations. Because the146

quality of a representation is quantified by its representational similarity in (1), representational147

similarity is preserved despite the drift. Next, we consider nonlinear networks and show that148

these results carry over.149

Drift dynamics in nonlinear Hebbian/anti-Hebbian networks150

RFs of neurons in many brain areas are localized in the parameter space which they represent.151

For example, response of neurons in primary visual cortex (V1) are tuned to orientations of152

gratings (Hubel 1995). Neurons in the owl’s external nucleus of the inferior colliculus (ICX) are153

tuned to different horizontal and vertical positions, forming an auditory spatial map (Peña and154

Konishi 2001). Place cells in hippocampus are active when an animal is at a particular spatial155

location of an environment (O’Keefe and Dostrovsky 1971).156

A nonlinear version of our Hebbian/anti-Hebbian network can capture these localized RF157

properties (Fig. 1B). This network minimizes a nonnegative similarity matching (NSM) cost158

function (Földiak 1990; Pehlevan, Hu, and Chklovskii 2015; Sengupta et al. 2018):159

min
∀t:yt≥0

1

T 2

T∑
t,t′=1

(x>t xt′ − y>t yt′ − α2)2, (6)
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Figure 3: Drift of a single localized RF learned from a ring data manifold. (A) A ring in 2D as input dataset: x(θ) = [cos(θ), sin(θ)]>, θ ∈
[0, 2π). (B) The single RF has the shape of a truncated cosine curve, whose position drift on the ring and behaves like a random walk. (C,D)

The effective diffusion constant D of centroid position increases with learning rate η even without explicit synatpic noise (σ = 0), and with

the noise amplitude of explicit synaptic noise. Error bars represent standard deviation of 40 simulations. Megenta lines correspond to (9).

Parameters: α2 = 0, β1 = β2 = 0, in (D) η = 0.05.

where xt ∈ Rn and yt ∈ Rk are input and output, respectively, and α2 sets the threshold of160

similarity to be preserved in the output representation. With nonnegative neural activity, the161

above NSM objective function strives to preserve similarity for similar pairs of input samples162

but orthogonalizes the outputs corresponding to dissimilar input pairs. Compared with the163

linear network, non-negativity breaks the rotational symmetry of the solution, but the permu-164

tation symmetry is still preserved, i.e., exchanging identities of neurons does not change the165

objective function. To see this more clearly, the above target function can be written in terms166

of input-output Gram matrices: ||X>X −Y>Y − α2E||2F , where X ∈ Rn×T , Y ∈ Rk×T , and167

E ∈ RT×T is a matrix with all entries set to 1. Thus, if Y is a solution, then PY is also a168

solution for any permutation matrix P. Note that a general rotation would not preserve the169

nonnegativity of the output and thus not lead to a new solution. One can further control the170

behavior of learned representations by introducing regularizers to yt in (6), for example an l1171

norm of y leads to more sparse code (Materials and Methods).172

Similar to the previous linear Hebbian/anti-Hebbian network, this network also operates in173

an online fashion with a similar local learning rule. It takes an input xt and generates an output174

yt by running the following neural dynamics until it converges (Pehlevan 2019):175
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neurons. (B) Evolution of the RF centroids of two example neurons due to synaptic noise. (C) The representational similarity matrix Y>Y

is approximately circulant and stable over time. (D) When there are large number of neurons, each neuron has active and silent (shaded

region) periods. (E) At population level, the fraction of neurons with active RFs are constant. (F) The fraction of neurons that have active RFs

decreases with the total number of output neurons, as well as the noise amplitude. (G-H) Neurons that have stronger RFs tend to have longer

active time (G) and also are more stable as quantified by smaller effective diffusion constants D (H). (I) At population level, the drift of RFs

are coordinated such that their centroids are more uniformly distributed compared to that of the independent random walk case, in which the

step size follows the same distribution of the Hebbian/anti-Hebbian network model. Shown are the variance of distances between adjacent

centroids. Parameters in C-G: N = 200, σ = 0.002, η = 0.05, α2 = 0 except σ = 0 in B. In H: η = 0.05.

dui
dτ

= −ui + [Wxt]i − αbi − [M̄yt]i, (7)176

yi = max{ui/Mii, 0},177
178

where ui and yi represent the membrane potential and firing rate of neuron i, and bi is the bias179

term. The forward weight matrix W ∈ Rk×n and lateral weight matrix M ∈ Rk×k (we have180

defined M̄ = M− diag(M)) update according to the following “noisy” learning rule (Pehlevan181

2019):182

∆W = η(ytx
>
t −W) + ξW , ∆M = η(yty

>
t −M) + ξM , ∆b = η(αyt − b), (8)183

where η is the learning rate, and ξW and ξM are Gaussian white noise terms with the same184

statistics as in (4). The properties of the above learning rule without noise has been studied185

previously (Földiak 1990; Pehlevan 2019; Pehlevan and Chklovskii 2014; Pehlevan, Mohan,186

and Chklovskii 2017; Sengupta et al. 2018). Here, our interest is investigating how the learned187

representations evolve in the presence of noise in synaptic updates. We will first study the188

general drifting dynamics of RFs by a simple input: a ring data manifold. Based on the insights189

gained from this model, we will build models of drifting representations in place cells and190

neurons in PPC.191

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.30.458264doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.30.458264
http://creativecommons.org/licenses/by-nc-nd/4.0/


Localized receptive fields on a ring stimulus manifold192

To explore how RFs evolve in the presence of synaptic noise, we first consider stimuli living193

on a ring (Fig. 3A), like the direction of a drifting grating used in experimental study of visual194

systems. Location of the stimulus on the ring is parameterized by an angular variable θ ∈195

[0, 2π) (Materials and Methods). The input similarity matrix X>X has a diagonal band structure196

and two inputs that are close on the ring have large similarity.197

In the case of a single output neuron and in the absence of noise, the learned RF can198

be solved analytically, which is a truncated cosine curve centered around a random angle φ,199

i.e., yφ(θ) = µ[cos(θ − φ)]+ with µ being the peak amplitude. Derivation of this results and200

dependence of µ to model parameters is given in Materials and Methods. With synaptic noise201

during learning, the centroid drifts on the ring like a random walk. We quantified the speed202

of drift with an effective diffusion constant, D, of the centroid by the conventional relation:203

〈(φ(t + ∆t) − φ(t))2〉 = 2D∆t, where φ(t) is the centroid position at time t. For a single204

neuron, the dependence of D on the learning rate η and noise amplitude σ2 can be analytically205

approximated as (Materials and Methods, and SI Appendix):206

D ≈ 1

2
(η2 + 16ησ2). (9)

The first term of (9) is due to the sampling noise, i.e., the fact that the network sees one random207

stimulus at a time, and the second term is due to the explicit synaptic noise (noise terms in208

