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ABSTRACT  

Genetic alterations of somatic cells can drive non-malignant clone formation and 

promote cancer initiation. However, the link between these processes remains 

unclear hampering our understanding of tissue homeostasis and cancer 

development. Here we collect a literature-based repertoire of 3355 well-known or 

predicted drivers of cancer and noncancer somatic evolution in 122 cancer types and 

12 noncancer tissues. Mapping the alterations of these genes in 7953 pancancer 

samples reveals that, despite the large size, the known compendium of drivers is still 

incomplete and biased towards frequently occurring coding mutations. High overlap 

exists between drivers of cancer and noncancer somatic evolution, although 

significant differences emerge in their recurrence. We confirm and expand the 

unique properties of drivers and identify a core of evolutionarily conserved and 

essential genes whose germline variation is strongly counter-selected. Somatic 

alteration in even one of these genes is sufficient to drive clonal expansion but not 

malignant transformation. Our study offers a comprehensive overview of our current 

understanding of the genetic events initiating clone expansion and cancer revealing 

significant gaps and biases that still need to be addressed. The compendium of 

cancer and noncancer somatic drivers, their literature support and properties are 

accessible at http://www.network-cancer-genes.org/.  
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BACKGROUND 

Genetic alterations conferring selective advantages to cancer cells are the 

main drivers of cancer evolution and hunting for them has been at the core of 

international cancer genomic efforts 1-3. Given the instability of the cancer genome, 

distinguishing driver alterations from the rest relies on analytical approaches that 

identify genes altered more frequently than expected or quantify the positive 

selection acting on them 4-6. The results of these analyses have greatly expanded 

our understanding of the mechanisms driving cancer evolution, revealing high 

heterogeneity across and within cancers 7-9.  

Recently, deep sequencing screens of noncancer tissues have started to map 

positively selected genetic mutations in somatic cells that drive in situ formation of 

phenotypically normal clones 10, 11. Many of these mutations hit cancer drivers, 

sometimes at a frequency higher than in the corresponding cancer 12-16. Yet, they do 

not drive malignant transformation. This conundrum poses fundamental questions on 

how genetic drivers of normal somatic evolution are related to and differ from those 

of cancer evolution. Addressing these questions will clarify the genetic relationship 

between tissue homeostasis and cancer initiation, with profound implications for 

cancer early detection. 

To assess the extent of the current knowledge on cancer and noncancer 

drivers, we undertook a systematic review of the literature and assembled a 

comprehensive repertoire of genes whose somatic alterations have been reported to 

drive cancer or noncancer evolution. This allowed us to compare the current driver 

repertoire across and within cancer and noncancer tissues and map their alterations 

in the large pancancer collection of samples from The Cancer Genome Atlas 

(TCGA). This revealed significant gaps and biases in our current knowledge of the 
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driver landscape. We also computed an array of systems-level properties across 

driver groups, confirming the unique evolutionary path of driver genes and their 

central role in the cell.  

We collected all cancer and noncancer driver genes, together with a large set 

of their properties, in the Network of Cancer Genes and Healthy Drivers (NCGHD) 

open-access resource. 

 

RESULTS 

More than 3300 genes are canonical or candidate drivers of cancer and 

noncancer somatic evolution 

We conducted a census of currently known drivers through a comprehensive 

literature review of 331 scientific articles published between 2008 and 2020 on 

somatically altered genes with a proven or predicted role in cancer or noncancer 

somatic evolution (Figure 1A). These publications included three sources of 

experimentally validated (canonical) cancer drivers, 311 sequencing screens of 

cancer (293) and noncancer (18) tissues and 17 pancancer studies (Supplementary 

Table 1). Each paper was assessed by at least two independent experts 

(Supplementary Figure 1A-C) returning a total of 3355 drivers, 3347 in 122 cancer 

types and 95 in 12 noncancer tissues, respectively (Figure 1A). We further 

computed the systems-level properties of drivers and annotated their function, 

somatic variation and drug interactions (Figure 1A). 

We reviewed the three sources of canonical cancer drivers 17-19 to exclude false 

positives (Supplementary Table 2) and fusion genes whose properties could not be 

mapped. Only 11% of the resulting 591 canonical drivers (Supplementary Table 3) 

were common to all three sources (Figure 1B), indicating poor consensus even in 
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well-known cancer genes. We further annotated the mode of action for >86% of 

canonical drivers, finding comparable proportions of oncogenes or tumour 

suppressors (Figure 1C). The rest had a dual role or could not be univocally 

classified.  

