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Abstract 

The head direction (HD) system is classically modeled as a ring attractor network1,2 which ensures a 

stable representation of the animal’s head direction. This unidimensional description popularized the 

view of the HD system as the brain’s internal compass3,4. However, unlike a globally consistent 

magnetic compass, the orientation of the HD system is dynamic, depends on local cues and exhibits 

remapping across familiar environments5. Such a system requires mechanisms to remember and align 

to familiar landmarks, which may not be well described within the classic 1-dimensional framework. 

To search for these mechanisms, we performed large population recordings of mouse thalamic HD cells 

using calcium imaging, during controlled manipulations of a visual landmark in a familiar environment. 

First, we find that realignment of the system was associated with a continuous rotation of the HD 

network representation. The speed and angular distance of this rotation was predicted by a 2nd dimension 

to the ring attractor which we refer to as network gain, i.e. the instantaneous population firing rate. 

Moreover, the 360-degree azimuthal profile of network gain, during darkness, maintained a ‘memory 

trace’ of a previously displayed visual landmark. In a 2nd experiment, brief presentations of a rotated 

landmark revealed an attraction of the network back to its initial orientation, suggesting a time-

dependent mechanism underlying the formation of these network gain memory traces. Finally, in a 3rd 

experiment, continuous rotation of a visual landmark induced a similar rotation of the HD representation 

which persisted following removal of the landmark, demonstrating that HD network orientation is 

subject to experience-dependent recalibration. Together, these results provide new mechanistic insights 

into how the neural compass flexibly adapts to environmental cues to maintain a reliable representation 

of the head direction. 
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Main Text      

The head direction (HD) system is commonly referred to as a neural compass, supporting a navigator’s 

sense of direction3,4,6-9. However, unlike a traditional compass, the orientation of the HD system is not 

globally consistent, but is instead anchored to local environmental cues10-12. While updating the internal 

HD representation requires integration of information from multiple streams (i.e., vestibular, motor, 

visual, etc...)3,13-17, manipulations of visual cues alone are sufficient to reorient this representation18-22. 

Thus, visual input often exerts a dominant influence on the HD network alignment, likely through a 

continuous feedback correction that calibrates the integration of angular movements and prevents the 

internal HD representation from drifting23. The interactions between the visual input and HD neurons 

are not fully understood, however, computational models of the HD network suggest that plasticity 

mediates the integration of visual information within the network23-26, which was experimentally 

confirmed, in fruit flies27-29. While these studies focus on the role of plasticity in the stabilization of the 

HD system, during navigation, when visual information is available, we do not know whether plastic 

effects could persist once the visual input is removed and whether they participate in stabilizing the 

internal HD estimation during darkness. Here, we characterize the thalamic HD network response to 

various visual manipulations in freely behaving mice, yielding novel insights into the dynamic 

mechanisms underlying anchoring and calibration of this representation, in light and dark conditions.  

Characterizing the HD network via calcium imaging 

We obtained simultaneous recordings of up to 255 anterodorsal thalamic (ADN) cells simultaneously 

via a miniaturized head-mounted endoscope30-32 as mice freely explored a small elevated circular 

platform inside a larger enclosed chamber (Fig. 1a-g, Extended Data Fig. 1, Methods). This chamber 

was composed of a fully-encompassing 360° circular LED screen covered by a black plastic dome with 

a central oculus for behavioral camera access (Fig. 1a). During habituation and baseline recordings at 

the start of each session, we displayed a polarizing vertical white stripe. All subsequent testing involved 

the manipulation of this visual cue.  

Calcium imaging data were motion-corrected and fluorescent transients of putative cells and 

spiking activity was inferred from extracted transients33,34 (Extended Data Fig. 2a). Baseline recordings  
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Figure 1: Population recordings in mouse ADN. a. Schematic showing recording environment with 360° 

LED screen. b. GCaMP6f expression in the ADN. c. Example tuning curves of ADN cells in polar 

coordinates. Red lines and numbers show the Mean Resultant Vectors (MRV) and preferred firing direction 

(PFD), respectively. R: Correlation coefficient. d. Field of view (FOV) of the ADN showing PFDs of each 

cell. e. Distribution of ADN cells recorded across mice (n = 3) and sessions (n = 99). Red line indicates 

median. Values above boxplots indicate percentage of HD cells (Green) among all recorded ADN cells 

(Blue) shown as ‘mean ± STD’. f. Example distribution of correlation coefficients of ADN cells. Dashed 

yellow line represents the HD-neuron detection threshold (Shuffled control: p < 0.05). Data shown from 

three baseline recording sessions of 10 minutes each (one per mouse). g. HD population coverage of the 

azimuthal plane from one recording session. h. Projection of high dimensional neural data onto a 2D polar 

plane using a feedforward neural network, during a baseline recording. i. Decoding head-direction from 

neural activity using the ZIG model. Top: Log-likelihood distribution across time. Bottom: measured HD 

(blue) and decoded HD (red) using maximum likelihood. j. Distribution of absolute residual error across 42 

baseline epochs of three minutes each. MAE: median absolute error.  

 

revealed that simultaneously recorded HD cells exhibited preferred firing directions (PFDs) which tiled 

the full 360° of the horizontal plane (Fig. 1g, Extended Data Fig. 1c). Consistent with prior in vivo 

electrophysiological studies, the majority of ADN neurons were tuned to specific azimuthal head 

directions3,35,36 albeit with higher proportions (Fig. 1c-g, Extended Data Fig. 1), tuning was stable in the  
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presence of visual cues36 (Extended Data Fig. 1), HD cells exhibited anticipatory firing37 (Extended 

Data Fig. 3a), and unlike the HD system in central complex of drosophila38 we did not observe 

topographic organization of HD cells by PFD (Fig. 1d, Extended Data Fig. 1b). 

To infer the internal representation of HD from the activity of the HD-cell population (referred 

to, here, as the internal HD), we trained a zero-inflated-Gamma (ZIG) Bayesian decoder39 to estimate 

the animal’s HD on the basis of the baseline training data from each session (Fig. 1i). This decoder 

accurately recovered the mouse’s HD in stable experimental conditions (median absolute error on test 

data = 5.96°; Fig. 1i, j) and establish that this approach is well-suited to analyze the HD network from 

a large population perspective. 

To visualize a 2nd dimension of the representational space of the head direction network, we 

developed a method to project our HD population data into a 2-dimensional polar state-space (Methods). 

By imposing circularity on the first dimension, the second dimension captures variability in the neural 

data that cannot be explained by head direction. When applied to the baseline data, we obtain a ring-

like structure (Fig. 1h), reminiscent of both attractor HD network models and prior analyses1,40,41.  

 

Network gain covaries with resetting dynamics during cue manipulation 

From a theoretical standpoint, allowing states to occupy varying radii, in latent space, is akin to allowing 

the HD system to transition between energy states, assuming that the radius is a certain reflection of 

global activity in the network. We hypothesized that, when the same external inputs are applied to rotate 

the network, state transitions would be fastest at the lower end of the radial component because of the 

decreasing distance between states representing different angles, near the center of the baseline ring. 

Modulation of the state radius might thus provide the HD system with an efficient mechanism to rapidly 

reorient. To test this hypothesis, we first examined network responses to instantaneous cue removal and 

reappearance in new positions after darkness. Following a baseline recording, the cue was removed for 

two minutes (darkness) after which it reappeared at a 90° shifted position for two minutes. This 

sequence resulted in network drift during darkness and ‘reset’ events when the system reoriented to the 

visual cue. We repeated this sequence four times per recording session (Fig. 2a). 
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Figure 2: Network gain covaries with resetting dynamics. a. Mean population drift (from baseline cue 

condition) during the two-minute cue-shift experiment (n = 42 sessions). b. Examples of fast (top row) and 

slow (bottom row) resets. Horizontal solid line is the cue location. Drift values are relative to the drift angle 

at the moment of cue onset. c. Example projection of population activity onto a low dimensional 2D polar 

plane to highlight structural differences between baseline (left) and the entire session (right). d. State radius 

versus population activity. Left: same as in (d) however state points are color coded according to their radius. 

Right: Reconstructed mean bump of activity in egocentric reference frame across radius ranges. e. 

Relationship between network gain and state radius. The R-squared value corresponds to a linear regression 

model fit. Error bars indicate mean and STD. f. Triggered average of network gain (n= 168 = 4x42 cue 

events). Dotted red line indicates moment of cue-display. g. Mean drifts for fast (light blue; n = 22 resets) 

and slow (dark blue; n = 20 resets) resets. Dotted red line indicates moment of cue-display. While the two 

groups have similar ranges (Wilcoxon rank sum test: p = 0.4131, Z = 0.82), their speeds are different 

(Wilcoxon rank sum test: p = 1.0982e-6, Z = 4.87; 150 frames (~5s) post-cue). h. Network gains for the fast 

and slow reset-groups have similar amplitudes prior to cue-display (Wilcoxon rank sum test: p = 0.6234,  

Z = 0.49; 50 frames (~1.67s) pre-cue), yet they contrast significantly after cue-display (Wilcoxon rank sum 

test: p = 0.0085, Z = 2.63, RS = 535; 150 frames (~5s) post-cue). i. Relationship between gain and reset 

speed. Error bars indicate mean and SEM. j. Model simulation of the bump of activity during resets, showing 

gain control of reset speed. The gain remains constant (indicated value) after cue-display (dasher red line) 

for the rest of the simulation. Solid white line indicates relative cue location. k. Examples showing model-

based prediction of reset (red) and true reset (blue). Dashed black line indicates moment of cue-display. 

Yellow line indicates cue location relative to drift at cue-display (71.43% classification accuracy). Time-

dependent signals, in a, f, g and h are shown as mean (solid line) and SEM (shaded area) and bar graphs 

indicate mean and SEM 
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 To characterize these network dynamics, we defined drift as the amount of mismatch between 

the measured HD and the decoded HD (Methods). Tracking this signal over the entire recording session, 

we find jumps following cue reappearance, which we will refer to as ‘resets’ (Fig. 2a). Notably, resetting 

events were not homogeneous: they occurred across a wide range of angles and at different speeds (Fig. 

2b). 

 Cue manipulation also induced marked changes in the overall network activity, which coincided 

with changes in the radius of the latent space (Fig. 2c, d). To quantify this relationship, we computed 

the amount of population activity at each point in time relative to baseline, a measure we refer to as the 

network gain. State-space radius was highly correlated with network gain (Fig. 2d, e), indicating that 

gain can be used as an accessible and interpretable measure of the radial component. To better 

understand the relationship between resetting events and network gain, we first analyzed the 90°-

centered reset range (i.e. [70:110]°-range). We found that the speed of rotation, or ‘reset speed’, was 

anticorrelated with network gain, consistent with our predictions (Fig. 2i). Grouping resetting events by 

their speed in the first five seconds post cue reappearance (Fig. 2g; Methods) revealed that fast resets 

were associated with a substantial reduction in gain, while slow resets exhibited a significantly smaller 

reduction in gain (Fig. 2h, Extended Data Fig. 4a). In all cases, resets took the form of a continuous 

rotation of the HD network from an initial orientation to the reset direction, passing by all intermediate 

angles with no visible appearance of secondary bumps in the population activity (Extended Data Fig. 

5). This reset was surprisingly much slower than what has previously been estimated21, potentially due 

to differences in animal behavior, habituation to the environment and the circularly symmetric geometry 

of the experimental setup . Notably, an attractor network model that included gain modulation replicated 

these dynamics and reached 71.43% accuracy in classifying fast versus slow reset events from real data 

(Fig. 2j, k, Extended Data Fig. 6; Supplementary Material, Attractor Network Model). 