(8)). (9) indicates that faster learning and larger explicit noise result in more rapid drift of the209

RF. Numerical simulation agrees well with the theory (Fig. 3C-D).210

When there is a population of output neurons, the Hebbian/anti-Hebbian network learns211

multiple localized RFs that tile the ring manifold with overlap (Fig. 4A), consistent with previ-212

ous analytical accounts of simplified versions of such networks (Sengupta et al. 2018). With213

synaptic noise, we expect each RF to drift by a similar diffusion process as in the single neuron214

case, but with interactions between the neurons affecting the dynamics (Fig. 4B). In particular,215

the structure of neural population activity, as indicated by output similarity matrix Y>Y, is sta-216

ble across time (Fig. 4C). Further, a neuron’s response to the same stimulus is intermittent,217

having active and silent periods (Fig. 4D). At the population level, the fraction of neurons that218

have active RFs at any given time is constant (Fig. 4E), and it decreases with total number219

of output neurons as well as the noise amplitude (Fig. 4F). Thus, in a large population of220

neurons, only a small fraction of them will be active at a give time, forming a sparse population221

code. Neurons whose RFs have stronger tuning (characterized by the peak amplitude of RF)222

tend to be active more often (Fig. 4G), and have smaller drift (Fig. 4H).223

At the population level, the drift of RFs are coordinated. To see the difference between our224

model and independent random walkers, we simulated Nactive centroids undergoing indepen-225
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dent random walks on the ring. The step size of the independent random walks were drawn226

from the same distribution as the centroid shift between two adjacent time steps in our model227

(Materials and Methods). We observed that centroids in our model tile the ring manifold more228

uniformly than those of independent random walks, as indicated by the smaller variance of229

distances between two adjacent centroids on the ring (Fig. 4I).230

Having gained better understanding of drifting dynamics in the above simple model, we231

now discuss models of representational drift in the Hippocampus CA1 region and PPC. The232

observations made in Fig. 4 will conceptually carry over, providing explanations for previous233

experimental observations.234

A Hebbian/anti-Hebbian Network model for drifting place fields in CA1235

CA1 place cells in the hippocampus play a crucial role in spatial memory and navigation.236

Recent long-term recording experiments show that place coding by the population of CA1237

pyramidal cells are dynamic even when the animal is in the same familiar environment. In238

the time course of several weeks, some neurons lose their place fields while other previously239

non-place coding cells gain place fields. Despite the drift, the spatial information is preserved240

(Gonzalez et al. 2019; Y. Ziv et al. 2013).241

One possible mechanism of place field formation is that CA1 place cells receive both for-242

ward input from grid cells in the entorhinal cortex and lateral competition from other place cells243

within the hippocampus (M.-B. Moser, Rowland, and E. I. Moser 2015). This motivated us244

to use the Hebbian/anti-Hebbian network to learn a place cell representation of a 2D square245

environment. Each position on the plane is represented by a population of grid cells with dif-246

ferent grid spacing, phases and offsets (Fig. 5A, Materials and Methods), which serves as the247

input xt to the network. After learning, some output neurons develop localized RFs (or place248

fields, Fig. 5B). This can be visualized by arranging each row of response matrix Y into a249

square matrix, as shown in Fig. 5B. The population of output neurons tile the 2D environment,250

as indicated by the uniform distribution of centroids of place fields (Fig. 5B, right). Due to the251

noise in the weight update, place fields continuously drift over time (Fig. 5C). Despite the drift,252

representational similarity of positions in the 2D environment is stable (SI Appendix, Fig. S2A).253

We also observed that a place cell may lose its place field for some time and gain a new place254

field later on (SI Appendix, Fig. S2B). The intermittence of RFs is due to both the competition255

between RFs and the fluctuation of W and M. For example, once the forward input is smaller256

than the lateral inhibition at the centroid of an RF, then this RF becomes silent. The interval of257

these silent periods follow exponential distributions (SI Appendix Fig. S2C), indicating that the258

transition between active and silent state of RFs are random and memoryless. However, the259

fraction of neurons with active place fields at any given time remains constant (SI Appendix,260
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Figure 5: Drift of place fields. (A) Place cells receive input from grid cells that have different grid spacing, orientations and offsets. They

also receive lateral inhibition due to competition with other place cells. (B) Left: learned place fields (left) tile the entitle 2D plane with red

square highlighting an silent neuron. Right: each dot represents a centroid of a place field. (C) Drift of place field of an exemplar place

cell. Each circle represents the position of its centroid at different times. (D) Left: Slice through a 2D grid field. Right: Response of neurons

across this slice. (E) Upper: learned place fields tile a 1D linear track when sorted by their centroid positions (left), but continuously change

over time (right). Lower: Representational similarity matrix Y>Y of position is stable over time. (F) Experimental results corresponding to

(E), place fields of a group of CA1 place cells concatenated from several mice when exploring the same familiar 1D linear track. (G) The

average autocorrelation coefficient of population vectors representing each spatial position in the model (left) and experiment (right) decay

over time. Shades represents standard deviation over different positions. (H) Probability distribution of centroid drifts of place cells at three

different time intervals. Red lines represent random distributions, which are obtained by randomly aligning place fields of neurons between

the same interval. The qualitative behavior of the model (left) is very similar to that of the experimental result (right). (I) Despite the continuous

reconfiguration of place cell ensembles, the fraction of active place fields are stable over time in the model (left) and experiment (right). (J)

Centroid shift ∆r = r(t + 1) − r(t) observed in experiment could be a result of two different ‘random walks’ (blue lines) under reflecting

boundary conditions (upper of J). To make a fair comparison with an independent random walk, we sample step sizes ∆s of a random

walk from a distribution p(∆s) (lower left of F) that produces similar shift distribution as in experiment p(∆r) (lower right panel of F). (K)

Drifts of RFs show distance-dependent correlations, quantified by the average Pearson correlation coefficients. The model can recapitulate

the behavior observed in experiment. Shades represent the standard deviation of different pairs of centroids. Experimental results in F-K

are plotted using data from (Gonzalez et al. 2019). Parameters: (A)-(C) β1 = 0.1, β2 = 0.05, η = 0.02, σ = 0.01, Np = 400. (D)-(I):

Np = 200, α = 15, σ = 0, η = 0.01, β1 = 0, β2 = 0.05.