We extracted additional cancer drivers from the curation of 310 sequencing 

screens that applied a variety of statistical approaches (Supplementary Figure 1D) 

to identify cancer drivers among all altered genes. After removing possible false 

positives (Supplementary Table 2), the final list included 3177 cancer drivers, 2756 

of which relied only on statistical support (candidate cancer drivers) and 421 were 

canonical drivers (Figure 1D, Supplementary Table 3). Therefore, 170 canonical 

drivers have never been detected by any method, suggesting that they may elicit 

their role through non-mutational mechanisms or may fall below the detection limits 

of current approaches. Given the prevalence of cancer coding screens (Figure 1A), 

only coding driver alterations have been reported for most genes (Fig.1E) while 16% 

of them (10 canonical drivers and 521 candidates) were identified as drivers uniquely 

in noncoding screens.  

Applying a similar approach (Supplementary Figure 1A-C), we reviewed 18 

sequencing screens of healthy or diseased (noncancer) tissues. They collectively 

reported 95 genes whose somatic alterations could drive non-malignant clone 

formation (healthy drivers). Interestingly, only eight of them were not cancer drivers 

(Figure 1F, Supplementary Table 3), suggesting high overlap between genetic 

drivers of cancer and noncancer evolution. However, healthy driver detection has 

been so far biased towards cancer drivers since many screens only re-sequenced 

cancer genes or applied methods developed for cancer genomics (Supplementary 

Figure 1E). 
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Figure 1. Collection of a comprehensive repertoire of cancer and healthy 

drivers 

 

a. Literature review and driver annotation workflow. Expert literature curation of 331 

publications led to a repertoire of cancer and healthy drivers in a variety of cancer 

and noncancer tissues. Combining multiple data sources, a set of properties and 

annotations were computed for all these drivers. 

b. Intersection of canonical drivers from three sources 17-19 that passed our manual 

curation. 

c. Classification of canonical cancer drivers in tumour suppressors and oncogenes. 

Eighty-one cancer drivers had a dual role or could not be classified.  
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d. Intersection of canonical and candidate driver genes from 310 sequencing 

screens. Genes whose driver role had only statistical support were considered 

candidate cancer drivers. 

e. Intersection between cancer drivers with coding and noncoding alterations. 

f. Proportion of healthy drivers that are also canonical or candidate cancer drivers, 

classified as canonical and candidate healthy drivers, respectively.  
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The ability to capture cancer but not healthy driver heterogeneity increases 

with the donor sample size. 

To compare cancer and healthy drivers across and within tissues, we grouped 

the 122 cancer types and 12 noncancer tissues into 12 and seven organ systems, 

respectively (Methods). 

Despite the high numbers of sequenced samples (Supplementary Table 4) 

and detected drivers (Fig.1), several lines of evidence indicated that our knowledge 

of cancer drivers is still incomplete. First, we detected a strong positive correlation 

between cancer drivers and donors overall (Figure 2A) and in individual organ 

systems (Supplementary Figure 2). This suggests that the current ability to identify 

new drivers increases with the number of samples included in the analysis. Second, 

candidates outnumbered canonical drivers in all organ systems except those with 

small sample size or low mutation rate such as paediatric cancers, where only the 

most recurrent canonical drivers could be identified (Figure 2B). Third, large donor 

cohorts enabled detection of a broader representation of canonical drivers than small 

cohorts (Figure 2C). For example, pooling thousands of samples together led to 

>60% of canonical drivers being detected in adult pancancer re-analyses. Therefore, 

the size of the cohort influences the level of completeness and heterogeneity of the 

cancer driver repertoire. This is not surprising since all current approaches act at the 

cohort level, searching for positively selected genes altered more frequently than 

expected (Supplementary Figure 1D). 

 Our analysis also showed that the contribution of noncoding driver alterations 

remains largely unappreciated and noncoding drivers have not yet been reported in 

several tumours, including all paediatric cancers (Figure 2D). Owing to the re-

analysis of large whole genome collections 20-25, almost 40% of adult pancancer 
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drivers were instead modified by noncoding alterations (Figure 2D). Haematological 

and skin tumours also had a high proportion of noncoding driver variants thanks to 

screens focused on noncoding mutations 26, 27. Therefore, the re-analysis of already 

available whole genome data and further sequencing screens of noncoding variants 

are needed to fully appreciate their driver contribution. 