 Behavioral differences before and after cue onset were not significant and could not explain the 

sharp decrease in gain amplitudes (Extended Data Fig. 7a). However, reduced activity, as measured by 

the absolute head angular velocity, immediately preceding cue events, was predictive of fast resets, and 

vice versa (Extended Data Fig. 7b, c).      
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Resetting events also varied in the angular difference between their initial and stabilizing 

orientations. We grouped resets by the distance between pre-cue drift and its value after stabilization 

following cue reappearance (Extended Data Figs. 4b, 8a). We found that network gain was also 

anticorrelated with reset-range. As the amount of angular correction needed to realign the internal 

representation with the visual reference frame increased, the gain gradually dropped right after cue 

display (Extended Data Fig. 8b, c). This relationship was independent of reset speed (Extended Data 

Fig. 8a) which indicates that the network gain may also be modulated by the estimated degree of error 

between the internal representation and the changing location of the visual cue. 

 We also note that we detected a rapid spike in gain at cue-onset which was largest in short-

range resets (Extended Data Fig. 9), which may reflect visual inputs to the system, but detailed 

investigation into this finding was limited by the temporal resolution of calcium imaging.  

 

Network gain maintains a trace of the visual cue during darkness 

Prior work has demonstrated that the HD network drifts in the absence of polarizing visual cues5,10,42. 

In dark conditions, drifts increase with time and complexity of outward trajectories in a path integration 

task43. First, we replicated the classic result of increased drift during darkness. During all four darkness 

epochs (D1 to D4, respectively), we observed an increase in the variability of drift relative to baseline 

(Fig. 3a, b, Extended Data Fig. 10a). This increase in drift coincided with an abrupt drop in network 

gain upon cue removal which persisted for the duration of the darkness epoch (Fig. 3c). Surprisingly, 

changes in network gain were highly dependent on the internal HD. When the internal HD pointed 

toward the internal location of the visual cue (0°), the reduction in gain was minimal; deviations from 

this direction resulted in more pronounced gain decreases (Fig. 3d, e). In other words, the HD neurons 

that fired when the animal was facing the cue during baseline have higher average firing rates during 

darkness, following a reset. This pattern of gain tuning persists across all darkness periods, however, 

the contrast between peak and trough became larger with time (Extended Data Fig. 11). The animals’ 

behavior did not seem to affect this gain profile in any meaningful way other than the amplitude 

modulation causing the gain to increase with the absolute head angular-velocity (AV) (Fig. 3e, Extended 

Data Fig. 12), consistent with previous observations38,44. Furthermore, network gain fluctuations did not 
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Figure 3: The network gain maintains a trace of the visual cue in darkness. a. All drift signals (light 

blue) across darkness periods D1 (n = 42), D2 (n = 35), D3 (n = 33) and D4 (n = 35), respectively. Black 

lines are mean drifts. For D2, D3 and D4, only darkness epochs that follow a correct reset are considered. b. 

Drift variability increases with time during dark sessions compared with baseline (baseline n = 42, darkness 

n = 145; Wilcoxon rank sum test: p = 7.5211e-23, Z = 9.84). c. Triggered-average of network gain shows an 

abrupt drop at the transition between cue-on and cue-off epochs, marked by the dotted red line (Wilcoxon 

rank sum test: p = 9.0165e-12, Z = 6.81, RS = 27362; comparison between means over 40 sec-pre and 40 

sec-post cue-removal). d. Network gain tuning curves during BL (light blue) and darkness (dark blue). The 

internal HD is relative to the baseline cue location (dashed yellow line). The gain remains flat during baseline 

however, it peaks around the internal cue location ([-90:90]°) and drops sharply away from it  

([-180:-90]U[90:180]°), in darkness (Wilcoxon rank sum test: p = 5.8683e-7, Z = 5.00). e. Network gain 

heatmap. Note the increase in amplitude and width of the gain tuning curve at larger head angular velocity 

(HAV). All CW sessions have been reflected across the x-axis and transformed into CCW ones. Signals in 

c and d are shown as mean (solid line) and SEM (shaded area) and bar graphs indicate mean and SEM 

 

correlate with any measurable distortion to the drift-speed landscape within the same state-space (Head 

AV vs Internal HD) (Extended Data Fig. 12b), which maintained similar patterns to baseline (Extended 

Data Fig. 3b). This observation draws a clear distinction from the rapid representational shifts seen 

during resets and may point to a completely different mechanism linking network gain and drifts, in 

dark conditions. One interpretation of these results is that the HD network keeps a ‘memory trace’ of 

the visual input even after it is removed which might be used as an internal reference to guide behavior,  
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during darkness. To our knowledge, this is the first evidence of such long-term experience-dependent 

preferential firing in the thalamic HD cells.  

  Although darkness induced an increase in drift during all four epochs, each epoch exhibited a 

different stereotyped pattern of drifts (Extended Data Fig. 10a, b). During D1, the HD representation 

became less stable than baseline. The drift trajectories fluctuated around the baseline orientation with 

no directional bias. Conversely, drift trajectories in D2, D3 and D4 exhibited substantial directional 

biases − albeit at relatively slow rates when compared to resets − dependent on the baseline orientation 

and prior cue locations. Specifically, during D2, drift tended to diverge from its reset orientation toward 

its baseline orientation, counter to the rotation implied by the previous cue shift. During D3 and D4, 

drift also tended to rotate toward the baseline orientation but consistent with the direction implied by 

the prior cue shifts. In comparison with D2, drifts were faster during D4 despite both conditions being 

preceded by symmetric cue rotations relative to baseline. These observations indicate that, during 

darkness following a reset (D2 to D4), the HD representation within the changing allocentric reference 

frame is less stable than baseline darkness (D1). Moreover, the persistent rotation of the reference frame, 

in one direction, appeared to bias drift in that direction (Extended Data Fig. 10c). Together, these results 

suggest that both the stable allocentric reference frame and the dynamic visual cue reference frame exert 

a persistent influence on the network orientation even after the visual cue is removed, possibly mediated 

by the dynamics of the network gain profile. 

 

Reference frame attraction in the HD network is time-dependent: 

Our results indicate that presentation of a rotated visual cue for two minutes was sufficient to cause a 

representational shift and override the influence of any available unaltered non-visual information (e.g. 

local olfactory cues, self-motion cues, etc). Yet, we observed a tendency of the network to rotate towards 

the initial baseline cue configuration, or revert, during darkness. To explore this and to better examine 

the potential influence of non-visual information linked to baseline representation, we performed an 

experiment in which we limited the display of the rotated visual cue to 20 seconds (alternating +/-90° 

from baseline, Fig. 4a). As in the prior experiment, these shortened cue events elicited resets followed 

by reversion towards baseline during darkness (Fig. 4b, c). However, in comparison with the second  
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Figure 4: Attraction of internal representation to baseline reference frame is time dependent. a. 

Average population drift (from baseline) during the 20-second cue-shift experiment (n = 18 sessions). 

Darkness periods highlighted in grey. b. Individual drift signals following resets (light blue; n = 58) across 

darkness periods D2 to D6. Black line shows mean drift. Drifts following a -90° reset were reflected across 

the 0° axis. c. Mean drift signal during darkness in the 20s-cue-exposure experiment (dark blue) and in D2 

of the 2m-cue-exposure experiment (grey). Mean drift-speed within the first 30s shows a strong reversion to 

baseline following a 20s cue-exposure (Wilcoxon rank sum test: p = 1.4264e-5, Z = 4.34). d. Left: Drift 

vector-field. Arrows point to the direction of mean drift-speed and mean drift-acceleration (n = 58). Arrows’ 

lengths were scaled down for illustration purposes. Right: Simulated streamlines over 1000 timesteps. The 

stable regime is highlighted in red. e. Network gain heatmaps. Left: 20s-cue-exposure experiment. data 

represents instances of reversion to baseline (n = 43). Right: D2 of the 2m-cue-exposure experiment  

(n = 35). f. Left: Gain difference (same data as in E) showing the appearance of new bumps at the locations 

of cue-shifts (±90°). Right: p-value matrix for data in left (Wilcoxon rank sum test; pixels where p>0.001 

and/or gain(20s) < gain(D2) were marked as NaN). Time-dependent signals, in a and c, are shown as mean 

(solid line) and SEM (shaded area) and bar graph, in c, indicates mean and SEM 

 

darkness epoch (D2) of the previous experiment - which was similarly preceded by a ±90° rotated cue 

event relative to baseline - we observed that reversion was much stronger following the 20s-visual-cue 

presentation (Fig. 4c). Vector field analysis was used to draw the dynamical landscape of the ‘drift-

speed versus drift-angle’ state space, from observations (Methods). This allowed us to simulate drifts 

at various initial conditions which resulted in their convergence near baseline orientation, thus revealing 

the strong attraction of the baseline configuration (Fig. 4d). These results indicate that the internal 

representation of the baseline allocentric reference frame is not entirely lost after a reset and can still 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.30.458266doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.30.458266
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

influence the HD network, in darkness, depending on the duration of experience within the competing 

reset reference frame context, which implicates plastic processes at play at some stage in this network.  

Next, we examined whether there was competition between reference frames, and how this 

would impact the network gain and drift dynamics. We began by characterizing gain as a function of 

internal HD and angular velocity. Whereas the gain profile during D2 exhibited a single peak around 

0° in the internal HD (corresponding to the shifted cue orientation after reset), the gain profile during 

darkness following the 20s cue events exhibited additional peaks at ±90° (Fig. 4e, f). Notably, these 

peaks match the alternating ±90° cue structure of the experimental design, suggesting that gain profile 

differences reflected the experience with prior visual cues. In addition to the network gain profile, the 

drift pattern also showed systematic differences as a function of angular velocity and internal head 

direction between D2 and the darkness following 20s visual-cue display (Extended Data Figs. 13, 14). 

No obvious relationship between drift patterns and network gain profile could be determined, unlike 

what we observed during reset events, indicating that the relationship between gain and network state 

updating depends on the particular external input and/or current regime of the network.  