Fig. S2D).261

As in the simple ring model in the previous section, we found that the drifts of individual RFs262

can be largely captured by a random walk but with intermittence due to the inactive periods of263

RFs. The drift speed can be quantified by an effective diffusion constant D. The dependence264
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of D on the number of neuron N is similar to the ring model in the previous section. When N is265

small, sampling noise dominates the synaptic update, resulting in a slight decrease of D as N266

increases. However, beyond a certain N , D increases rapidly with N (SI Appendix, Fig. S2E).267

Our model also predicts that neurons whose RFs have stronger tuning (larger peak amplitude268

of the RF) tend to be active more often, and have smaller drift (SI Appendix,Fig. S2F,G).269

While the above predictions could be compared with long-term recording experiments for270

animals in a 2D environment, existing long-term recording experiments are limited to 1D envi-271

ronments (typically linear tracks). To compare our model with these experimental results, we272

simulated our model in a 1D environment, where grid cell responses are modeled as 1D slices273

through the 2D grid fields, as observed in experiments (Yoon et al. 2016)(Fig. 5D, Material274

and Methods). The model generates qualitatively similar results as the above 2D place cell275

model. The learned place fields tile the linear track but drift over time due to ongoing noisy276

weight updates, yet the representational similarity is stable over time (Fig. 5E). This is also277

observed in an experiment (Gonzalez et al. 2019), where CA1 pyramidal cells were recorded278

when mice were in the same familiar environment for several months (Fig. 5F). Due to drifting279

place fields, the autocorrelation coefficients of neural population vectors in both our model and280

in experiment decay over time (Fig. 5G). The shift of centroids of place fields increases with281

time, with a distribution eventually approaching the case wherein the place fields are randomly282

permuted. Such behavior closely resembles that of experiments (Gonzalez et al. 2019) (Fig.283

5H). Despite the continuous reconfiguration of the neural assemblies representing the position,284

the fraction of active place cells is stable over time (Fig. 5I).285

To further explore the underlying structure of centroid shifts, and test the main prediction of286

our model that the drift of RFs is coordinated, we set out to compare the experiment and our287

simulation results to a null hypothesis — the shift of RFs behave like an independent random288

walk. To make a fair comparison, for the null hypothesis, we assume each centroid takes289

a step size ∆s that is drawn from a distribution p(∆s) with a reflecting boundary condition290

(upper panel of Fig. 5J). The distribution p(∆s) was chosen such that the resulting centroid291

shift ∆r closely matches that of experiment (lower left panel of Fig. 5J, Material and Methods).292

Centroid shifts in experiment show clear distance-dependent correlations, i.e., two RFs that293

are very close to each other are more likely to drift in the same direction on the next day,294

while RFs that are far apart are more likely to drift in opposite directions (blue line, Fig. 5 K).295

This is in stark contrast with the independent random walk picture (gray horizontal line, Fig.296

5 K), but can be recapitulated by our model (red line, Fig. 5 K), suggesting that the drift of297

RFs in experiment is coordinated at the population level, possibly to preserve representational298

similarity.299
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A Hebbian/anti-Hebbian network model for drifting RFs of neurons in300

PPC301

The above model and results can be extended to another sensorimotor task, in which mice302

were trained to navigate a virtual T-maze (Driscoll et al. 2017). At the first half of the T-stem,303

mice saw one of two alternative visual scenes, and associated them with left-turn or right-turn304

at the T-junction to receive a reward at the end of the track (Fig. 6A). PPC is essential for this305

task (Driscoll et al. 2017; Harvey, Coen, and Tank 2012). After learning, a sub-population of306

neurons in PPC have localized receptive fields, i.e., they fire when a mouse is at a specific307

position along the T-maze and their RFs tile the T-maze, providing essential information about308

the task. While mice stably perform the task after learning, the neural population activities309

in PPC continuously drift over weeks. Despite such drift, the task information can be stably310

encoded by the activities of a subpopulation of PPC neurons (Driscoll et al. 2017).311

To better understand the positional tuning and drifting behavior of neurons in PPC, we312

again use a Hebbian/anti-Hebbian network with noisy weight update rule to model this system.313

For simplicity, the task information is represented by a vector xR/L(θ) = [cos(θ), sin(θ),±1]>,314

θ ∈ [0, π), with the last entry indicating a right-turn (1) or a left-turn task (-1).315
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Figure 6: Representational drift in PPC. (A) Schematic of the visual-cue-guided T-maze sensorimotor task as in (Driscoll et al. 2017). The

linear length of the track from the beginning to the end (dashed line) is L. (B) Population activity for the left-turn and right-turn task before

(upper) and after (lower) sorting based on the centroids of their RFs. Only neurons that have active RFs at the given time point are shown.

(C) Population activity drifts but representational similarity is stable over time. Activity of neurons identified with significant peak in the sorted

time (upper and middle). Representational similarity matrix is stable for both left-turn and right-turn task (lower panels). (D) left: For a

group of neurons that have tuning to left-turn (or right-turn) tasks, the fraction of them that have consistent tuning (black), switched tuning

(magenta), losing tuning (cyan) to left (or right) in the following time. (E) Shift of RFs for neurons with a significant peak between time t and

t + ∆t. Smaller shift happens more often than larger shift. (F) The fraction of the neurons with active RFs is stable across time. In (D)-(F)

Left panels are simulation results of our model, right panels are corresponding experiment results from (Driscoll et al. 2017). Parameters:

N = 400, α2 = 1.6, η = 0.05, σ = 10−4, β1 = 10−4, β2 = 10−3.
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After learning, the population of output neurons in the model develop positional tuning of316

the T-maze, i.e., for either left-turn input xL or right-turn input xR, there are a subpopulation of317

neurons that fire most strongly when the animal is at the specific positions of the track, forming318

RFs that tile the maze (Fig. 6B).319

To see how the RFs of neurons evolve over time, we first sort neurons with significant320

RFs based on the centroid positions of their RFs at a reference time point. We find that RFs of321

neurons drift over time, i.e., neurons rarely have the same or similar RFs at two long-separated322

time points. However, the population representation of location-context information is stable323

across time. Thus, at any given time, we can identify a subset of neurons with significant324