Compared to cancer, sequencing screens of noncancer tissues are still in their 

infancy, as reflected by the lower numbers of screened tissues and detected drivers 

(Figure 2B). Despite this, some similarities and differences with cancer drivers could 

already be observed. Like cancer drivers (Figure 2E-F, Supplementary Table 5), 

also healthy drivers were mostly organ-specific (Figure 2G) and the most recurrent 

healthy drivers were also cancer drivers in the same organ system (Figure 2H, 

Supplementary Table 5). However, some recurrent cancer drivers (KRAS, PI3KCA, 

NRAS, NF1) were reported to drive noncancer clonal expansion only in one or two 

organ systems (Figure 2G). Therefore, differences start to emerge at the tissue level 

between drivers of cancer and noncancer evolution. Moreover, unlike cancer drivers, 

no correlation existed between numbers of drivers and donors (Figure 2I). Although 

that this may be affected by the lower number of studies, it may also indicate that the 

healthy driver repertoire is easier to saturate since less drivers are needed to initiate 

and sustain noncancer clonal expansion 10, 11.  
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Figure 2. Distribution of driver annotations by organ system 
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a. Correlation between numbers of sequenced donors and identified cancer drivers 

across organ systems. Spearman correlation coefficient R and associated p-value 

are shown. 

b. Number of canonical, candidate and healthy drivers in each organ system. 

Horizontal lines indicate the median number of canonical (92), candidate (160) and 

healthy (17) drivers across organ systems. 

c. Proportion of canonical drivers detected in each organ system over canonical 

drivers detected in all cancer screens (421). The horizontal line indicates the median 

across all organ systems (22%). 

d. Proportion of genes with noncoding driver alterations over all cancer drivers in 

each organ system. The horizontal line indicates the median across all organ 

systems (4%). 

Number of canonical (e), candidate (f) and healthy (g) drivers across screens and 

organ systems. Representative genes with different recurrence between cancer and 

healthy tissues are indicated. 

h. Organ system distribution of the top eight recurrent healthy drivers. The full list is 

provided as Supplementary Table 5. 

i. Correlation between numbers of sequenced donors and identified healthy drivers 

across organ systems. Spearman correlation coefficient R and associated p-value 

are shown. 
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Alteration pattern hints at driver mode of action and confirms the 

incompleteness of the driver repertoire 

To gain further insights into their mode of action, we mapped the alterations 

acquired by cancer and healthy drivers in 34 cancer types from TCGA. After 

predicting the damaging alterations in 7953 TCGA samples with matched mutation, 

copy number and gene expression data (Methods), we identified the drivers with 

loss-of-function (LoF) and gain-of-function (GoF) alterations in these samples, 

respectively (Figure 3A).  

The comparison between canonical cancer drivers detected and undetected 

in sequencing screens (Figure 1D) revealed that the latter were damaged in a 

significantly lower number of samples, due to fewer LoF alterations (Figure 3B, 

Supplementary Figure 3A). GoF alterations were instead comparable between the 

two groups, suggesting that current driver detection methods fail to identify drivers 

that undergo copy number gains but are rarely mutated. 

We confirmed that the driver alteration patterns reflected their mode of action, 

with canonical tumour suppressors and oncogenes showing a prevalence of LoF and 

GoF alterations, respectively (Figure 3C). Canonical drivers with a dual role 

resembled the alteration pattern of oncogenes while those still unclassified had a 

prevalence of LoF alterations, suggesting a putative tumour suppressor role (Figure 

3C). While all frequently altered (>500 samples) oncogenes were overwhelmingly 

modified by GoF alterations (Supplementary Table 6), 16 of the 22 most frequently 

altered tumour suppressors had a prevalence of GoF alterations (Figure 3D). In the 

majority of cases this was due to different alteration patterns across organ systems 

(Supplementary Figure 3B) and a possible oncogenic role has been documented 

for some others 28-37.  
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Since candidate drivers had no annotation of their mode of action, we 

reasoned that their alteration pattern could hint at their role as tumour suppressors or 

oncogenes. According to their prevalent pancancer alterations, 1318 candidates 

could be classified as putative tumour suppressors and 1405 as putative oncogenes 

(Supplementary Table 6). Interestingly, while candidates with predicted coding 

driver alterations showed similar distributions of LoF and GoF alterations (Figure 

3E), those with only noncoding driver alterations had significantly lower occurrence 

of LoF alterations (Figure 3F, Supplementary Figure 3C). This may suggest an 

activating role for their noncoding alterations too. Almost all candidates damaged in 

≥500 samples (111/115) were putative oncogenes (Figure 3E, Supplementary 

Table 6). Of the four putative tumour suppressors, CSMD3 has a disputed cancer 

role 38-40 and a likely inflated mutation rate 41, while CDKN2B cooperates with its 

paralog CDKN2A to inhibit cell cycle 42, supporting its tumour suppressor role.  