 

Dynamic visual cue updating induces a dynamic bias in the HD network 

In the 2-minute experiment, visual information provided a dominant polarizing cue to reset the head-

direction system. In some cases, resets were slow (>30 seconds) indicating that non-visual information 

competed with visual information to stabilize the network. In addition, the 20s experiment gave us 

further evidence that the baseline reference frame maintains a persistent influence on the HD network 

even after a cue-shift-induced reset. To better understand the dynamics of this competition, we tested 

whether visual information could drive resetting when in continuous conflict with all non-visual 

information, including self-motion cues, we recorded head direction cell populations during 

presentation of a slowly rotating visual cue (1.5 or 3.0°/s) for seven minutes (Fig. 5a, b). In all cases, 

and for both speeds, the head direction network was continuously updated by the rotating visual cue 

(Fig 5a-c) showing the dominant effect the visual input has over all other inputs in controlling the HD 

system. Unexpectedly, we found that, during darkness following the cue rotation, the HD network 

continued to rotate in the same direction and at a similar speed (Fig. 5a, b, d, Extended Data Figure 15),  
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Figure 5: Optic flow calibrates head direction integration. a. Example population drift (from baseline) 

during fast cue-rotation (3°/s) experiment which exhibits persistent drift bias after cue removal (notice the 

remapping, at the end). Low-pass filtered (solid red) and unfiltered (dotted blue) drift signals are plotted on 

top of each other. Lower panel: Cue location (dashed yellow) and measured HD (solid black) relative to 

baseline cue-location. Darkness periods highlighted in grey. b. Example fast cue-rotation session showing 

stabilization of the internal representation with an overshoot past the baseline configuration. c. Mean drift-

speed during cue-rotation for fast (light blue) and slow (dark blue) sessions. Error bars indicate across-

session mean and STD. Top left insert: Comparison of drift speed STDs between fast and slow sessions 

(Wilcoxon rank sum test: p = 0.5262, Z = 0.63). Bottom right insert: Residual error between drift speed and 

actual cue angular-velocity. d. Left: Mean drift signal for fast (light blue; n = 19) and slow (dark blue;  

n = 25) sessions. Dotted lines correspond to the natural progression of the drift signal if the speed of drift 

matched the speed of the cue-rotation. Values are shown as mean (solid line) and SEM (shaded area). Right: 

Drift-speed comparison between fast and slow sessions within the first minute following cue-removal 

(Wilcoxon rank sum test: p=0.0393, Z=2.06,). Analysis was limited to the first 2 minutes because it includes 

sessions with 2-5 minutes of darkness post cue-rotation. e. Left: Drift vector-field. Arrows point to the 

direction of mean drift-speed and mean drift-acceleration (n = 60 sessions). Arrow lengths were scaled down 

for illustration purposes. Right: Simulated streamlines over 1000 timesteps. The stable regime is highlighted 
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in red. In a, b, c and d, fast sessions where the drift angle, at the beginning of the 2nd darkness, is within  

[-180:-145]U[145:180]° were considered, while slow sessions where the drift’s initial position, in the 2nd 

darkness, is within [-125:-55]° were included. In e, all sessions were considered regardless of the drift angle 

at the beginning of the 2nd darkness. Bar graph, in c and d, indicates mean and SEM 

 

indicating that the rotating visual cue induced a persistent dynamic bias in the HD network which 

exerted an influence even in the absence of the visual input. This suggests that the visual flow can be 

used by the HD system to recalibrate the integration of angular velocity information (i.e. vestibular  

input) in order to anchor the internal HD representation to a dynamic visual reference frame. Moreover, 

we observed a similar attraction to the baseline internal representation as we saw in the 20s experiment.  

Overall, the system starts to stabilize once the internal HD representation comes close to realign with 

the initial reference frame (Fig. 5d), showing further evidence for the strong influence of the internal 

representation of the baseline reference frame and its potential role as an additional correction 

mechanism within the HD attractor network. 

 

Discussion 

Here we combined calcium imaging of large population recordings of ADN neurons in a visually 

controlled environment to examine how the mammalian HD network updates its representation. We 

show that controlled manipulations of a visual cue induce global fluctuations in network activity, which 

we term network gain. Network gain is not a simple product of ongoing sensory experience, but rather 

dynamically reflects the previous experience of the navigator: a polarizing visual landmark can induce 

lasting distortions in the network gain landscape even after the visual cue is removed. Furthermore, 

network gain is informatively linked to future network dynamics, as the reorientation of the HD 

representation following visual cue shifts can be predicted when network gain is integrated into a 

standard model of this system45. These results show that the network gain landscape can maintain a 

memory trace of a stable reference frame and suggest that this variable may mediate ongoing network 

dynamics. Finally, we show that the persistent influence of visual reference frames extends beyond the 

static gain modulation and can include induction of a persistent rotational bias following continuous 
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rotation of the visual cue. Together, these results yield new insights into the dynamic influence of visual 

reference frames on the mammalian HD system.  

 The network gain drops that we observed during alignment of the HD network (i.e., reset) 

suggest the existence of a feedback control signal from brain regions downstream of ADN providing 

global inhibition to the network. A similar idea has been proposed in a study of the central complex of 

fruit flies29,46.  The origin of such inhibition is yet to be discovered. Modulation of the global neural 

activity might allow the HD system to operate at different energy levels with varying degrees of 

stability, reflecting the level of confidence in the internal HD representation. We hypothesize that the 

animal’s engagement in exploratory behavior together with increased familiarity with the experimental 

environment and the specificity of the environmental geometry cause resistance to HD network 

reorientations imposed by visual cue shifts. This could explain the overall slower resets observed in our 

experiments when compared with previous reset studies21.  

Recent work in fruit flies established a plastic relationship between the visual input and the 

compass neurons27,28, which are equivalent to HD neurons in the rodent brain. Their findings showed 

that the associations between compass neurons and visual scenes are time- and experience-dependent. 

The current work complements the previous studies and provides evidence for a time- and experience-

dependent influence of visual landmarks, in mice. Indeed, the mammalian brain appears to maintain a 

memory of the associations between HD neurons and visual landmarks, in the form of preferential 

firing, long after the said landmarks disappear. We propose that memory traces of salient cues in ADN 

cells help stabilize the HD system during navigation, even in the absence of reliable environmental 

anchors such as in situations requiring path integration43.  

Our results also indicate that memory traces from multiple reference frames can be found in the 

network gain landscape following short exposures to reset-inducing contexts (i.e. 20s cue-shifts). This 

apparent competition between conflicting reference frames results in predictable drifts of the HD 

network representation towards its most stable configuration, defined by the environmental context with 

the longer exposure. This attraction is likely achieved through integration of the unchanged non-visual 

information. We speculate that the underlying mechanisms leading to such behavior involve synaptic 

plasticity and that the 20s cue-events were insufficient to form new associations between HD neurons 
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and the shifted visual reference frame. This may in turn explain the weaker reversions observed when 

the shifted-cue events were extended to two minutes which was long enough to promote new 

associations between the HD neurons and allocentric cues and enable a new stable state for the network, 

though future work is necessary to probe the mechanistic bases of these findings. 

 The fact that the persistent influence of a visual reference frame can act dynamically, as 

demonstrated in our cue rotation experiment, suggests that plasticity also acts at the level of integration 

of vestibular inputs and self-motion cues to allow for experience-dependent recalibration. Our findings 

complement a similar result discovered in place cells23 and support a model of hierarchical transfer of 

information from HD neurons to downstream cells of the navigation system (i.e., place cells, grid ells, 

etc.) in order to maintain consistent and flexible cognitive maps3,29,47,48.  

Use of calcium imaging allowed us to obtain an order of magnitude increase in the number of 

thalamic head direction cells recorded35, ensuring accurate decoding of the animals’ azimuthal plane. 

One limitation of calcium imaging is its relatively slow dynamics, with rise and decay time constants 

of 10’s and 100’s of milliseconds, respectively, in response to neuronal spiking. As such, the firing rates 

of neurons must be inferred, and while our decoding results demonstrate the accuracy of this 

inference33,39, the use of electrophysiology would provide a direct indication of spiking activity. 

Although the development of linear probe technology remains promising49, the yield of neurons within 

small and deep nuclei, such as the ADN, remains a challenge for future development and 

experimentation.  

Ultimately, our findings provide insights into the mechanisms that govern realignment and 

stabilization of the HD network, and how long-term effects of prior experience impact its dynamics. 

Importantly, these findings highlight some of the complexity of the internal HD representation and 

motivate studying this system in a multidimensional framework. The present work shows evidence for 

a functional interpretation of the global fluctuations in network activity (i.e., gain) when treated as a 

separate dimension. Future work, probing the origins of such fluctuations and allowing their 

perturbation will be critical to unveil the complete picture of the intrinsic structure of the HD 

representation. 
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Methods 

Subjects 
12 male wild-type mice (C57Bl/6, Charles River) were used for this study, three of which provided 

enough simultaneously recorded head direction cells for continued experimentation. Mice were housed 

individually on a 12-h light/dark cycle at 22 °C and 40% humidity with food and water ad libitum. All 

experiments were carried out in accordance with McGill University and Douglas Hospital Research 

Centre Animal Use and Care Committee (protocol #2015-7725) and in accordance with Canadian 

Institutes of Health Research guidelines. 

 

Surgeries 
During all surgeries, mice were anesthetized via inhalation of a combination of oxygen and 5% 

Isoflurane before being transferred to the stereotaxic frame (David Kopf Instruments), where anesthesia 

was maintained via inhalation of oxygen and 0.5–2.5% Isoflurane for the duration of the surgery. Body 

temperature was maintained with a heating pad and eyes were hydrated with gel (Optixcare). Carprofen 

(10 ml kg−1) and saline (0.5 ml) were administered subcutaneously, respectively at the beginning and 

end of each surgery. Preparation for recordings involved three surgeries per mouse. First, at the age of 

seven to eight weeks, each mouse was injected with 600 nl of the non-diluted viral vector 

AAV9.syn.GCaMP6f.WPRE.eYFP, sourced from University of Pennsylvania Vector Core. All 

injections were administered via glass pipettes connected to a Nanoject II (Drummond Scientific) 

injector at a flow rate of 23 nl s−1. One week post-injection, a 0.5 mm diameter gradient refractive index 

(GRIN) relay lens (Go!Foton) was implanted above ADN (AP:1.8, ML:0.8, DV:-3). No aspiration was 

required. In addition to the GRIN lens, three stainless steel screws were threaded into the skull to 

stabilize the implant. Dental cement (C&B Metabond) was applied to secure the GRIN lens and anchor 

screws to the skull. A silicone adhesive (Kwik-Sil, World Precision Instruments) was applied to protect 

the top surface of the GRIN lens until the next surgery. Two weeks after lens implantation, an aluminum 

baseplate was affixed via dental cement (C&B Metabond) to the skull of the mouse, which would later 

secure the miniaturized fluorescent endoscope (miniscope) in place during recording. The 

miniscope/baseplate was mounted to a stereotaxic arm for lowering above the implanted GRIN lens 

until the field of view contained visible cell segments and dental cement was applied to affix the 

baseplate to the skull. A polyoxymethylene cap with a metal nut weighing ~3 g was affixed to the 

baseplate when the mice were not being recorded, to protect the baseplate and lens, as well as to simulate 

the weight of the miniscope. After surgery, animals were continuously monitored until they recovered. 

For the initial three days after surgery mice were provided with a soft diet supplemented with Carprofen 

for pain management (MediGel CPF). Screening and habituation to recording in the experimental 

environment began 2-3 days following the baseplate surgery. The first 3-4 weeks of recordings were 

used to confirm quality and reliability of the calcium data while the animal was exploring the 

environment with different screen displays.   

Data acquisition 
In vivo calcium videos were recorded with a miniscope (v1; miniscope.org) containing a monochrome 

CMOS imaging sensor (MT9V032C12STM, ON Semiconductor) connected to a custom data 

acquisition (DAQ) box (miniscope.org) with a lightweight, flexible coaxial cable. The DAQ was 

connected to a PC with a USB 3.0 SuperSpeed cable and controlled with Miniscope custom acquisition 

software (miniscope.org). The outgoing excitation LED was set to 3–6%, depending on the mouse to 

maximize signal quality with the minimum possible excitation light to mitigate the risk of 

photobleaching. Gain was adjusted to match the dynamic range of the recorded video to the fluctuations 

of the calcium signal for each recording to avoid saturation. Behavioral video data were recorded by a 

webcam mounted above the environment. The DAQ simultaneously acquired behavioral and cellular 

imaging streams at 30 Hz as uncompressed avi files and all recorded frames were timestamped for post-

hoc alignment. Two controllable LEDs (green and red) were added and used for tracking such that 

whenever the miniscope was attached to the baseplate, the green LED pointed to the right side of the 

mouse’s head and the red LED pointed to the left side. All other light sources from the miniscope were 
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covered. All recordings took place inside a 360° LED screen (height: 1m, diameter: 90cm; Shenzhen 

Apexls Optoelectronic Co.) at the center of which we placed a wall-less circular platform (diameter: 

20cm) raised 50cm above the ground. Mouse bedding was evenly spread over the platform before each 

recording session. In all recordings, mice were free to move on top of the raised platform. A half 

spherical dome was used to cover the environment and prevent external light from entering, while it 

also held the behavioral camera. The experimental environment was designed to maximize circular 

symmetry, in the absence of any screen display. During habituation, mice were recorded while exposed 

to a single vertical stripe or no visual display (darkness). These recordings were also used to confirm 

the quality of tracking the head-direction and the cue location, in different conditions. In all experiments 

of the present work, the ‘visual cue’ refers to a single white vertical stripe (Width: 15cm; Height: 1m).   