RFs that tile the positions of the T-maze for both left-turn and right-turn tasks (Fig. 6C, upper325

and middle panels). Despite the drift, representational similarity of both left-turn and right-326

turn tasks are stable over time (Fig. 6C, lower panel). Neurons also gradually change their327

tuning to tasks choices. For example, a group of neurons that are tuned to the left-turn tasks328

at time 0 may loss such tuning or become tuned to right-turn tasks, and vise versa. Drift of329

an RF accumulates over time, such that the probability of centroid shift that is larger than a330

certain distance increases with time (left, Fig. 6E). Overall, the fraction of neurons that have331

positional tuning at any time for both left-turn and right-turn trials are constant (left, Fig. 6F). All332

these behavior are consistent with the experiment (right panels of Fig. 6D-F). Together, these333

comparisons shows that our simple model can explain many characteristics of representational334

drift in PPC.335

Summary and Discussion336

In this paper, we explored the hypothesis that representational drift is due to the existence of337

many (possibly infinite) ensembles of population codes that achieve a representational objec-338

tive. Noise in learning drives the network to explore this space, causing the drift of population339

activity. While our focus was on synaptic noise, other sources of noise can also cause similar340

representational drift with potentially different statistics. Similarly, network architectures that341

optimize other objective functions can also show drift when learning with noise. However, we342

expect the drift to be strongly affected by the degeneracy of the solution space of the objective343

function. For example, in a feedforward network performing online principal component anal-344

ysis, which has no degeneracy as the principal subspace projection task, we found stabilized345

representations in the presence of noise (Fig. S3, SI Appendix).346

To explore the consequences of our hypothesis in a concrete model, we focused on a347

well-studied model for biologically plausible representation learning that optimizes similarity-348

based representational objectives (Pehlevan and Chklovskii 2019). We showed that simple349
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Hebbian/anti-Hebbian networks with noisy synaptic updates recapitulate observed represen-350

tational drift phenomena in experiments. In the case that the network consists of a single351

output neuron, we observed that its RF behaves like a random walk on the data manifold352

with a diffusion constant that depends on the noise amplitude, learning rate, and statistical353

structure of the input. When the network consists of many neurons, different drifting RFs are354

coordinated such that representational similarity is stable across time.355

We used the Hebbian/anti-Hebbian network as a simplified model to study the RFs of hip-356

pocampal place cells and neurons in the PPC. Our model recapitulates the drift statistics at357

population-level observed in these regions: First, a constant fraction of active neurons rep-358

resent task variables at a given day. Second, neurons drop in and out of this assembly over359

days. As a consequence, the autocorrelation coefficient of population vectors decay over time.360

Third, drift at population level preserves representational similarity (Fig. 5,6). While simple,361

the network captures the essential properties of those neural circuits, i.e., RFs are shaped362

by input from upstream and effective lateral inhibition/competition within the layer. It is also363

possible to model these systems by training a general recurrent neural network (RNN), as has364

been demonstrated in (Rajan, Harvey, and Tank 2016). It will be interesting to see whether365

neurons in such RNN models with noisy weight update also show representational drift.366

Our model makes several testable predictions. First, our model predicts that the drifts of367

RFs are coordinated. This coordination is arising from the existence of a representational ob-368

jective for the neural population as a whole. We verified this prediction in hippocampal data369

Fig. 5J,K. Second, it predicts that neurons whose synapses have faster turnover dynamics370

tend to drift more rapidly. For example, the lifetime of spines of pyramidal cells in hippocam-371

pus is about 1 to 2 weeks, much shorter than that of neocortex neurons (Attardo, Fitzgerald,372

and Schnitzer 2015). This suggests that representational drift should be more prominent in373

hippocampus than in neocortex. Furthermore, the lifetime of synapses can be perturbed by374

blocking receptors such as NMDA (Zuo et al. 2005), which will alter the stability of RFs. A375

definitive examination of this prediction requires experiments that both measure the life time of376

synapses and the long-term neural activity in brain regions that represent learned stereotyped377

behavior under unperturbed and perturbed states. While challenging, this is nonetheless be-378

coming within reach with new experimental techniques. Third, our model predicts that neurons379

with strongly tuned RFs should be more stable. This prediction can be tested by examining the380

amplitude of tuning curves (RFs) of individual neurons and their stability in long-term record-381

ing experiments. Furthermore, the strength of RFs can be perturbed by optogenetic tools to382

examine how it affects the stability of RFs.383

Representational drift contradicts the hypothesis that stable neural activity is the substrate384

of stable behavior. However, there needs to be stable aspects of representations which pro-385

vide a substrate for stable downstream decoding and readout. Representational similarity can386
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be one such substrate for multiple reasons. First, our modeling shows that achieving stable387

representational similarity despite the drift of population activity is biologically plausible. Sec-388

ond, stable representational similarity may be a general internal structure of drifting neural389

population activity. For example, mouse visual cortices show strong representational drift yet390

the relation between population activities that represent different inputs remains stable and391

stereotyped (Deitch, Rubin, and Y. Ziv 2021). Conserved and stable internal structure of neu-392

ral activity has also been discovered in hippocampus and prefrontal cortex in free-behaving393

mice (Rubin et al. 2019). Third, experimental evidence is consistent with stable representa-394

tional similarity being a foundation for robust downstream decoding. Studies in monkey motor395

cortices have shown that stable geometry of latent population dynamics underlies stereotyped396

reaching tasks (Gallego et al. 2020) despite the inherently variable single neuron activities397

(Liberti et al. 2016; Rokni et al. 2007) (see however (Chestek et al. 2007; Katlowitz, Picardo,398

and Long 2018)). Interestingly, a recent experiment has shown that the spatial code of dif-399

ferent environments in the hippocampus are random in individual rodents but share the same400

geometry across different animals (Kinsky et al. 2018). Finally, preserving pairwise similarity401

of representations may provide some computational benefits. Recent unsupervised learning402

algorithms for image recognition, such as contrastive representational learning (Chen et al.403

2020) and “Barlow Twins” (Zbontar et al. 2021), are based on objectives that maximize rep-404

resentational similarity between a sample and its distorted/augmented versions. Such algo-405

rithms can achieve comparable performance to supervised learning algorithms. From a theo-406

retical point of view, the representational similarity matrix (or kernel) determines the number of407

sampled stimuli required to learn an accurate linear readout from a population code, indicating408

that performance need not suffer as long as the representational kernel is preserved (Bordelon409

and Pehlevan 2021).410

A hypothesis for achieveing stable readout despite time-varying neural activity is that the411

variation happens in the “coding-null space” (Druckmann and Chklovskii 2012; Kaufman et al.412

2014). Representations in our model exhibit drift in all dimensions, precluding the existence413

of such coding-null space. Similarly, a closer scrutiny of the response of PPC neurons in the414

‘T-maze’ task showed that drift is not confined to a “coding null space” (Rule, Loback, et al.415

2020). Hence, an adaptive readout mechanism which involves synaptic plasticity to track and416

compensate the drift is required to achieve stable behavior (Rule, Loback, et al. 2020; Rule417

and O’Leary 2021). Whether and how such a mechanism is implemented in the brain remains418

an open question.419

The ubiquity of representational drift raises the question of whether it is a biological feature420

or a bug. Representational drift may be desirable under certain circumstances (Mau, Has-421

selmo, and Cai 2020). For example, in a model of the bird song learning system, variation in422

the neural representation of the stereotyped behavior enables the system to adapt quickly to423
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a shift of target song, and to reduce error due to loss of neurons (Duffy et al. 2019). Drift can424

accommodate new learning with minimal inference by continuously modifying existing mem-425

ories (Mau, Hasselmo, and Cai 2020). Other authors proposed that noisy synaptic plasticity426

and spine motility enable cortical networks of neurons to carry out probabilistic inference by427

sampling from a posterior distribution of network configurations (Kappel et al. 2015). Such428

sampling would lead to a representational drift as a byproduct.429

Material and Methods430

Similarity matching and the linear Hebbian/anti-Hebbian network431

The linear Hebbian/anti-Hebbian network can be derived from (1). The detailed derivation can432

be found in (Pehlevan, Hu, and Chklovskii 2015; Pehlevan, Sengupta, and Chklovskii 2018),433

we sketch the main steps here. Starting from the cross term in (1), by introducing a new matrix434

variable W ∈ Rk×n, we obtain435

− 1

T 2

T∑
t=1

T∑
t′=1

y>t yt′x
>
t xt′ = − 1

T 2

T∑
t=1

y>t

[
T∑
t′

yt′x
>
t′

]
xt = min

W∈Rk×n
− 2

T

T∑
t=1

y>t Wxt+TrW>W.