The number of damaged cancer drivers in individual TCGA samples 

confirmed that, despite all efforts, the current driver repertoire is still largely 

incomplete. The large majority of samples (71% and 87%, considering all drivers or 

only canonical drivers, respectively) had less than five damaged drivers and ~15% of 

them had no damaged driver (Figure 3G).  

Given their high overlap with cancer drivers, most healthy drivers were 

recurrently damaged in cancer samples with no prevalence of GoF or LoF alterations 

(Figure 3H, Supplementary Table 6). Interestingly, all healthy drivers, even the 

eight with no cancer involvement, were damaged in significantly more cancer 

samples than the rest of human genes (Figure 3I).  
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Figure 3. Damaging alteration pattern of drivers in TCGA 
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a. Identification of damaged drivers in 7953 TCGA samples. Mutations, gene 

deletions and amplifications were annotated according to their predicted damaging 

effect. This allowed to distinguish drivers acquiring loss-of-function (LoF) or gain-of-

function (GoF) alterations.  

b. Number of TCGA samples with damaging alterations (all, LoF, GoF) in canonical 

drivers that were detected (421) or undetected (170) by cancer driver detection 

methods. 

c. Proportion of TCGA samples with GoF and LoF alterations in tumour suppressors, 

oncogenes and canonical drivers with a dual or unclassified role.  

Proportion of TCGA samples with GoF and LoF alterations in (d) canonical drivers 

and (e) candidate drivers. Genes mentioned in the text are highlighted. The two-

dimensional gaussian kernel density estimations were calculated for each driver 

group using the R density function.  

f. Number of TCGA samples with damaging alterations (all, LoF, GoF) in drivers 

previously reported in coding and noncoding sequences.  

g. Proportion of samples with variable numbers of all damaged drivers or only 

canonical drivers. 

h. Proportion of TCGA samples with GoF and LoF alterations in healthy drivers. 

Canonical and candidate healthy drivers correspond to genes with a known or 

predicted cancer driver role. 

i. Number of TCGA samples with damaged canonical, candidate and remaining 

healthy drivers and the rest of human genes.  

All distributions were compared using a two-sided Wilcoxon rank-sum test.  
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Properties of cancer and healthy drivers support their central role in the cell. 

A substantial body of work including our own 43-52 has shown that cancer 

drivers differ from the rest of genes for an array of systems-level properties (Figure 

1A) that are consequence of their unique evolutionary path and role in the cell. Using 

our granular annotation of drivers, we set out to check for similarities and differences 

across driver groups.  

We confirmed that cancer drivers, and in particular canonical drivers, were 

more conserved throughout evolution and less likely to retain gene duplicates than 

other human genes (Figure 4A, Supplementary Table 7). They also showed 

broader tissue expression, engaged in a larger number of protein complexes, and 

occupied more central and highly connected positions in the protein-protein and 

miRNA-gene networks (Figure 4A). We reported substantial differences between 

tumour suppressors and oncogenes, with the former enriched in old and single-copy 

genes showing broader tissue expression (Figure 4B, Supplementary Table 7). 

We further expanded the systems-level properties of cancer drivers by 

exploring their tolerance towards germline variation, because this may indicate their 

essentiality. Using germline data from healthy individuals 53, we compared the loss-

of-function observed/expected upper bound fraction (LOEUF) score, which quantifies 

selection towards LoF variation 53 as well as the number of damaging mutations and 

structural variants (SVs) per coding base pairs (bp) between drivers and the rest of 

genes (Methods). Cancer drivers, and in particular canonical drivers, had a 

significantly lower LOEUF score and retained fewer damaging germline mutations 

and SVs than the rest of genes (Figure 4A). This indicates that they are 

indispensable for cell survival in the germline. Selection against harmful variation 

was stronger in tumour suppressors than oncogenes (Figure 4B). This was 
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supported by a significantly higher proportion of cell lines where cancer drivers, and 

in particular tumour suppressors, were essential (Figure 4A-B), as gathered from the 

integration of nine genome-wide essentiality screens 54-62 (Methods).  

Genes with noncoding driver alterations had weaker systems-level properties 

than those with coding alterations (Figure 4C, Supplementary Table 7) and the 

subset of them with >50% GoF alterations resembled the property profile of 

oncogenes when compared to tumour suppressors (Figure 4D, Supplementary 

Table 7). In general, all candidate drivers with a prevalence of GoF were similar to 

oncogenes, showing higher proportion of duplicated genes, narrower tissue 

expression, and higher tolerance to germline variation than tumour suppressors 

(Figure 4E, Supplementary Table 7). Conversely, candidate drivers with a 

prevalence of LoF were older, less duplicated and less tolerant to germline variation 

than oncogenes (Figure 4F, Supplementary Table 7).  