 

Data preprocessing 
Calcium imaging data were preprocessed prior to analyses via a pipeline of open source MATLAB 

(MathWorks; version R2015a) functions to correct for motion artifacts50, segment cells and extract 

transients34,51 and infer the likelihood of spiking events via deconvolution of the transient trace through 

a first-order autoregressive model33. We wrote a Matlab (MathWorks, version 2015a) program to 

perform offline tracking of the LEDs and determine, at each frame, the animal’s head-direction. Another 

custom-written program was used to estimate the location of the visual. Both scripts were incorporated 

into the preprocessing pipeline. 

 

Data analysis 
In this work, neural activity refers to the deconvolved calcium traces as described in (Friedrich et al., 

2017)33 unless specified. The resulting time series (per neuron, per session) correspond to the inferred 

likelihood of spiking events. A moving average filter of width 3 frames (~100ms) is then applied on 

each time series. We refer to the obtained signal as ‘firing rate’.     

  

Identification of HD cells 
For every identified cell segment (ROI), we construct a HD tuning curve by measuring the occupancy-

normalized firing rate within each angle bin (1°/bin) of the horizontal plane (x-axis). The tuning curve 

is circularly smoothed with a moving average filter of width 50°. This allows us to have a better estimate 

of the angle bin that corresponds to the maximum firing rate of a given neuron’s tuning curve, which 

we will refer to as the preferred firing direction (PFD). Next, we construct a stimulus signal for that 

specific PFD by convolving the measured HD signal (from the behavioral camera) with a narrow 

Gaussian kernel (mean=PFD, std=17°) such that for every neuron 𝑖: 

𝑠𝑡𝑖𝑚𝑖(𝑡) = 𝑒
−
(𝑎𝑛𝑔𝑑𝑖𝑓𝑓(𝑃𝐹𝐷𝑖,𝜃𝐻𝐷(𝑡)))

2

2𝜎2  

Where, 𝜃𝐻𝐷 is the measured HD time series, 𝜎 is the standard deviation of the Gaussian kernel and, 

𝑎𝑛𝑔𝑑𝑖𝑓𝑓(𝑎, 𝑏) is a Matlab function that gives the subtraction of 𝑎 from 𝑏, wrapped on the [−𝜋, 𝜋] 

interval. We correlate the stimulus signal with a normalized version of the firing rate to obtain the 

Pearson correlation coefficient ‘𝑟’ of each neuron. To determine the threshold value of 𝑟 above which 

a cell can be identified as a HD neuron, we used data from 10 baseline recordings (3 minutes) per 

animal, randomly selected from the reset experiment. We start with a relatively high value 𝑟𝑡ℎ𝑟𝑒𝑠ℎ and 

select all neurons such that 𝑟 > 𝑟𝑡ℎ𝑟𝑒𝑠ℎ. For each neuron, we produce 1000 shuffles of the firing rate 

using Matlab’s 𝑐𝑖𝑟𝑐𝑠ℎ𝑖𝑓𝑡 function (to preserve the temporal correlation of the firing rate signal), at 

random shifts. We then correlate each shuffled version with the stimulus signal of the corresponding 

neuron in order to obtain a distribution of correlation coefficients (3 separate distributions, 1 per mouse). 

We define 𝑟𝑚
95𝑡ℎ as the value that corresponds to the 95th percentiles of the distribution, for mouse ‘m’. 

If 𝑟𝑡ℎ𝑟𝑒𝑠ℎ > 𝑟𝑚
95𝑡ℎ, we keep iterating the same procedure while decreasing 𝑟𝑡ℎ𝑟𝑒𝑠ℎ by 0.01 until 

convergence (i.e. 𝑟𝑡ℎ𝑟𝑒𝑠ℎ ≃ 𝑟𝑚
95𝑡ℎ) which constitutes the correlation coefficient threshold to identify HD 

neurons for mouse ‘m’ (see Extended Data Fig. 2 for illustration of the results).   

  

HD decoding from neural data 
We trained a recently developed Bayesian decoder39 to decode the HD direction from the deconvolved 

calcium responses of the imaged neural population. Noise independence across neurons was assumed. 
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Conceptually this decoder is similar to Bayesian decoding method for spike trains as commonly used 

in the literature52, except that we used zero-inflated-Gamma (ZIG) distribution to model the 

stochasticity of the deconvolved calcium responses, instead of Poisson distribution.  Our previous 

results showed that the ZIG model could better capture the noise of the calcium signal and provide 

better decoding results compared to the Poisson noise model and a few other alternatives. Details of this 

procedure can be found in Section 4 of Wei et al. NBDT39. Here we smoothed the log-likelihood matrix 

(rows: angle bins, columns: frames) by iteratively summing the likelihoods over 5 frames (~166.7ms) 

centered around the corresponding timestep of each iteration, for each angle bin. 

  

Analysis of drift 
We define drift as the difference between the measured head-direction (𝜃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) and the decoded 

head-direction (𝜃𝑑𝑒𝑐𝑜𝑑𝑒𝑑): 

𝐷𝑟𝑖𝑓𝑡(𝑡) = 𝑎𝑛𝑔𝑑𝑖𝑓𝑓(𝜃𝑑𝑒𝑐𝑜𝑑𝑒𝑑 , 𝜃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) 
In all analyses involving drift calculation, both measured and decoded HDs were smoothed with a 

moving average filter of width 20 frames (~667ms). For the analysis of drift during darkness (except 

for heatmaps), further smoothing was applied to extract the low-frequency component of the signal 

whereby a moving average filter of width 300 frames (~10s) was used. In all cases, a simple linear 

regression was performed on the unwrapped drift signal over a sliding window of 20 frames (~667ms) 

to estimate the drift speed at the center of the regression window (i.e. slope of the fitted line).  

 

Separation of fast and slow resets 
Classification of resets within the [70: 110]° range was done using Matlab’s k-means clustering function 

over the first 1450 frames following cue display. The algorithm separates between two clusters by 

generating 50 replicates with different initial cluster centroid positions for each replicate and then 

calculating the sums of point-to-centroid distances for each cluster using ‘cityblock’ as a distance 

metric.     

  

Reconstruction of the bump of activity 
At any given time, we can reconstruct the bump of activity from the firing rates of each neuron and 

their respective tuning curves using a normalized weighted sum of tuning curves53: 

𝐴(𝜃, 𝑡) =
∑ 𝑓𝑖(𝜃)𝑟𝑖(𝑡)𝑖

∑ 𝑓𝑖(𝜃)𝑖
 

Where, A is a 360xT matrix (each row is a 1°-bin of the horizontal plane and each column is a frame 

within range T of the analysis), 𝑓𝑖 is the tuning curve of neuron 𝑖 and, 𝑟𝑖 is the instantaneous firing rate 

of neuron 𝑖.   
  

Calculation of network gain 
We assume that, at any given time, the thalamic HD network is subject to a global gain modulation of 

the firing rates, applied homogeneously on all ADN neurons such that: 

𝑟𝑖,𝑡 = 𝛼𝑡𝑓𝑖(𝜃𝑡) + 𝜀, 𝜀~𝒩(0, 𝜎2) 
Where: 

𝑟𝑖,𝑡: instantaneous firing rate of ADN neuron 𝑖 
𝛼𝑡: instantaneous gain factor 

 𝑓𝑖: tuning curve of ADN neuron 𝑖(determined from baseline) 

𝜃𝑡: Decoded head-direction (from neural activity), at time 𝑡  
𝜀: Additive white Gaussian noise with standard deviation 𝜎. 

  

Our goal is to estimate at any given time 𝑡, the value of 𝛼𝑡using maximum likelihood estimation (MLE) 

approach. 

 

Given the decoded head-direction, at time 𝑡, 𝜃𝑡as well as the tuning curves 𝑓𝑖for all ADN neurons, we 

obtain the likelihood of observing 𝑟𝑖,𝑡with parameter 𝛼𝑡: 

𝑃(𝑟𝑖,𝑡|𝑓𝑖(𝜃𝑡); 𝛼𝑡) = 𝒩(𝛼𝑡𝑓𝑖(𝜃𝑡), 𝜎
2)   
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We define the vectors:   

𝑅𝑡 = [

𝑟1,𝑡
𝑟2,𝑡
⋮
𝑟𝑁,𝑡

], 𝐹(𝜃𝑡) = [

𝑓1(𝜃𝑡)
𝑓2(𝜃𝑡)
⋮

𝑓𝑁(𝜃𝑡)

]  

Where, 𝑁is the number of ADN neurons, in the network. 

Assuming independent activity between said neurons, we can calculate the likelihood of observing 𝑅𝑡: 
𝑃(𝑅𝑡|𝐹(𝜃𝑡); 𝛼𝑡) = ∏ 𝑃(𝑟𝑖,𝑡|𝑓𝑖(𝜃𝑡); 𝛼𝑡)𝑖   

                               ∝ ∏ exp(
(𝑟𝑖,𝑡−𝛼𝑡𝑓𝑖(𝜃𝑡))

2

−2𝜎2
)𝑖   

We apply the logarithm on both sides: 

log(𝑃(𝑅𝑡|𝐹(𝜃𝑡); 𝛼𝑡)) ∝ −
1

2
∑

(𝑟𝑖,𝑡−𝛼𝑡𝑓𝑖(𝜃𝑡))
2

𝜎2𝑖   

Our objective is to determine the parameter �̂�𝑡that maximizes the log-likelihood such that: 

�̂�𝑡 = argmax
𝛼𝑡

log(𝑃(𝑅𝑡|𝐹(𝜃𝑡); 𝛼𝑡))  

= argmin
𝛼𝑡

∑ (𝑟𝑖,𝑡 − 𝛼𝑡𝑓𝑖(𝜃𝑡))
2

𝑖   

We take the derivative of the objective function w.r.t 𝛼𝑡and set it to zero: 
𝑑

𝑑𝛼𝑡
∑ (𝑟𝑖,𝑡 − 𝛼𝑡𝑓𝑖(𝜃𝑡))

2
𝑖 = 0  

Thus: 

�̂�𝑡 =
∑ 𝑟𝑖,𝑡𝑓𝑖(𝜃𝑡)𝑖

∑ 𝑓𝑖(𝜃𝑡)
2

𝑖
 

 

HD network simulation 
We designed an artificial neural network to simulate the behavior we see in the HD system. The network 

can maintain a stable HD representation (bump of activity) via lateral inhibition and input from the 

vestibular system (angular velocity (AV) cells). We incorporated gain modulation to allow for an 

internal control of drift speed, in reset situations. Details of the network architecture, neural dynamics 

and parameter optimization are detailed in additional supplementary material called Attractor Network 

Model. 