(10)

Similarly, we can introduce another matrix variable M for the quartic yt term in (1):436

− 1

T 2

T∑
t=1

T∑
t′=1

y>t yt′y
>
t yt′ =

1

T 2

T∑
t=1

y>t

[
T∑
t′

yt′y
>
t′

]
yt = max

M∈Rk×k

2

T

T∑
t=1

y>t Wyt − TrM>M.

(11)

By substituting (10) and (11) into (1) and changing orders of optimization (Pehlevan, Sengupta,437

and Chklovskii 2018) we get:438

min
W∈Rk×n

max
M∈Rk×k

1

T

[
2Tr(W>W)− Tr(M>M) + min

yt∈Rk×1
lt(W,M,yt)

]
, (12)

where439

lt(W,M,yt) = −4x>t Wyt + 2y>t Myt. (13)

The minimax problem (12) can be solved by the following two-step online algorithm. First,440

minimizing (13) while keeping W and M fixed, which is solved by running the dynamics of441

output variable yt until convergence442

dyt
dt

= Wxt −Myt. (14)

Second, after the convergencec of yt, update W and M by gradient descent and gradient443

ascent of (12) respectively:444

Wij ← Wij + η(yixj −Wij), Mij ←Mij + η(Mij − yiyj). (15)
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The above learning algorithm (14), (15) can be naturally mapped onto a single-layer biologi-445

cally plausible neural network, the linear Hebbian/anti-Hebbian network. Here, yt is the neural446

activity of the output, W and M are synaptic matrices of the forward and lateral connections447

respectively. The synaptic update rule (15) is local since the change of a synapse only de-448

pends on the activity of presynaptic and postsynaptic neurons.449

Calculation of the rotational diffusion constant450

An analytical calculation of the rotational diffusion constant, defined by (Hunter et al. 2011;451

Kämmerer, Kob, and Schilling 1997; Mazza et al. 2006),452

Dϕ ≡ lim
t→∞

1

4t
〈|~ϕ(t)− ~ϕ(0)|2〉. (16)

is difficult. However, we were able to obtain an approximation which matches numerical ex-453

periments very well, as shown in Fig. 2E-G. We present the details of this derivation in the454

SI Appendix. Our approximation assumes that 1) angular displacements of the representation455

vectors after different time steps are not correlated, and 2) the network weights stay close to456

the optimal representation manifold. Under these assumptions, Dϕ can be approximated by457

the mean squared angular displacement (MSAD),458

Dϕ ≈
1

4∆t
〈|∆~ϕ|2〉, (17)

where ∆t is the small time interval elapsed during a single step update, and ∆~ϕ arises from459

a noisy synaptic update to the network with an optimal set of synapses. We calculate MSAD460

analytically (SI) to arrive at (5).461

To numerically estimate Dϕ from trajectory of y(t) with total length of T time steps, we first462

calculate δ~ϕ at each simulation step, then estimate ~ϕ(t) by cumulatively summing δ~ϕ up to463

time step t. Next, we estimate the MSAD of time interval τ using all the pairs of ~ϕ(t + τ) and464

~ϕ(t), which gives 〈|∆~ϕ|2〉 = 〈|~ϕ(t+ τ)− ~ϕ(t)|2〉. Last, we plot |∆~ϕ|2 as a function of τ and fit465

a line that pass the origin to the data. The slope of the best fit is then 4Dϕ.466

Hebbian/anti-Hebbian network and nonnegative similarity matching467

The nonlinear Hebbian/anti-Hebbian network (Eq. s(7) and (8)) can be derived from the gen-468

eral nonnegative similarity matching (NSM) problem (Pehlevan 2019; Pehlevan and Chklovskii469

2019). Denoting the input data as a set of vectors xt=1,··· ,T ∈ Rn and the corresponding output470

vectors yt=1,··· ,T ∈ Rk, the NSM objective is defined as471

min
∀yt≥0

1

T 2

T∑
t,t′=1

(x>t xt′ − y>t yt′ − α2)2 +
1

T

T∑
t=1

(2β1||yt||1 + β2||yt||22), (18)
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where α2 sets the threshold of similarity to be preserved in the output representation, the other472

two regularizers β1, β2 control the sparsity and amplitude of output. The detailed derivation of473

(7) and (8) from (18) is described in (Pehlevan 2019).474

To see why the above NSM objective (18) leads to localized RFs, we can consider the475

simpler case where β1 = β2 = 0 and a single pair of inputs. If two inputs are similar, i.e.,476

x1 · x2 > α2, then the corresponding outputs y1 and y2 would prefer y1 · y2 = x1 · x2 − α2,477

i.e., they are also similar. In contrast, if two inputs are less similar, i.e., x1 · x2 < α2, due to478

the nonnegativity of outputs, y1, y2 they tend to be orthogonal: y1 · y2 = 0. To achieve this,479

dissimilar inputs must activate non-ovelapping sets of neurons. Thus, in manifold learning, (18)480

preserve local geometric structure in the y representation space of the input data clouds. A481

detailed explanation of why localized RFs are learned in a simplified version of (18) is provided482

in (Sengupta et al. 2018).483

The neural dynamics derived from (18) (with regularizers) differ from that in main text484

slightly by changing the transfer function in (7) to485

yi = max{(ui − β1)/(β2 + Mii), 0}. (19)

Derivation of the diffusion constant of the ring model486

We sketch the derivation of (9) here, more details are in SI Appendix. We again consider487

the approximation that the diffusion coefficient can be approximated by the mean squared488

displacement around a fixed point by a noisy synaptic update.489

Consider a single output neuron that learns a RF from inputs that are on a ring manifold490