Systems-level properties of healthy drivers varied according to the overlap with 

cancer drivers (Figure 4G, Supplementary Table 7). Intriguingly, canonical healthy 

drivers showed stronger systems-level properties than any other group of drivers. In 

particular, they were enriched in evolutionarily conserved and broadly expressed 

genes encoding highly inter-connected proteins are regulated by many miRNA. 

Moreover, these genes showed a strong selection against germline variation and 

high enrichment in essential genes (Figure 4G). They therefore represent a core of 

genes with a very central role in the cell, whose modifications are not tolerated in the 

germline but are selected for in somatic cells because they confer selective growth 

advantages. Candidate healthy drivers and those not involved in cancer had a 

substantially different property profile (Figure 4G). Although numbers are too low for 

any robust conclusion, it is tempting to speculate that genes able to initiate 
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noncancer clonal expansion but not tumourigenesis may follow a different 

evolutionary path.  
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Figure 4. Systems-level properties of cancer and healthy drivers 
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Comparisons of systems-level properties between (a) canonical or candidate cancer 

drivers and the rest of human genes; (b) tumour suppressors and oncogenes, (c) 

cancer genes with coding driver alterations and cancer genes with noncoding driver 

alterations. The normalised property score was calculated as the normalised 

difference between the median (continuous properties) or proportion (categorical 

properties) values in each driver group and the rest of human genes (Methods). 

Comparisons of systems-level properties between (d) candidate oncogenes with 

noncoding driver alterations (324) and canonical tumour suppressors; (e) candidate 

oncogenes (1405) and canonical tumour suppressors; (f) candidate tumour 

suppressors (1318) and canonical oncogenes.  

g. Comparisons of systems-level properties between canonical healthy, candidate 

healthy and remaining healthy drivers and the rest of human genes. 

Proportions of old (pre-metazoan), duplicated, essential genes, and proteins involved 

in complexes were compared using a two-sided Fisher’s exact test. Distributions of 

gene and protein expression, protein-protein, miRNA-gene interactions, and 

germline variation were compared using a two-sided Wilcoxon rank-sum test. False 

discover rate (FDR) was corrected for using Benjamini-Hochberg.  
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The Network of Cancer Genes: an open-access repository of annotated 

drivers. 

We collected the whole repertoire of 3347 cancer and 95 healthy drivers, their 

literature support and properties in the seventh release of the Network of Cancer 

Genes and Healthy Drivers (NCGHD) database. NCGHD is accessible through an 

open-access portal that enables interactive queries of drivers (Figure 5A) as well as 

the bulk download of the database content.  

In addition to the known or predicted mode of action and systems-level 

properties of cancer and healthy drivers, NCGHD 7.0 also annotates their function, 

alteration pattern and gene expression profile in TCGA and cancer cell lines, 

reported interactions with antineoplastic drugs and potential role as treatment 

biomarkers (Figure 5B). Altogether this constitutes an extensive compendium of 

annotation of driver genes, including information relevant for planning experiments 

involving them. 

Functional gene set enrichment analysis showed that at least 60% of enriched 

pathways (FDR <0.05) in any driver group converge to five broad functional 

processes (signal transduction, gene expression, immune system, cell cycle and 

DNA repair, Figure 5B, Supplementary Table 8). Within these, tumour suppressors 

showed a prevalence in cell cycle and DNA repair pathways, while oncogenes were 

enriched in gene expression and immune system-related pathways (Supplementary 

Table 8). Healthy drivers closely resembled the functional profile of cancer drivers, 

given the high overlap (Figure 5B). Because of the low number, it was not possible 

to assess the functional enrichment of healthy drivers not involved in cancer.  

More than 9% of canonical cancer drivers are targets of anti-cancer drugs and 

cancer drivers constitute around 40% of their targets (Figure 5C). Moreover, most of 
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the genes used as biomarkers of resistance or response to treatment in cell lines 

(Figure 5D) or clinical trials (Figure 5E) are cancer drivers, with an overwhelming 

prevalence of canonical cancer drivers.  

 

Figure 5. NCGHD annotations of driver genes 
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a. Example of the type of annotation provided in NCGHD for cancer and healthy 

drivers (in this case PTEN). Annotation boxes can be expanded for further details, 

with the possibility of intersecting data interactively (for example in the case of 

protein-protein or miRNA-gene interactions) and downloading data for local use. 

b. Proportion of Reactome levels 2-8 enriched pathways mapping to the respective 

level 1 in each driver group. Enrichment was measured comparing the proportion of 

drivers in each pathway to that of the rest of human genes with a one-sided Fisher’s 

exact test. FDR was calculated using Benjamini-Hochberg. The numbers of drivers 

and enriched Reactome pathways are reported for each group.  