  

Gain heatmap analysis 
Gain heatmaps are 2D matrices where each pixel 𝑝(𝑥, 𝑦) is a 2D bin of width 1.5°/s corresponding to 

the measured angular head velocity and, height 1° corresponding to the decoded HD. Pixel 𝑝(𝑥, 𝑦) 
represents the mean network gain – across mice and across sessions – within a 2D average window of 

width [x-3:x+3]°/s and height [y-15:y+15]°. A 2D Gaussian filter of standard deviation =15 (15° x 

22.5°/s) is then applied. The network gain, the decoded HD and the measured HD were all smoothed 

with a moving average filter of width 20 frames (~667ms) while the measured head angular velocity 

was approximated by a simple linear regression with a regression window of similar width. To evaluate 

the significance of the difference between gain heatmaps (Fig.4G), we performed a Wilcoxon rank sum 

test to compare, at each pixel, the gain distributions within the 2D window of width [x-3:x+3]°/s and 

height [y-15:y+15]° between darkness epochs of the 20s experiment and D2 of the 2-minute experiment 

. As we are only interested in the significance of the positive values (indicating the appearance of new 

bumps), negative values as well as p-values>0.001 were marked as NaN (“Not a Number”).    

 

Drift-speed heatmap analysis  
Drift-speed heatmaps were generated following the same approach as for gain heatmaps. However, drift 

speed was approximated by a simple linear regression with a regression window of width 20 frames 

(~667ms). The p-value matrix for drift speed difference between the 20s experiment and D2 of the 2-

minute experiment was calculated as described above. However, only p-values>0.001 were marked as 

NaN. 

  

Vector field analysis 
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The purpose of this analysis is to illustrate baseline attractiveness. We define the state space (y-axis: 

Drift-speed (°/s); x-axis: Drift-angle (°)). We construct a vector field matrix by dividing the x-axis into 

18 bins of width 20° each within the range [-180:180]°, and the y-axis into 20 bins of width 0.03°/s 

each, within the range [-3:3]°/s. At each bin (x,y), we calculate the mean drift-speed and mean drift 

acceleration, across mice and across sessions. The two latter quantities represent the velocity 

components (u,v) that determine the length and direction of the velocity vector. We assume the vector 

field has a central symmetry w.r.t the baseline point (0,0) because of the symmetry in the experimental 

design. So, we generate an image of the original vector field that is its reflection across the origin. The 

two versions are then averaged to produce the final 2D vector field. Streamlines are generated with 

Matlab’s ‘𝑠𝑡𝑟𝑒𝑎𝑚𝑙𝑖𝑛𝑒’ function. 

  

Dimensionality reduction using feedforward neural network 
We designed a deep artificial neural network that maps the high-dimensional input (neural) data onto 

the 2D polar space (radial and angular components). It is generally believed that the main function of 

the HD system is to provide an estimate of the HD at any given time. Since most studies of this network 

(including ours) are conducted while recording the neural activity in animals placed on horizontal 

planes, it is fair to assume that most of the variability in the activity of HD neural population can be 

captured by a single variable representing the angle faced by the animal, at an instant 𝑡, w.r.t a given 

allocentric reference frame. Indeed, previous works have shown that, in stable conditions, different 

dimensionality reduction methods40,41 would produce a circular manifold that can be fairly 

approximated in a unidimensional polar state-space with a fixed radius. Nevertheless, Chaudhuri et al. 

(2019)40 observed that the structure becomes more complex during slow-wave sleep (SWS). Our 

guiding hypothesis is that the intrinsic geometric structure of the neural activity in the HD network lies 

in a multidimensional state-space and that latent variables other than the angular component are needed 

to explain the variability in spiking data, during non-stable conditions such as resets and drift situations. 

Here we propose the simplest augmentation to the latent structure by adding a radial component that 

we expect to indicate instantaneous changes in global energy levels of the HD network. While we 

believe the true intrinsic dimensionality of the HD neural data is higher than two, the current paper 

mainly focuses on the necessity of at least a second dimension of the HD system during instability. 

To test our hypothesis, we developed a deep artificial neural network to extract a secondary 

dimension while imposing circularity on the first one. Effectively, our method projects the high 

dimensional neural data onto the two dimensions of the polar space (angular dimension 𝜃 and radial 

dimension 𝑅). The radial component 𝑅 is a latent variable that can take any non-negative value. We 

used a feedforward neural network with three parallel branches. Two of these branches have three fully 

connected hidden layers (referred to as ‘first’ and ‘second’ or, respectively, ‘𝐵1’ and ‘𝐵2’), while the 

third branch has two fully connected hidden layers (referred to as ‘middle’ or ‘𝐵𝑚’) (Extended Data 

Fig. 12). The input layer receives a Nx1 vector of neural activity from N ADN neurons, at time t (both 

calcium traces as well as firing rates from deconvolved spikes can be fed to the model). The output 

layer is composed of two units that are the results of multiplying the output 𝑔𝑡 of the middle branch 

with the output 𝑧1,𝑡 of the first branch, on one hand, and the output 𝑧2,𝑡 of the second branch, on the 

other hand, as illustrated in the diagram of Extended Fig. 16.      

 

We train our model on baseline data. The objective is to find the set of weights 𝑊 that minimize the 

distance between the network output (
𝑔𝑡𝑧1,𝑡
𝑔𝑡𝑧2,𝑡

) and the vector (
cos(𝜃𝑡)
sin(𝜃𝑡)

). Where 𝜃𝑡 is the measured 

head-direction of the animal at instant 𝑡. We define the loss function as the mean squared error: 

𝑀𝑆𝐸 =
1

𝑇
∑((

𝑐𝑜𝑠(𝜃𝑡)
𝑠𝑖𝑛(𝜃𝑡)

) − (
𝑔𝑡𝑧1,𝑡
𝑔𝑡𝑧2,𝑡

))

2𝑇

𝑡=1

 

Where, 𝑇 is the duration of the training epoch. If the algorithm converges, we obtain the following 

approximations: 
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{
 
 

 
 𝑧1,𝑡 ≈

𝑐𝑜𝑠(𝜃𝑡)

𝑔𝑡

𝑧2,𝑡 ≈
𝑠𝑖𝑛(𝜃𝑡)

𝑔𝑡

 

Let �̂�𝑡 =
1

𝑔𝑡
, then we can rewrite the output of each branch: 

{
 
 

 
 
𝐵1:𝑧1,𝑡 ≈ �̂�𝑡 cos(𝜃𝑡)


𝐵2:𝑧2,𝑡 ≈ �̂�𝑡 sin(𝜃𝑡)



𝐵𝑚:𝑔𝑡 =
1

�̂�𝑡

 

In effect, this would allow branches 𝐵1 and 𝐵2 to learn a mapping from the input (neural) space to the 

Cartesian transformation of the polar coordinates of a given state 𝑠𝑡, at any time 𝑡 (respectively, 𝐵1 

projects the input onto the 𝑥 axis and, 𝐵2 projects the input onto the 𝑦 axis). While branch 𝐵𝑚 would 

learn a mapping from the input space to the inverse of the approximate radius �̂�𝑡 of said state, in polar 

space. If we assume �̂�𝑡 is a certain reflection of global neural activity, as per our hypothesis, then we 

expect small fluctuations of population activity, in the training data (baseline), to be sufficient to allow 

the network to extrapolate �̂�𝑡 on test data with larger fluctuations. 

 

Statistics and reproducibility 
All statistical tests are noted where the corresponding results are reported throughout the main text and 

supplement. All tests were uncorrected 2-tailed tests unless otherwise noted. Outliers were identified as 

data points that fall outside the mean±(3*std) range. 

 

Data availability 
The complete dataset for all experiments is available upon request to the corresponding authors.  

 

Code availability 
All source codes used in the current study are available upon request to the corresponding authors. 
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Extended Data Figures 

 

 
 

 
 

Extended Data Figure 1. HD map of the anterodorsal thalamic nucleus (ADN). a. Histology data showing 

coronal brain sections from each mouse with GCaMP6f expression, in ADN region (anterior part). b. 

Directional maps of the ADN in each mouse. HD cells are colored according to their preferred firing direction 

(PFD). Color-wheel shows angle-color assignments. c. Examples of HD cells’ coverage of the azimuthal 

plane, in each mouse. Rows in each matrix represent tuning curve heatmaps of individual HD cells. Tuning 

curve amplitudes are normalized.   
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Extended Data Figure 2. Identification of HD neurons with calcium imaging. a. Left: Example polar tuning 

curve for a HD neuron. Yellow line indicates direction of maximum firing rate (i.e. preferred firing direction 

(PFD)). Firing rates are occupancy normalized. Right: Top: An example calcium signal deltaF/F (green) 

from one HD neuron and the resulting deconvolved trace (red). Both traces were normalized. Middle: 

Measured head-direction. Bottom: The extracted stimulus signal of the HD neuron’s PFD. Peaks indicate 

instances of the animal facing the particular PFD. The deconvolved signal is cross-correlated with the 

stimulus signal in order to obtain the Pearson’s correlation coefficient which reflects the degree of HD tuning 

of the cell (r=0.85 in the case of the current example). b. Distributions of the Pearson’s correlation 

coefficients after 1000 circular-shift shuffles of the firing rate signals (smoothed deconvolved traces) of all 

HD neurons, in each mouse. Red and green vertical lines indicate the 95th and 99th percentiles, respectively. 

Data includes 10 baseline recordings of 3 minutes each for every mouse. Of all recorded cells, ~94% met 

the 95th percentile selection criterion while ~83% met the 99th percentile selection criterion. 
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Extended Data Figure 3. Anticipatory behaviour and drift-speed pattern during baseline. a. Top row: Mean 

bump of activity (N=42 baseline epochs) divided between positive (blue) and negative (pink) head angular 

velocities (HAV). Bar graph: Mean difference between measured and decoded HD (Wilcoxon signed rank 

test: HAV<0: p~0, Z=83.71; HAV>0: p~0, Z=-76.81). Bottom row: Mean cross-correlation (N=42 baseline 

epochs) of the mean bump of activity, per epoch, with the mean bump of activity for positive (blue) and 

negative (pink) HAVs. Bar graph: Mean peak angle of cross-correlation (Wilcoxon signed rank test: HAV<0: 

p~0, Z=-115.24; HAV>0: p~0, Z=113.13). Both analyses show a significant amount of anticipation of future 

heading by the HD network. b. Top: Drift-speed heatmap showing an increased latency in updating the 

internal representation as the HAV becomes larger. Bottom: same pattern as the above, seen here in Internal 

HAV-versus-Measured HAV space. Notice the deviations of the mean signal (orange) from the diagonal, at 

high measured HAVs. Bar graphs indicate mean and SEM.   
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Extended Data Figure 4. Reset behavior and gain modulation per mouse. a. Top row: Resets separated 

according to their speeds between fast (light blue) and slow (dark blue) groups, per mouse. Bottom row: 

Corresponding gain signals for fast and slow resets, per mouse. b. Top row: Resets separated according to 

their range between long- (light blue), mid- (dark blue) and short- (grey) groups, per mouse. Bottom row: 

Corresponding gain signals for long-, mid- and short-range resets, per mouse. Values are shown as Mean 

(solid line) and SEM (shaded area). 
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Extended Data Figure 5. Reconstruction of the bump of activity. Averaged heatmaps of the bump of activity 

during fast (left column) and slow (right column) resets (same data as in Fig2 H, I). Data is presented in the 

egocentric reference frame, without drift adjustment (top row) and with drift adjustment (bottom row) 

showing, in both cases, no additional bumps outside the main activity packet. Dashed red line indicates cue-

onset, while white horizontal line at 90° is for reference. Firing rates are normalized. 
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Extended Data Figure 6. Simulation results of the HD network model and prediction of drift speed based 

on input gain. a. Left: Mean simulated reset signals for fast (light blue) and slow (dark blue) groups. Right: 

Mean simulated gain signals for the same groups. Values are shown as Mean (solid line) and SEM (shaded 

area). Dashed signals represent means of ground-truth data. b. Individual examples of simulation predictions 

(red lines) for fast and slow reset groups, plotted against actual resets (blue lines). Yellow lines indicate cue 

location. Amplitudes are relative to angles at cue-onset (dashed black line).  