(Fig. 3A). The response of the output neuron to x = [cos θ, sin θ]> is491

y(θ) =
1

m+ β
[w1 cos θ + w2 sin θ − αb]+, (20)

where [x]+ denotes the rectified linear function and β is the l2 regularizer. The stationary state492

parameters {w∗1, w∗2,m∗, b∗} satisfy the following conditions493

〈w∗1〉 = 〈y(θ) cos θ〉θ, 〈w∗2〉 = 〈y(θ) sin θ〉θ,494

〈m∗〉 = 〈y2(θ)〉θ, 〈b∗〉 = α〈y(θ)〉θ. (21)495
496

These equations can be solved self-consistently by assuming an ansatz of the form:497

yφ(θ) = µ[cos(θ − φ)− cos(ψ)]+, θ ∈ (−π, π], (22)

which gives the dependence of µ and ψ on α, β

µ2 =
2ψ − sin 2ψ − 4βπ

4ψ + 2ψ cos 2ψ − 3 sin 2ψ
, α2 =

cosψ(2ψ − sin 2ψ)

4(sinψ − ψ cosψ)
. (23)
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Using the fact that dy(θ)/dθ = 0 at θ = φ, we have tanφ = w∗2/w
∗
1 and498

dφ

dt
=

1

µ̂

(
dw2

dt
cosφ− dw1

dt
sinφ

)
, (24)

where µ̂ =
√
w∗21 + w∗22 is the norm of weight vector. Using the noisy update rule (8) and (22),499

the shift of centroid due to one-step update eventually becomes500

∆φ =
1

µ̂
{ηµ[cos(θ − φ)− cosψ]+ sin(θ − φ) + (ξ2 cosφ− ξ1 sinφ)}. (25)

Finally, using the relation 〈(∆φ)2〉 ≈ 2D∆t, we have501

D ≈ γη2 +
ησ̂2

µ̂2
, (26)

where σ̂2 ≡ σ2
1 cos2 φ+ σ2

2 sin2 φ, and502

γ ≡ µ2

µ̂2
〈([cos(θ − φ)− cosψ]2+ sin2(θ − φ))〉θ. (27)

When α = β = 0, σ1 = σ2 = σ, we have γ = 1 and µ̂ = 1/4, (26) reduces to (9) in the main503

text.504

Numerical simulation of 2D place cells505

We considered a 32 × 32 grid plane as the environment, each position (x, y) is represented506

by a group of grid cells with different grid spacings, orientations and offsets as observed in507

experiment (Stensola et al. 2012). The hexagonal firing fields of grid cells are modeled as a508

summation of three two-dimensional sinusoidal functions as in (Kropff and Treves 2008; Lian509

and Burkitt 2020; Solstad, E. I. Moser, and Einevoll 2006)510

G(r) =
2

3

(
1

3

3∑
i=1

cos

(
4π√

3l
ei · (r− r0)

)
+

1

2

)
, (28)

where r = [x, y]> is the location on the plane, r0 = [x0, y0]> is the phase offset, l is the grid511

spacing. ei = (cos(2πi/3 + θ), sin(2πi/3 + θ)), i = 1, 2, 3 is the unit vector in the direction512

2πi/3 + θ with θ being the grid orientation. In the simulation, grid cells have 5 modules, i.e.,513

Nl = 5. The value of l increases as geometric series with a ratio 1.42 that is consistent514

with experiment (Stensola et al. 2012). For example, in our simulation, the smallest spacing515

is 0.2L with L being the linear length of the plane, then the rest spacing would be 0.2 ×516

1.42L, · · · , 0.2 × 1.42Nl−1L. In each module, the number of orientation θ, Nθ = 6, which are517

drawn uniformly in the range [0, π/3). Similarly, the number of grid phase offsets x0, y0 are518

Nx = 5 and Ny = 5, which are drawn uniformly in the range [0, l). As result, the total number519

of grid cell is Ng = NlNθNxNy = 750.520
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Numerical simulation of 1D place cell521

We consider a linear track with length L. Tuning curves of grid cells on the linear track are522

slices through 2D grid fields described above. The orientation of the slices are the same and523

randomly selected in the range [0, π/3].524

Autocorrelation coefficient of the population vector525

In all the cases, the autocorrelation coefficient ρ of population vector is defined as the Pear-526

son’s correlation coefficent between yt and y0 to the same input:527

ρ(t) =
1

n− 1

n∑
i=1

(
y0,i − ¯y0,i

σy,0

)(
yt,i − ȳt,i
σy,t

)
, (29)

where ȳ0, ȳt are the mean of y0,i and yt,i, σy,0, σy,t are the standard deviation of y0,i and yt,i.528

Step size in independent random walks place fields529

In Fig. 5J,K, the step size of independent random walks were drawn from a distribution p(∆s)530

closely matching that of experiment. To determine this distribution, we first calculated the531

distribution of centroid shift between two adjacent days in experiment p(∆r) with ∆r = r(t +532

1) − r(t). For a random walk whose centroid is at position r̂t, its position at next time step is533

r̂t+1 = r̂t + ∆s with ∆s randomly sampled from p(∆s). To constrain r̂t+1 in the range of the534

track [0, L] with L being the length of the track, we assumed a reflecting boundary condition,535

which gives536

r̂t+1 =


|r̂t + ∆s| r̂t + ∆s < 0

2L− (r̂t + ∆s) r̂t + ∆s > L

r̂t + ∆s other

The shift of centroid in the random walk model is then determined by ∆r̂ = r̂t+1− r̂t according537

to the above equation. Our aim is to find a distribution p(∆s), such that p(∆r̂) is close to that538

of experiment p(r). Based on the shape of p(r), we searched p(∆s) from a family of Levy’s539

alpha stable distribution (Samorodnitsky and Taqqu 2017) by minimizing the Kullback–Leibler540

divergence between p(r) and p(r̂).541

Data source and processing542

Experimental data presented in Fig. 5 are originally described in (Gonzalez et al. 2019). We543

used the processed data and MATLAB code, which are available at the Caltech Research Data544

Repository (https://doi.org/10.22002/d1.1229) to produce these plots.545
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Experimental data presented in Fig. 6 is extracted from Figure 2C, 2D, and 4E of (Driscoll546

et al. 2017). The data is freely available in (Driscoll et al. 2020).547
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Supplemental Material for: Coordinated drift of receptive fields during noisy
representation learning

Shanshan Qin, Shiva Farashahi, David Lipshutz, Anirvan M. Sengupta, Dmitri B. Chklovskii, and Cengiz Pehlevan

I. DERIVATION OF THE ROTATIONAL DIFFUSION CONSTANT THE IN THE LINEAR
HEBBIAN/ANTI-HEBBIAN NETWORK

In this section, we derive an analytical expression for the rotational diffusion constant defined by [1, 2]

Dϕ ≡ lim
t→∞

1

4t
〈|~ϕ(t)− ~ϕ(0)|2〉, (1)

where brackets mean averaging over different realizations of the noise. Obtaining an exact expression for Dϕ is
difficult, but we are able to derive an approximation that matches numerical experiments well, as shown in Figure 2
E, F and G of main text.