Proportion of canonical and candidate cancer divers and rest of genes that are (c) 

targets of FDA approved antineoplastic drugs or biomarkers of response or 

resistance to oncological drugs in (d) cancer cell lines and (e) clinical studies. The 

corresponding numbers for each group are also shown.  
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DISCUSSION  

The wealth of cancer genomic data and the availability of sophisticated 

analytical approaches for their interpretation have substantially modified the 

understanding of how cancer starts and develops. However, our in-depth analysis of 

the vast repertoire of drivers that have been collected so far shows clear limits in the 

current knowledge of the driver landscape.  

The identification of drivers as genes under positive selection or with a higher 

than expected mutation frequency within a cohort of patients has biased the current 

cancer driver repertoire towards genes whose coding point mutations or small indels 

frequently recur across patients. This strongly impairs the ability to map the full 

extent of driver heterogeneity leading to an underappreciation of the driver 

contribution of rarely altered genes and those modified through noncoding or gene 

copy number alterations, particularly amplifications. It also results in a sizeable 

fraction of samples with very few or no cancer drivers. This gap can be solved by 

complementing cohort-level approaches with methods that account for all types of 

alterations and predict drivers in individual samples, for example identifying their 

network deregulations 63-65 or applying machine learning to identify driver alterations 

66. Alternatively, we have shown that systems-level properties capture the main 

features of cancer drivers, justifying their use for patient-level driver detection 67, 68. 

Biases are starting to emerge also in the knowledge of healthy drivers. Many 

noncancer sequencing screens only targeted cancer genes and healthy driver 

detection methods used so far were originally developed for cancer genomics. Both 

of these factors may contribute at least in part to explain the high overlap between 

drivers of cancer and noncancer evolution. An unbiased investigation of altered 

genes able to promote clonal expansion but not tumourigenesis could confirm 
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whether their properties are indeed different from cancer drivers as suggested by our 

initial analysis on the few of them that have been identified so far.  

Our literature review did not cover driver genes deriving from chromosomal 

rearrangements or epigenetic changes because of their scattered annotations in the 

literature and difficulty in mapping their properties. Adding these genes to the 

repertoire when their knowledge will be mature will help closing the gaps in the 

knowledge of the genetic drivers of tumourigenesis.  
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METHODS 

Literature curation 

A literature search was carried out in PubMed, TCGA (https://www.cancer.gov/tcga) 

and ICGC (https://dcc.icgc.org/) to retrieve cancer screens published between 2018 

and 2020 (Supplementary Figure 1A). This resulted in 135 coding and 154 

noncoding cancer screens. Of these, only 80 and 37 were retained after examining 

abstracts and full text, respectively. Criteria for removal were absence of driver 

genes or driver detection methods and the impossibility to map noncoding driver 

alterations to genes. The 37 new cancer screens were added to 273 publications 

previously curated by our team 69, totalling 310 publications (Supplementary Table 

1). A similar literature search retrieved 24 sequencing screens of noncancer tissues 

publications, 18 of which were retained after abstract and full-text examination 

(Supplementary Figure 1A, Additional File 2; Supplementary Table 1). Each 

paper was reviewed independently by two experts and further discussed if 

annotations differed to extract the list of driver genes, the number of donors, the type 

of screen (whole genome, whole exome, target gene resequencing), the cancer or 

noncancer tissues and the driver detection method (Supplementary Figure 1B).  

Canonical cancer drivers were extracted from two publications 17, 18 and the 

Cancer Gene Census 70 v.91. In the latter case, all Tiers 1 and 2 genes were 

retained, except those from genomic rearrangements leading to gene fusion 

(Supplementary Figure 1B). Collected genes were further classified as tumour 

suppressor, oncogene or having a dual role according to the annotation in the 

majority of sources. Genes with conflicting or unavailable annotation were left 

unclassified. 
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Drivers from cancer screens and canonical sources underwent further filtering 

(Supplementary Figure 1C). First, they were intersected with a list of 148 possible 

false positives 18, 41. After manual check of the supporting evidence, two drivers were 

retained as canonical, five were considered as candidates, and 41 were removed 

(Supplementary Table 2). The three resulting lists (canonical drivers, drivers from 

cancer screens and healthy drivers) were intersected to annotate canonical drivers in 

cancer screens, remaining drivers in cancer screens (candidate cancer drivers), 

canonical healthy drivers, candidate healthy drivers, and remaining healthy drivers 

(Supplementary Figure 1C, Additional File 2; Supplementary Table 3).  