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.30.458266doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.30.458266
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 

 
 
Extended Data Figure 7. Animal behavior, prior to cue display, is predictive of reset speed. a. Triggered 

average of gain shows a sharp decrease following cue display, for 90°-centered resets ([70°:110°] range) 

(Wilcoxon rank sum test: average gain 1-second pre-cue versus average gain 1-second post-cue: p = 0.0228, 

Z = 2.28) (Top). However, overall absolute head angular velocity (aHAV) does not seem to differ before 

and after cue display (Wilcoxon rank sum test: average aHAV  1-second pre-cue versus average aHAV  

1-second post-cue: p = 0.6259, Z = 0.49) (bottom). b. Separation of signals in a. between fast and slow resets 

shows similar gain amplitudes over a 1-second interval prior to cue display (Wilcoxon rank sum test:  

p = 0.3580, Z = 0.92) (Top). However, aHAV is lower for fast resets compared with slow resets, over the 

same period (Wilcoxon rank sum test: p = 0.0294, Z = 2.18) (Bottom). c. Head angular velocity becomes 

more predictive of reset type closer to the moment of cue-display when compared with prediction 

performance based on gain amplitudes within the same time interval. Deviance of the fit is used as defined 

in Matlab’s mnrfit function for logistic regression. Data shown is same as in Fig2. g. Time dependent signals, 

in a and b, are shown as mean (solid line) and SEM (shaded area) and bar graphs indicate mean and SEM 
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Extended Data Figure 8. Relationship between reset range and gain modulation. a. Mean drifts for short- 

(grey; n = 27), mid- (dark blue; n = 40) and long- (light blue; 67) range reset-groups showing non-significant 

difference in drift-speeds between mid- and long-range groups (Wilcoxon rank sum test: Short-Mid: 

p=4.19e-5, Z=4.10; Short-Long: p = 7.73e-5, Z = 3.95; Mid-Long: p = 0.62, Z = 0.50; 150 frames (~5s) post-

cue) b. Network gains for the short-, mid- and long- ranges have similar amplitudes prior to cue-display 

(Wilcoxon rank sum test: Short-Mid: p = 0.1174, Z = 1.57; Short-Long: p = 0.32, Z=1.00; Mid-Long: 

p=0.2984, Z=1.04; 50 frames (~1.67s) pre-cue), yet they exhibit gradual decrease following cue-display 

(Wilcoxon rank sum test: Short-Mid: p = 0.0129, Z = 2.49; Short-Long: p=2.6876e-9, Z=5.95; Mid-Long:  

p = 1.2130e-5, Z = 4.38; 150 frames (~5s) post-cue). c. Relationship between average gain and reset range. 

Each dot represents a correct reset (n = 134). The R-squared value corresponds to a linear regression model 

fit (green line). All CW sessions have been reflected across the x-axis and transformed into CCW ones. 

Time-dependent signals are shown as mean (solid line) and SEM (shaded area) and bar graphs indicate mean 

and SEM. 
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Extended Data Figure 9: Rapid gain spikes can be seen shortly after cue-display, in the three reset-range 

groups (same data as in Fig. 2m shown at higher temporal resolution). All reset ranges start at similar 

amplitudes at the end of the darkness period (Wilcoxon rank sum test: short-mid: p=0.3940, Z=0.85; short-

long: p=0.2090, Z=1.26; mid-long: p=0.4686, Z=0.72). Following cue-display, each group exhibits a brief 

gain increase (5 frames (~150ms) pre-cue vs 5 frames (~150ms) post-cue: Wilcoxon rank sum test: short: 

p=6.9690e-4, Z=3.39; mid: p=0.0369, Z=2.09; long: p=2.6898e-4, Z=3.64). These gain spikes are largest for 

the short-range group (Wilcoxon rank sum test: short-mid: p=4.4888e-4, Z=3.51; short-long: p=1.8600e-4, 

Z=3.74; mid-long: p=0.9326, Z=0.08). Time-dependent signals are shown as mean (solid line) and SEM 

(shaded area) and error bars indicate mean and SEM. 
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Extended Data Figure 10. Distinct drift patterns across darkness periods. a. Drift variability increases 

significantly following a reset (D2, D3 and D4) in comparison with D1 (Mean drift STD compared across 

darkness epochs: Wilcoxon rank sum test: BL-D1: p = 3.1214e-15, Z = 7.89; D1-D2: p = 1.1477e-6,  

Z = 4.86; D1-D3: p = 8.3761e-5, Z = 3.93; D1-D4: p = 5.6600e-11, Z = 6.55). Drift STD also increases with 

time after a reset (D2, D3 and D4) while it remains constant following baseline (D1). b. Mean drift-speed in 

each darkness epoch. Systematic biases depend on prior cue-event. (Wilcoxon rank sum test: BL-D1: 

p=0.1250, Z=1.53; Wilcoxon signed rank test: D2: p = 0.0168, Z = -2.39; D3: p = 0.0313, Z = 2.15; D4:  

p = 2.9929e-4, Z = 3.62). c. Comparison between drifts in D2 and D4 of the 90°-cue-shift experiment. 

Although the two events are experimentally symmetric to each other w.r.t baseline, drifts in D4 appear to 

have larger biases (in absolute value terms) than D2. Left: Mean drift signals, in D2 (dark blue) and D4 (light 

blue). Drifts in D2 have been mirrored across the 0°-line for comparison purposes. Values are shown as 

Mean (solid line) and SEM (shaded area). Right: Comparison between average drift speeds, in D2-mirrored 

(Light blue) and D4 (dark blue) (Wilcoxon rank sum test: p=0.0184, Z=2.36). Time-dependent signals are 

shown as mean (solid line) and SEM (shaded area). Bar graphs, in a and c, and error bars, in b, indicate mean 

and SEM. 
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Extended Data Figure 11. Time dependent changes in gain tuning curve. Average gain tuning curves across 

darkness periods showing gradual decrease of network gain away from the internal cue location (dashed 

yellow line) from D1 to D4. Tuning curves are shown as mean (solid line) and SEM (shaded area) and bar 

graphs indicate mean and SEM. 
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Extended Data Figure 12. Network gain patterns across mice and darkness epochs. a. Network gain during 

darkness shown as heatmaps (top row) and tuning curves (bottom row), per mouse. In both cases, data is 

averaged across sessions and darkness epochs (D1 to D4) of the 90°-cue-shift experiment. Values for the 

tuning curves are shown as Mean (solid line) and SEM (shaded area). b. Top row: Network gain heatmaps 

showing same data as in (A) split (from left to right, respectively) across the different darkness epochs D1 

to D4 of the 90°-cue-shift experiment. Bottom row: Drift speed heatmaps showing a consistent pattern, yet 

with varying amplitudes, across darkness epochs D1 to D4. No obvious effect of the gain landscape can be 

seen in these patterns. 
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Extended Data Figure 13. Distortion of the drift speed landscape during reversion. a. Drift-speed heatmaps. 

Left: 20s-cue-exposure experiment (n = 43). Right: D2 of the 2m-cue-exposure experiment (n = 35). b. Left: 

Drift-speed difference (same data as in e) showing a significant distortion of the pattern seen in the first 

experiment around the internal location of the cue. Right: p-value matrix for data in left (Wilcoxon rank sum 

test; pixels where p>0.001 were marked as NaN).  
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Extended Data Figure 14. The two stages of reversion in the 20s cue-exposure experiment. a. Mean drift 

signal during reversion (N=43). Dashed yellow line divides the darkness period in two halves with 

contrasting states of the HD network: drifting (1st half) and stabilizing (2nd half). Data shown as mean (solid 

line) and SEM (shaded area). Bar graph: Comparison of mean drift-speeds between the first and second 

halves of the darkness period (Wilcoxon rank sum test: p=3,5802e-8, Z=5.51). Data shown as mean and 

SEM. b. Top row: Heatmaps of network gain during the first (left) and second (right) halves. Bottom row: 

Heatmaps of drift-speed during the first (left) and second (right) halves showing state-dependent distortions 

of the drift-speed pattern. 
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Extended Data Figure 15. Individual examples of drift biases during darkness following a continuous fast 

(left group) or slow (right group) cue-rotation. At the beginning of each cue-rotation epoch, the visual cue 

was displayed at the same location as that of baseline. It, then, keeps rotating for seven minutes. At the end 

of the seven minutes and depending on the speed of rotation, the cue would either reach ±180° or -90°. The 

drift signal is, thus, expected to start within a close range of these two directions, during the second darkness 

epoch. However, in some cases, drifts during the first darkness epoch were large enough so that the initial 

anchoring to the rotating cue occurred considerably far from baseline. This caused the drift signal, during 

the second darkness, to start further away from the expected location. For our comparison, in Fig. 5d, we 

limited our analysis to drifts starting at [-180:-145]U[145:180]° for the fast cue-rotation group and  

[-125:-55]° for the slow cue-rotation group, in order to study the effects across sessions with similar stability 

during baseline (total N=44 out of 60).  
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Extended Data Figure 16. Diagram of the artificial neural network used to project high dimensional neural 

activity onto 2D polar space. Numbers inside each box correspond to the unit count. All activation functions 

are ‘relu’ except for nodes 𝑧1,𝑡 and 𝑧2,𝑡 where the activation function is ‘tanh’. In all layers, we apply 𝐿2 

regularization with regularization factor 0.001. Input data, from 𝑁ADN neurons, are normalized. 
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Supplementary material: Attractor network model 

The goal of our model is to propose a potential neural mechanism of drift control, in the HD system, 

through gain modulation. The neuronal model is based on that described in Redish et al. (1999)45,54. 

However, we made important changes to the network design which will be detailed below. 

Model inputs: 

𝛼𝑖𝑛: Time-series of true network gain 

𝐴𝑉: Time-series of true head angular velocity (AV), in degrees/frame 

𝜃𝑐𝑢𝑒: Angle of current cue on display, in degrees 

𝜃𝐻𝐷: Animal’s true head-direction, in degrees 

𝐷𝑖𝑛𝑖: Initial drift offset, in degrees 

𝐿: Binary time-series indicating cue display (0:cue-off, 1:cue-on) 

Model outputs: 

𝛼𝑠𝑖𝑚: Time series of simulated network gain of the HD-neuron layer 

𝐷𝑠𝑖𝑚: Time series of simulated drift signal, in degrees 

 

1-   Network design: 

Our attractor network is composed of three layers (pools): (1) The HD layer, (2) the inhibition layer 

and, (3) the conjunctive AV-by-HD layer which itself can be divided into two sub-layers: (3a) the CW-

AV-by-HD layer and (3b) the CCW-AV-by-HD layer. Extra-network input comes in the form of a 

visual layer, AV cells (CW and CCW) of the vestibular system as well as a global modulation source 

(i.e., gain cell). 

1-1 Generation circuit: 

First, we show how the generation circuit (layers (1), (2) and (3)) can produce a stable HD 

representation. Model figures 1, 2 and 3 show the connections between the layers. Our model can 

maintain a unique bump of activity (at the HD layer) through constant input from the vestibular system 

(AV-by-HD layer) combined with lateral inhibition from the inhibitory layer. Our choice of departing 
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from standard HD-network models that use recurrent excitation at the HD layer to generate a unique 

bump of activity is motivated by anatomical and physiological studies of the HD circuitry, in rodents. 