Our approach relies on two simplifications. First, we define the single-step angular displacement

∆~ϕi ≡ ~ϕ(i)− ~ϕ(i− 1) (2)

and note that

〈|~ϕ(t)− ~ϕ(0)|2〉 =

t∑
i=1

〈|∆~ϕi|2〉+

t∑
i=1

t∑
j=1,i 6=j

〈∆~ϕi ·∆~ϕj〉. (3)

We assume that the correlation between angular displacements at different times is negligible. Therefore, we approx-
imate

Dϕ ≈ lim
t→∞

1

4t

t∑
k=1

〈|∆~ϕi|2〉. (4)

Second, we assume that the network weights start at a configuration that is already an optimal solution to the
similarity matching objective, projecting the input to its principal subspace, and the drift keeps the weights in the
optimal solution space. This is a reasonable approximation because of a linear stability analysis presented in [3, 4].
We now review that argument. We refer an optimal solution to the similarity matching problem in the offline setting
without noise as a fixed point and denote it with a .̂ We note that a general perturbation of feature map δF around
a fixed point F̂ = M̂−1Ŵ can be decomposed as

δF = δAF̂ + δSF̂ + δBĜ, (5)

where δA is a k × k antisymmetric matrix, δS is a k × k symmetric matrix, and Ĝ is a (n − k) × n matrix with
orthonormal rows. These rows are chosen to be orthogonal to the rows of F. δB is a k × (n − k) matrix [4]. So we

have δA + δS = δFF̂. The first term corresponds to a rotation of the neural filter basis of the principal subspace,
the second term captures deviations from orthogonality of the basis vectors within the subspace, and the third term
captures perturbations of the weight vectors that lead to projecting outside the principal subspace. As shown in [4],
the fixed point is stable to the perturbation due to the second and third term, meaning they decay exponentially to
zero, making a principal subspace projection linearly stable. Therefore, we consider drift due to the first term, which
rotates neural filters and, in turn, the data cloud. We find that (see below) in this limit, 〈|∆~ϕi|2〉 is independent of
time step i. Therefore, our final approximation is

Dϕ ≈
1

4∆t
〈|∆~ϕ|2〉, (6)

where ∆t is the small time interval elapsed during a single step update, and ∆~ϕ arises from a noisy synaptic update
to the network with an optimal set of synapses. This quantity is called mean squared angular displacement (MSAD).
This approximation turns out to match simulations very well as shown in Figure 2 E, F and G.

Next, we calculate Dϕ. In the linear Hebbian/anti-Hebbian network for principle subspace projection task, the
learning rule with synaptic noise is

∆W = η(ytx
>
t −W) + ξW , ∆M = η(yty

>
t −M) + ξM , (7)
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where 〈ξWij (t)〉 = 〈ξMij (t)〉 = 0 and 〈(ξWij (t)ξWkl (t′)〉 = ησ2
1δikδjlδ(t−t′), 〈ξMij (t)ξMkl (t′)〉 = ησ2

2δikδjlδ(t−t′). As discussed,
by estimating the variance of the rotation the learned representation during a single-step update under rule (7), we
can define an effective rotational diffusion constant that is related to this variance. More specifically, in the small

update and noise regime, δA is related to an infinitesimal rotation R by R = exp δA = exp(~θ · ~L), where ~L is the

infinitesimal rotation generator [5]. ~L is a tensor, whose components can be written in matrix form.

We start by writing δF in terms of the perturbation of Ŵ, M̂:

δF = M̂−1δW − M̂−1δMM̂−1Ŵ = M̂−1(δW − δMF̂), (8)

where we have used the property F̂F̂> = I. Right-multiplying (8) by F̂ and using (7), we have

δFF̂> = M̂−1(δWF̂> − δM) = M̂−1
(
η(yx>t − Ŵ)F̂> − η(yy> − M̂) + ξW F̂> − ξM

)
= M̂−1(ξW F̂> − ξM ), (9)

where we have used the fact

M̂−1
(
ytx
>
t − Ŵ)F̂> − (yty

>
t − M̂)

)
= M̂−1

(
yty
>
t − ŴF̂> − yty

>
t + M̂

)
= −M̂−1ŴF̂> + I = 0 (10)

Now, the antisymmetric part δA = 1
2 (δFF̂> − F̂δF>) can be written down explicitly:

δA =
1

2
[(M̂−1ξW F̂> − F̂ξW>M̂−1) + (ξM>M̂−1 − M̂−1ξM )]. (11)

The mean squared angular displacement (MSAD) is related to δA. To see this more clearly, consider a d-dimension
rotation, which can be interpreted as rotation in a d− 1 dimensional hyperplane from one unit vector to another unit
vector. Given any two d-dimensional orthogonal unit vector e1, e2, i.e., e1

> ·e1 = e2
> ·e2 = 1, e1

> ·e2 = e2
> ·e1 = 0.

The generator for this rotation can be represented as

Le1e2 = e2e
>
1 − e1e

>
2 . (12)

Hence δA can be expressed as δA = ∆ϕLe1e2 , with ∆ϕ reflecting the rotation ‘amplitude’. Using the fact that
Tr(Le1e2L

>
e1e2

) = 2, we have

2(∆ϕ)2 = Tr(δAδA>). (13)

The variance of δAij is

〈δA2
ij〉 =

η

4

[
σ2
1

∑
kl

(M̃ikFjl − M̃jkFil)
2 + σ2

2

∑
k

(M̃2
kj + M̃2

ki)− 2δijM̃kiM̃kj

]
∆t, (14)

where M̃ ≡ M̂−1 and the average 〈〉 is over the noise distribution, ∆t is the time interval of the single-step update.

Using the fact that eig(M̂) = [λ1, · · · , λk] [4], and TrM̃ =
∑k
i=1 1/λ2i . We have

〈TrδAδA>〉 =
∑
ij

〈δA2
ij〉 =

1

2
η(k − 1)∆t(σ2

1 + σ2
2)

k∑
i=1

1

λ2i
, (15)

where we have used the fact. We then define the rotational diffusion constant Dϕ by the relation 〈|ϕ(t+∆t)−ϕ(t)|2〉 =
2(k − 1)Dϕ∆t. With Eq.(13) and Eq.(15), we arrive Eq. 5 in the main text.

II. DERIVATION OF THE EFFECTIVE DIFFUSION CONSTANT IN THE RING MODEL

Here, we calculate the diffusion constant in the ring model for a single output neuron, using the MSAD approxi-
mation as before.