Cancer types and noncancer tissues were mapped to organ systems using 

previous classification 71. Cancer types not included in this classification were 

mapped based on their histopathology (retinoblastoma to central nervous system; 

vascular and peripheral nervous system cancers to soft tissue; penile tumours to 

urologic system).  

 

Pancancer TCGA data  

A dataset of 7953 TCGA samples with quality-controlled mutation (SNVs and indels), 

copy number and gene expression data in 34 cancer types was assembled from the 

Genomic Data Commons portal (https://portal.gdc.cancer.gov/). Mutations were 

annotated with ANNOVAR 72 (April 2018) and dbNSFP 73 v3.0 and only those 

identified as exonic or splicing were retained. Damaging mutations included (1) 

truncating (stopgain, stoploss, frameshift) mutations; (2) missense mutations 

predicted by at least seven out of 10 predictors (SIFT 74, PolyPhen-2 HDIV 75, 

PolyPhen-2 HVAR, MutationTaster 76, MutationAssessor 77, LRT 78, FATHMM 79, 

PhyloP 80, GERP++RS 81, and SiPhy 82); (3) splicing mutations predicted by at least 
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one of two splicing-specific methods (ADA 73 and RF 73) and (4) hotspot mutations 

identified with OncodriveCLUST 83 v1.0.0. 

Copy Number Variant (CNV) segments, sample ploidy and sample purity 

values were obtained from TCGA SNP arrays using ASCAT 84 v.2.5.2. Segments 

were intersected with the exonic coordinates of 19756 human genes in hg19 and 

genes were considered to have CNV if at least 25% of their transcribed length was 

covered by a CNV segment. RNA-Seq data were used to filter out false positive 

CNVs. Putative gene gains were defined as copy number (CN) >2 times sample 

ploidy and the levels of expression were compared between samples with and 

without each gene gain using a two-sided Wilcoxon rank-sum test and corrected for 

multiple testing using Benjamini-Hochberg. Only gene gains with false discover rate 

(FDR) <0.05 were retained. Homozygous gene losses had CN = 0 and Fragments 

Per Kilobase per Million (FPKM) values <1 over sample purity. Heterozygous gene 

losses had CN = 1 or CN = 0 but FPKM values >1 over sample purity. This resulted 

in 2192832 redundant genes damaged in 7921 TCGA samples.  

In total, 518115 genes were considered to acquire LoF alterations because 

they underwent homozygous deletion or had truncating, missense damaging, 

splicing mutations, or double hits (CN = 1 and LoF damaging mutation), while 

1674717 genes were considered to acquire GoF alterations because they had a 

hotspot mutation or underwent gene gain with increased expression (Figure 3A). 

 

Systems-level properties 

Protein sequences from RefSeq 85 v.99 were aligned to hg38 using BLAT 86. Unique 

genomic loci were identified for 19756 genes based on gene coverage, span, score 
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and identity 87. Genes sharing at least 60% of their protein sequence were 

considered as duplicates 45.  

Evolutionary conservation was assessed for 18922 human genes using their 

orthologs in EggNOG 88 v.5.0. Genes were considered to have a pre-metazoan 

origin (and therefore conserved in evolution) if they had orthologs in prokaryotes, 

eukaryotes, or opisthokonts 52.  

Gene expression for 19231 genes in 49 healthy tissues was derived from the 

union of Protein Atlas 89 v.19.3 and GTEx 90 v.8. Genes were considered to be 

expressed in a tissue if their expression value was ≥1 Transcript Per Million (TPM). 

Protein expression for 13229 proteins in 45 healthy tissues was derived from Protein 

Atlas 89 v.19.3 retaining the highest value when multiple expression values were 

available.  

A total of 542397 nonredundant binary interactions between 17883 proteins 

were gathered from the integration of five sources (BioGRID 91 v.3.5.185, IntAct 92 

v.4.2.14, DIP 93 (February 2018), HPRD 94 v.9 and Bioplex 95 v.3.0). Data on 9476 

protein complexes involving 8504 proteins were derived from CORUM v.3.0, HPRD 

94 v.9 and Reactome v.72. Experimentally supported interactions between 14747 

genes and 1758 miRNAs were acquired from miRTarBase 96 v.8.0 and miRecords 97 

v.4.0. Degree, betweenness and clustering coefficient were calculated for protein 

and miRNA networks using the igraph R package 98 v.1.2.6. 