We know that two types of AV cells exist in the vestibular system: symmetric and asymmetric AV cells 

(CW-AV cells and CCW-AV cells)14,55. While the symmetric AV cells increase their firing rate 

proportional to the head AV, regardless of direction, the asymmetric AV cells’ activity increases only 

in one direction and decreases in the other. Interestingly, both asymmetric AV cells’ subtypes (CW and 

CCW) appear to fire at higher rates than minimum values, albeit with equal amounts, when the animal’s 

head is not moving. We also know the involvement of inhibition in the generation of HD-cell activity 

from previous studies that showed the connections in the downstream pathway of the generation circuit 

(DTN→LMN) are largely GABAergic56,57. Additionally, there is no anatomical evidence for the 

existence of recurrent excitation neither in the generation circuit (DTN and LMN) nor in the thalamus 

(ADN). Therefore, achieving a stable representation by combining the activity from the vestibular 

system together with a lateral inhibition (as in the current model) appears more biologically plausible. 

Neuronal dynamics 

We use a similar approach to Redish (1996) to model the firing activity of every neuron in the HD, 

inhibitory and AV-by-HD layers54. Each postsynaptic unit’s response is governed by three equations: 

    𝑉𝑖(𝑡) = 𝛾𝑖 + ∑ 𝑤𝑖𝑗𝑆𝑗(𝑡)𝑗    (1) 

    𝐹𝑖(𝑡) = 𝑎𝑙𝑜𝑔(1 + 𝑒
𝑉𝑖(𝑡)−𝑏)                (2) 

    𝜏𝑖
𝑑𝑆𝑖(𝑡)

𝑑𝑡
= −𝑆𝑖(𝑡) + 𝐹𝑖(𝑡)   (3) 

Where, 𝑉𝑖 is the voltage of postsynaptic neuron 𝑖, 𝛾𝑖 is the tonic inhibition term, 𝜔𝑖,𝑗 is the synaptic 

weight between postsynaptic neuron 𝑖 and presynaptic neuron 𝑗, 𝑆𝑗 is the synaptic drive of presynaptic 

neuron 𝑗, 𝐹𝑖 is the activation function of postsynaptic neuron 𝑖, 𝑑𝑡 is the time step and, 𝜏𝑖 is the time 

constant defining the decay rate of postsynaptic potential (PSP). Equations (1) and (3) follow directly 

from Reddish (1996)54. However, we opted for a more biologically plausible activation function 𝐹𝑖, in 

(2), following Zhang (1996)58 which also has the advantage over the hyperbolic tangent (used in Redish 

(1996)) of preventing saturation issues at high activity levels. Both 𝑎 and 𝑏, in (2), are optimization 

parameters that control the scale and shift of the activation function, respectively. 
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Our model is composed of the same number of units (neurons), 𝑁, per layer/sublayer. To understand 

how this works, it is useful to divide the horizontal plane into 𝑁 equally distant directions which we 

will refer to as preferred firing directions (PFDs). We, then, assign to every unit, in each layer/sublayer, 

a unique PFD. We refer to neurons with the same PFD but belonging to different layers as 

‘counterparts’. 

Interactions between the HD and the inhibitory layers: 

Each inhibitory unit sends projections to all HD neurons. To ensure maintenance of the characteristic 

bell shape of the activity packet (at the HD layer), the synaptic weights are determined by a Gaussian 

kernel such that they become stronger with the increase in PFD distance between the inhibitory neuron 

and its target HD neuron. Effectively, when active, an inhibitory neuron causes minimal decrease in 

firing activity within a close neighborhood of its counterpart HD neuron while it engenders maximal 

inhibition on distant HD units. 

The connection weight of the projection from inhibitory neuron 𝑖 onto HD neuron 𝑗 is, thus, given by: 

𝑤𝐼→𝐻𝐷(𝜙𝑖
𝐼 , 𝜙𝑗

𝐻𝐷) = 𝑘𝐼(𝑒

−(𝜙𝑖
𝐼−𝜙𝑗

𝐻𝐷)2

𝜎𝐼
2 − 1) 

Where, 𝜑𝑖
𝐼 and 𝜑𝑖

𝐻𝐷 are PFDs of inhibitory neuron 𝑖 and HD neuron 𝑗, respectively, 𝑘𝐼 is a scale factor 

and, 𝜎𝐼 is the standard deviation of the weight distribution.   

On the other hand, each inhibitory neuron receives an excitatory back projection from its unique 

counterpart HD neuron. This ensures only a subset of the inhibitory pool (counterpart of the activity 

packet) is active, at any given time, resulting in lateral inhibition of HD neurons outside the activity 

packet 

 

Model Figure 1: Connections between the HD layer and the inhibitory layer. Triangular arrowhead indicates 

excitatory projection. Flat arrowhead indicates inhibitory projection. Color gradients indicate the level of 

activity for each neuron (i.e., opacity increases with firing activity).  Arrow thickness indicates synaptic 

strength (i.e., thickness increases with synaptic weight). For clarity, we only show projections from the unit 

with highest activity, at each layer 
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Interactions between the HD and the AV-by-HD layers: 

Like the inhibitory layer, every AV-by-HD neuron sends direct projections to all HD neurons. However, 

in this case, the synaptic weights are determined by a Gaussian kernel that peaks at an offset location 

w.r.t the counterpart HD neuron. Concretely, an AV-by-HD unit provides the highest excitation either 

rightwards (for a CW-AV-by-HD neuron) or leftwards (for a CCW-AV-by-HD neuron) of the 

counterpart HD neuron. This configuration has the advantage of allowing more flexibility and fine 

tuning in the calibration of the system (i.e., matching vestibular input to visual flow). The amount of 

offset is kept the same (in absolute value terms) between CW and CCW AV-by-HD units, which ensures 

balanced input from both sublayers when the animal’s head is not rotating. 

The connection weight of the projection from AV-by-HD neuron 𝑖 onto HD neuron 𝑗 is given by: 

𝑤𝐴𝑉𝑥𝐻𝐷→𝐻𝐷(𝜙𝑖
𝐴𝑉𝑥𝐻𝐷, 𝜙𝑗

𝐻𝐷) = 𝑘𝐴𝑉𝑥𝐻𝐷𝑒

−(𝜙𝑖
𝐴𝑉𝑥𝐻𝐷−(𝜙𝑗

𝐻𝐷±𝜑𝑜𝑓𝑓𝑠𝑒𝑡)
2

𝜎𝐴𝑉𝑥𝐻𝐷
2

 

Where, 𝜑𝑖
𝐴𝑉𝑥𝐻𝐷 and 𝜑𝑖

𝐻𝐷 are PFDs of AV-by-HD neuron 𝑖 and HD neuron 𝑗, respectively, 𝑘𝐴𝑉𝑥𝐻𝐷 is a 

scale factor, 𝜎𝐴𝑉𝑥𝐻𝐷 is the standard deviation of the weight distribution and, 𝜙𝑜𝑓𝑓𝑠𝑒𝑡 is the angular offset 

between AV-by-HD and HD layers.    

On the other hand, each AV-by-HD neuron receives an excitatory back projection from its unique 

counterpart HD neuron. This ensures only a subset of the AV-by-HD pool (counterpart of the activity 

packet) has higher activity rates than the rest, at any given time. 
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Model Figure 2. Connections between the HD layer and the AV-by-HD layers. Triangular arrowhead 

indicates excitatory projection. Color gradients indicate the level of activity for each neuron (i.e., opacity 

increases with firing activity). Arrow thickness indicates synaptic strength (i.e., thickness increases with 

synaptic weight). For clarity, we only show projections from the unit with highest activity, at each layer 

  

Voltage calculation: 

With the above information considered, we can write the voltage equations for every neuron, in each 

layer, as follow: 

𝑉𝑖
𝐻𝐷−𝑔𝑒𝑛(𝑡) = 𝛾𝐻𝐷 + ∑ 𝑤𝐼→𝐻𝐷(𝜙𝑗, 𝜙𝑖)𝑆𝑗

𝐼(𝑡)𝑗 + ∑ 𝑤𝐶𝑊→𝐻𝐷(𝜙𝑗, 𝜙𝑖)𝑆𝑗
𝐶𝑊(𝑡)𝑗   

                     +∑ 𝑤𝐶𝐶𝑊→𝐻𝐷(𝜙𝑗 , 𝜙𝑖)𝑆𝑗
𝐶𝐶𝑊(𝑡)𝑗                (4) 

               𝑉𝑖
𝐼(𝑡) = 𝛾𝐼 + ∑ 𝑤𝐻𝐷→𝐼𝑆𝑗

𝐻𝐷(𝑡)𝑗                                                    (5)  

𝑉𝑖
𝐶𝑊(𝑡) = 𝛾𝐶𝑊 + 𝐴𝑉

𝐶𝑊(𝑡) + ∑ 𝑤𝐻𝐷→𝐶𝑊𝑆𝑗
𝐶𝑊(𝑡)𝑗                                (6’)  

𝑉𝑖
𝐶𝐶𝑊(𝑡) = 𝛾𝐶𝐶𝑊 + 𝐴𝑉

𝐶𝐶𝑊(𝑡) + ∑ 𝑤𝐻𝐷→𝐶𝐶𝑊𝑆𝑗
𝐶𝐶𝑊(𝑡)𝑗         (6’’)  

Where, 𝑉𝑖
𝐻𝐷−𝑔𝑒𝑛

 is a unit’s voltage in the HD layer, considering the generation circuit only,  𝑉𝑖
𝐼 is a 

unit’s voltage in the inhibitory layer and, 𝑉𝑖
𝐶𝑊 and 𝑉𝑖

𝐶𝐶𝑊 are units’ voltages in CW-AV-by-HD and 

CCW-AV-by-HD layers, respectively. 𝐴𝑉𝐶𝑊 and 𝐴𝑉𝐶𝐶𝑊 are excitatory inputs reflecting the activity of 

asymmetric AV cells such that, at any given time: 

𝐴𝑉𝐶𝑊(𝑡) =
1

𝐴𝑉𝐶𝐶𝑊(𝑡)
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When the animal’s head is not rotating, the HD network receives equal excitation from both AV cell 

types such that 𝐴𝑉𝐶𝑊(𝑡) = 𝐴𝑉𝐶𝐶𝑊(𝑡) = 1 

 

1-2 Visual control of the HD network via gain modulation: 

Visual input: 

The visual input is provided by an extra network layer of 𝑁 neurons. Each one of them provides an 

excitatory input to its counterpart HD neuron. When the visual input is available, activity on the visual 

layer is defined by a Gaussian kernel such that: 

𝑉𝑖
𝑉𝑖𝑠(𝑡) = 𝑘𝑉𝑖𝑠𝑒

(𝜙𝑉𝑖𝑠,𝑖−𝜃𝑉𝑖𝑠(𝑡))
2

−2𝜎𝑉𝑖𝑠
2

 

Where, 𝜙𝑉𝑖𝑠,𝑖 is the preferred firing direction of visual neuron 𝑖, 𝜎𝑉𝑖𝑠 is the standard deviation of the 

visual Gaussian kernel and, 𝜃𝑉𝑖𝑠(𝑡) is the animal’s head-direction, at time 𝑡, w.r.t the visual reference 

frame, such that: 𝜃𝑉𝑖𝑠(𝑡) = 𝜃𝐻𝐷(𝑡) − 𝜃𝑐𝑢𝑒(𝑡). The input is multiplied by a constant 𝑘𝑉𝑖𝑠. 

Gain modulation: 

We model gain modulation as an extra-network input 𝑔 that affects uniformly all HD neurons, which 

takes the form of an affine function of the experimental gain 𝛼𝑖𝑛(𝑡), such that: 

𝑔(𝑡) = 𝑘𝑔(𝛼𝑖𝑛(𝑡) − 1) 

Where, 𝑘𝑔 is a positive constant. This input can be either excitatory (𝛼𝑖𝑛(𝑡) > 1) or inhibitory 

(𝛼𝑖𝑛(𝑡) < 1). 