We start from the simplest setup for the 1D place cell model: a single place cell which receives input from the
“ring” manifold, i.e., the position is parameterized as x = [cos θ, sin θ]>. The response of the neurons is given by

y(θ) =
1

m+ β
[w1 cos θ + w2 sin θ − αb]+. (16)
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Here and after, we use [x]+ to denote the rectified linear function. We define a steady state where the average update
to the weights is zero. Denoting the stationary state weights as {w∗1 , w∗2 ,m∗, b∗}, this leads to the conditions:

〈w∗1〉 = 〈y(θ) cos θ〉θ, 〈w∗2〉 = 〈y(θ) sin θ〉θ, 〈m∗〉 = 〈y2(θ)〉θ, 〈b∗〉 = α〈y(θ)〉θ, (17)

Where 〈·〉θ means averaging over θ ∈ [−π, π) which is a uniform distribution. These equations can be solved self-
consistently using an ansatz of the form:

yφ(θ) = µ[cos(θ − φ)− cos(ψ)]+, θ ∈ [−π, π] (18)

where ψ determines the “width” of the RF, and µ(1 − cosψ) is the peak amplitude and φ is the centroid of the
receptive field. Plugging (18) into (16) and (17), we find that

〈w∗1〉 =
µ

4π
(2ψ − sin 2ψ) cosφ, (19)

〈w∗2〉 =
µ

4π
(2ψ − sin 2ψ) sinφ, (20)

〈m∗〉 =
µ2

4π
(4ψ + 2ψ cos 2ψ − 3 sin 2ψ), (21)

〈b∗〉 =
αµ

π
(sinψ − ψ cosψ). (22)

(16) can be rewritten as

y(θ) =

√
w2

1 + w2
2

m+ β
[

w1√
w2

1 + w2
2

cos θ +
w2√

w2
1 + w2

2

sin θ − αb√
w2

1 + w2
2

]+ (23)

Compared with (18), we have

µ =

√
w∗21 + w∗22
m∗ + β

, αb∗ =
√
w∗21 + w∗22 cosψ. (24)

Combining (19)-(22) and (24), we get the dependence of µ and ψ on α, β, given parametrically by

µ2 =
2ψ − sin 2ψ − 4βπ

4ψ + 2ψ cos 2ψ − 3 sin 2ψ
, α2 =

cosψ(2ψ − sin 2ψ)

4(sinψ − ψ cosψ)
. (25)

Next, we proceed to estimate the drift due to noisy synaptic updates. From (23), we have

w∗1 cosφ+ w∗2 sinφ =
√
w∗21 + w∗22 =

µ

4π
(2ψ − sin 2ψ) ≡ µ̂, (26)

where we have defined µ̂ to simplify the following notations. Using the fact that dy(θ)/dθ = 0 at θ = φ, we have
tan(φ) = w∗2/w

∗
1 and

dφ

dt
=

1

µ̂

(
dw2

dt
cosφ− dw1

dt
sinφ

)
. (27)

We are interested in how the centroid of the RF changes when a perturbation is added to the stationary weight
vector

∆φ =
1

µ̂
(∆w2 cosφ−∆w1 sinφ), (28)

∆w1 = η(y(θ) cos θ − w∗1) + ξ1, (29)

∆w2 = η(y(θ) sin θ − w∗2) + ξ2. (30)

The Gaussian white noise terms have the following property: 〈ξ1〉 = 〈ξ2〉 = 0, 〈ξ21〉 = 〈ξ22〉 = ησ2∆t with ∆t as the
time interval between two adjacent update events. From (26), we have w∗1 = µ̂ cosφ,w∗2 = µ̂ sinφ. Then ∆φ can be
written as

∆φ =
1

µ̂
(ηµ[cos(θ − φ)− cosψ]+ sin θ cosφ− ηµ[cos(θ − φ)− cosψ]+ cos θ sinφ+ (w∗1ξ2 − w∗2ξ1))

=
1

µ̂
{ηµ[cos(θ − φ)− cosψ]+ sin(θ − φ) + (ξ2 cosφ− ξ1 sinφ)}

=
1

µ̂
{ht(θ, φ, ψ)− (ξ2 cosφ− ξ1 sinφ)},

(31)
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where we have defined ht(θ, φ, ψ) = ηµ[cos(θ − φ)− cosψ]+. Since in the online learning, θ is sampled randomly, we
can regard ht as a stochastic process. Averaging over θ, we have

〈(∆φ)2〉 =
µ2

µ̂2
η2〈([cos(θ − φ)− cosψ]2+ sin2(θ − φ))〉θ +

1

µ̂2
(cos2 φ〈ξ22〉+ sin2 φ〈ξ21〉) = γη2∆t+

ησ2

µ̂2
∆t, (32)

where

γ ≡ µ2

µ̂2

1

2π

∫ π

−π
[cos(θ − φ)− cosψ]2+ sin2(θ − φ)dθ =

π

6

36ψ + 24ψ cos(2ψ)− 28 sin(2ψ)− sin(4ψ)

(2ψ − sin(2ψ))2
(33)

Using the relation 〈(∆φ)2(∆t)〉 = 2D∆t, we have

D ≈ γη2 +
ησ2

µ̂2
, (34)

where we use ≈ because we calculate single-step MSAD.
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FIG. S1. (A) The relative change of Frobenus norm of the similarity matrix at time t compared with time point 0 in the PSP
task. (B) Ensemble of output Y ≡ [y1, · · · ,y1] at two time points. The data clouds have ellipsoid shape. Related to figure 2
in the main text. Parameters are the same as in figure 2 of the main text.
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FIG. S2. Drift of 2D place cells in the model. (A) Representational similarity is preserved despite the continuous drift of
place cell RFs. Positions on the plane are represented by an index from 1 to 1024. (B) The RFs are intermittent. The peak
amplitude of an example place field has active and silent bouts. (C) The interval of silent bouts follow exponential distribution.
(D) At population level, there is a constant fraction of active RFs over time. (E) Dependence of effective diffusion constant on
the total number output neurons. (F,G) Place cells that have stronger place fields tend to be active more often (F) and also
more stable as quantified by smaller diffusion constant (G). Parameters used are the same as Figure 5 in the main text.
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representations in three different networks. (A) Upper: the Hebbian/anti-Hebbian network for PSP. Lower: the evolution of
the three components of a representation yt. (B) Upper: The network differs from Hebbian/anti-hebbain network only in the
lateral matrix M which break the rotational symmetry of PSP solution. The learning rule is the same. Lower: the learned
representation only fluctuates around a equilibrium. (C) A single feedforward network that perform online principle component
analysis with Sanger’s rule [6]. This network has only feedforward input matrix W and the learning rule is nonlocal. Lower:
learned representation is relatively stable in the presence of noise. Parameters are the same as in the figure 2 of main text
except that η = 0.01.
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