The loss-of-function observed/expected upper bound fraction (LOEUF) score 

for 18392 genes was obtained from gnomAD 53 v.2.1.1. Germline mutations (SNVs 

and indels) were obtained from the union of 2504 samples from the 1000 Genomes 

Project Phase 3 99 v.5a and 125748 samples from gnomAD 53 v.2.1.1. Mutations 

were annotated with ANNOVAR 72 (October 2019) and 18812 genes were 
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considered as damaged using the same definitions as for TCGA samples. A total of 

32558 germline SVs for 14158 genes were derived using 15708 samples from 

gnomAD 53 v.2.1.1. The numbers of damaging mutations and SVs per base pairs 

(bp) were calculated for each gene. 

Essentiality data for 19013 genes in 1122 cell lines were obtained integrating 

three RNAi knockdown and six CRISPR Cas9 knockout screens 54-62. Genes with 

CERES 56 or DEMETER 62 scores <-1 or Bayes score 100 >5 were considered as 

essential.  

Proportions of duplicated, pre-metazoan, essential genes and proteins 

engaging in complexes were compared between gene groups using two-sided 

Fisher’s exact test. Distributions of tissues where genes or proteins were expressed, 

protein and miRNA network properties, LOEUF scores, damaging mutations and 

SVs per bp were compared between gene groups using a two-sided Wilcoxon test. 

Multiple comparisons within each property were corrected using Benjamini-

Hochberg. For each systems-level property in each driver group (d) a normalised 

property score was calculated as:  

��������	
 ����	�� ����	 �  sgn�Δ�
� �

|Δ�| � min
�

|Δ�|

max
�

|Δ�| � min
�

|Δ�|
 

where t represents 11 gene groups (canonical drivers, candidate drivers, tumour 

suppressors, oncogenes, drivers with coding alterations, drivers with noncoding 

alterations, canonical healthy drivers, candidate healthy drivers, remaining healthy 

drivers and rest of human genes); sgn�Δ�
� is the sign of the difference; and Δ� 

indicates the difference of medians (continuous properties) or proportions 

(categorical properties) between each driver group and the rest of human 

genes. Minima and maxima were taken over all 11 gene groups for each property. 
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Pancancer cell line data 

Mutation, CNV and gene expression data for 1291 cell lines were obtained from 

DepMap 55, 101 v. 20Q3. Mutations were functionally annotated using ANNOVAR 72 

and LoF mutations were identified as described for TCGA samples. Hotspot 

mutations were detected using hotspot positions derived from TCGA. Homozygous 

gene deletions were defined as CN <0.25 times cell line ploidy and expression <1 

TPM; heterozygous gene deletions were defined as 0.25< CN<0.75 times cell line 

ploidy; gene gains were defined as CN >2 times cell line ploidy and significantly 

higher expression relative to cell lines with no gene gains. Genes with LoF or GoF 

alterations were defined as for TCGA samples. To map cell lines to organ systems, 

they were first associated with the TCGA cancer types and then the same 

classification as for TCGA was used 71. 

 

Driver functional annotation 

Gene functions were collected for 11778 proteins from Reactome 102 v.72 and KEGG 

103 v.94.1 (level 1 and 2). Driver enrichment in Reactome pathways (levels 2-8) 

compared to the rest of human genes was assessed using a one-sided Fisher’s 

exact test and corrected for multiple testing with Benjamini-Hochberg. Enriched 

pathways were then mapped to the corresponding Reactome level 1. 

 

Drug interactions 

A total of 247 FDA approved, antineoplastic and immunomodulating drugs targeting 

212 human genes were downloaded from DrugBank 104 v.5.1.8. Genetic biomarkers 

of response and resistance to drugs in cancer cell lines were obtained from 
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Genomics of Drug Sensitivity in Cancer (GDSC) 105 v.8.2. Of those, only 467 

associations with FDR ≤0.25 involving 129 drugs and 106 genes were retained. 

Genetic biomarkers of response and resistance in clinical studies were obtained from 

the Variant Interpretation for Cancer Consortium Meta-Knowledgebase 106 v.1. A 

total of 868 associations between drugs and genomic features involving 64 anti-

cancer drugs and drug combinations and 24 human genes were retained 106. 

 

Database and website implementation 

All annotations of driver genes were entered into a relational database based on 

MySQL 107 v.8.0.21 connected to a web interface enabling interactive retrieval of 

information through gene identifiers. The frontend was developed with PHP 108 

v.7.4.15. The interactive displays of miRNA-gene and protein-protein interactions 

were implemented with the R packages Shiny 109 v.1.6.0 and igraph 98 v.1.2.6 and 

ran on Shiny Server v1.5.16.958. 
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