 

Integration of visual input and gain modulation 

Both the visual and the gain modulation inputs constitute the downstream input to the HD layer. The 

final form of the voltage at a given HD neuron thus becomes: 

𝑉𝑖
𝐻𝐷(𝑡) = 𝑉𝑖

𝐻𝐷−𝑔𝑒𝑛(𝑡) + 𝑉𝑖
𝑉𝑖𝑠(𝑡)𝐿 + 𝑔(𝑡)  (7) 

Where, 𝐿 indicates whether the visual cue is available. It has been demonstrated, in Jackson & Redish 

(2003), that adding an extra-network excitatory input (equivalent to the visual input, in our case) causes 

the bump of activity to shift towards the direction of highest external excitation and realigns the current 
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HD representation with the location of the external input, regardless of any movement of the animal’s 

head. Depending on the strength of this input as well as its distance to the current representation, the 

bump can either rotate continuously and span all intermediate directions (i.e., when the external input 

is near the current representation) or jump abruptly to the new location (i.e., when the external input is 

far away from the current representation). Our model allows rotations at different speeds to occur 

regardless of the visual input’s strength or distance to the current representation, which better reflects 

our experimental data. This can be achieved through gain modulation. For example, when the 𝑔 is 

negative (i.e., inhibitory), the activity on the HD layer decreases which results in a weaker lateral 

inhibition. This makes it easier for an external input to activate HD neurons outside the activity packet 

and so, cause a shift in representation (note that this is a winner-takes-all situation which means, at any 

given time, there can only be a unique bump of activity). Conversely, if 𝑔 is positive (i.e., excitatory), 

the increased activity on the HD layer renders the activation of HD neurons outside the activity packet 

harder and would need a stronger external input than in the previous case (i.e., 𝑔 < 0) to achieve a 

similar shift in representation. 

 

Model Figure 3. Visual control and gain modulation of the HD layer. Triangular arrowhead indicates 

excitatory projection. Round arrowhead indicates projection that can be excitatory (i.e., 𝑔 > 0) as well as 

inhibitory (i.e., 𝑔 < 0). Color gradients indicate the level of activity for each neuron (i.e., opacity increases 

with firing activity). Arrow thickness indicates synaptic strength (in this case, all synapses have similar 

weights).  

  

2-   Simulation of drift and output gain: 

Once all variables have been defined, we can start simulating different reset scenarios by displaying the 

cue at different positions while varying the input gain using experimental data. For simplicity, we 
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assume a noise-free model. To estimate the internal HD representation, we identify the peak location of 

the synaptic drive on the HD layer such that: 

    𝜏𝑖
𝑑𝑆𝑖

𝐻𝐷(𝑡)

𝑑𝑡
= −𝑆𝑖

𝐻𝐷(𝑡) + 𝐹𝑖
𝐻𝐷(𝑡)   (8) 

    𝜃𝑠𝑖𝑚
𝐻𝐷 (𝑡) = max

𝜙𝑖
𝐻𝐷
𝑆𝐻𝐷(𝑡)    (9) 

Where, 𝑆𝐻𝐷(𝑡) is a Nx1 vector. To calculate the drift, 𝐷𝑠𝑖𝑚, we simulate two networks, in parallel, 

starting with the same initial conditions. The first network assumes a perfect integration of the vestibular 

input and does not include any visual interference or gain modulation (𝑔 = 0). This constitutes the 

reference HD, 𝜃𝑟𝑒𝑓
𝐻𝐷  (equivalent to the measured HD, in our experimental data). The second network 

includes the visual input as well as the gain modulation as described, in paragraph 2-2, and from which 

we obtain 𝜃𝑠𝑖𝑚
𝐻𝐷 . The simulated drift is simply the angular difference between the two quantities: 

𝐷𝑠𝑖𝑚(𝑡) = 𝜃𝑟𝑒𝑓
𝐻𝐷(𝑡) − 𝜃𝑠𝑖𝑚

𝐻𝐷 (𝑡) 

To calculate the output gain, 𝛼𝑠𝑖𝑚, we use the egocentric version of 𝑆𝐻𝐷, defined as: 

𝑆𝑒𝑔𝑜
𝐻𝐷 (𝑡) = 𝑐𝑖𝑟𝑐𝑠ℎ𝑖𝑓𝑡(𝑆𝐻𝐷(𝑡), −𝜃𝑠𝑖𝑚

𝐻𝐷 (𝑡)) 

Where, 𝑐𝑖𝑟𝑐𝑠ℎ𝑖𝑓𝑡 is the circular shift operator. This has the effect of bringing the activity packet to the 

center of the internal HD space (see example, in main text, Fig. 2E). Then, we perform a linear 

regression such that: 

𝑆𝑒𝑔𝑜,𝐵𝐿
𝐻𝐷 𝛼𝑠𝑖𝑚(𝑡) = 𝑆𝑒𝑔𝑜

𝐻𝐷 (𝑡) 

Where 𝑆𝑒𝑔𝑜,𝐵𝐿
𝐻𝐷  is a Nx1 vector corresponding to the egocentric synaptic drive profile of the HD layer, 

in baseline simulation. 

 

3-   Optimization 

The goal of the optimization is to determine the parameter values that minimize the classification error 

of the drift signal (i.e., fast vs slow) while ensuring the output gain does not deviate from the input gain. 

Note that the output gain is not guaranteed to be the same as the input gain, due to the complex 

interactions between the multiple layers and the intrinsic firing properties of each unit, in the network. 
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We define the distance between output drift and the mean input drift, for both fast and slow resets, as 

follows: 

𝐸𝑟𝑟𝑑𝑟𝑖𝑓𝑡
𝑓𝑎𝑠𝑡(𝑖) = ∑ (𝐷𝑠𝑖𝑚,𝑡

𝑖 − 𝐷𝑟𝑒𝑓,𝑡
𝑓𝑎𝑠𝑡

)2𝑡    (10) 

𝐸𝑟𝑟𝑑𝑟𝑖𝑓𝑡
𝑠𝑙𝑜𝑤(𝑖) = ∑ (𝐷𝑠𝑖𝑚,𝑡

𝑖 − 𝐷𝑟𝑒𝑓,𝑡
𝑠𝑙𝑜𝑤)2𝑡    (11) 

Where, 𝐷𝑟𝑒𝑓,𝑡
𝑓𝑎𝑠𝑡

 is the mean drift signal for fast-reset examples of the training set and 𝐷𝑟𝑒𝑓,𝑡
𝑠𝑙𝑜𝑤 is the mean 

drift signal for slow-reset examples of the training set. 

We then determine the simulated reset type of example 𝑖 such that: 

{
𝑅𝑒𝑠𝑒𝑡𝑆𝑖𝑚(𝑖) = 1, 𝑖𝑓𝐸𝑟𝑟𝑑𝑟𝑖𝑓𝑡

𝑓𝑎𝑠𝑡 (𝑖) < 𝐸𝑟𝑟𝑑𝑟𝑖𝑓𝑡
𝑠𝑙𝑜𝑤(𝑖)

𝑅𝑒𝑠𝑒𝑡𝑆𝑖𝑚(𝑖) = 2, 𝑖𝑓𝐸𝑟𝑟𝑑𝑟𝑖𝑓𝑡
𝑓𝑎𝑠𝑡 (𝑖) > 𝐸𝑟𝑟𝑑𝑟𝑖𝑓𝑡

𝑠𝑙𝑜𝑤(𝑖)
 

Similarly, we define the distance between output and input gains: 

𝐸𝑟𝑟𝑔𝑎𝑖𝑛(𝑖) = ∑ (𝛼𝑠𝑖𝑚,𝑡
𝑖 − 𝛼𝑖𝑛,𝑡

𝑖 )2𝑡    (12) 

Finally, we use a search algorithm to find the optimal parameters such that: 

�̂� = argmin
𝒫

(∑ (𝑅𝑒𝑠𝑒𝑡𝑆𝑖𝑚(𝑖) − 𝑅𝑒𝑠𝑒𝑡𝑅𝑒𝑓(𝑖))
2

𝑖 + 𝑐𝑜𝑝𝑡𝐸𝑟𝑟𝑔𝑎𝑖𝑛(𝑖))  (13) 

Where, 𝑃 is the set of parameters to be optimized, 𝑅𝑒𝑠𝑒𝑡𝑅𝑒𝑓 is a 1-D vector indicating the type of the 

training reset examples (i.e., 1=fast and 2=slow) and 𝑐𝑜𝑝𝑡 is a penalizing term that determines how 

much weight is attributed to the minimization of input-output gain error. 
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Model Figure 4. Simulation results showing modulation of reset speed at different gain amplitudes (i.e. 

“alpha-in”). a. Due to weakening lateral inhibition in the HD network, at low gain amplitudes, the egocentric 

bump of activity exhibits widening of the tuning curve as well as an increase in baseline firing rate. b, c and 

d. Time-dependent dynamics of the bump of activity before and after cue-display (dashed red line). The first 

5 seconds ([20:15]s pre-cue) correspond to a random cell activity, after which an external input is applied 

on the network to impose the formation of the bump of activity at a specific direction (0° in this case). During 

the pre-cue period, alpha-in is set to 1. Following cue display, alpha-in changes instantaneously and remains 

at the indicated value for the remainder of the simulation. The 40s post-cue simulation interval may or may 

not be sufficient to shift and stabilize the network’s HD representation around the visual cue location (solid 

white line), depending on the gain amplitude. In all these examples, the animal is motionless (Angular 

velocity = 0°/s).         
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Model Table 1: Simulation parameters 

 

𝑑𝑡 Time step 30ms 

𝑁 Number of neurons per layer (HD, inhibitory, AV-by-HD and visual layers) 75 

𝜏𝑖
𝐻𝐷 Time constant of the decay rate of postsynaptic potential for HD neurons  300ms 

𝜏𝑖
𝐼 Time constant of the decay rate of postsynaptic potential for inhibitory neurons  60ms 

𝜏𝑖
𝐴𝑉−𝑏𝑦−𝐻𝐷

 Time constant of the decay rate of postsynaptic potential for AV-by-HD 

neurons  

60ms 

𝛾
𝑖
𝐻𝐷 Tonic inhibition of HD neurons  -1.5 

𝛾
𝑖
𝐼 Tonic inhibition of inhibitory neurons  -7.5 

𝛾
𝑖

𝐴𝑉−𝑏𝑦−𝐻𝐷
 Tonic inhibition of AV-by-HD neurons  -1 

𝑎 Scale parameter of the activation function 𝐹𝑖 1.1 

𝑏 Shift parameter of the activation function 𝐹𝑖 0.25 

𝑤𝐻𝐷−>𝐼 HD → I connection weights 3 

𝑤𝐻𝐷−>𝐴𝑉−𝑏𝑦−𝐻𝐷 HD → AV-by-HD connection weights 0.3 

𝜙
𝑜𝑓𝑓𝑠𝑒𝑡

 Angular offset of AV-by-HD → HD projections 24° 

𝑘𝑉𝑖𝑠 Scale parameter of visual input strength 0.32 

𝜎𝑉𝑖𝑠 Standard deviation of the visual input kernel 11° 

𝑘𝑔 Scale parameter of input gain 4.8 

𝑘𝐴𝑉𝑥𝐻𝐷  Scale parameter of AV-by-HD → HD connection 1.6248 

𝜎𝐴𝑉𝑥𝐻𝐷  Standard deviation of AV-by-HD → HD weight distribution 5° 

𝑘𝐼 Scale parameter of I → HD connection 0.0432 

𝜎𝐼  Standard deviation of I → HD weight distribution 15° 
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