Caspase-mediated nuclear pore complex trimming in cell differentiation and endoplasmic reticulum stress

Ukrae H. Cho¹·* and Martin W. Hetzer¹·*

¹Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA

*Correspondence should be addressed to U.H.C (icho@salk.edu) or M.W.H (hetzer@salk.edu)
Introductory Paragraph

During apoptosis, caspases degrade 7 out of ~30 nucleoporins (Nups) to irreversibly demolish the nuclear pore complex (NPC)\(^1,2\). However, for poorly understood reasons, caspases are also activated during differentiation at sublethal levels\(^3,4\). Here, we describe reversible, caspase-mediated NPC “trimming” during myogenesis. We find that sublethal levels of caspases selectively proteolyze 4 peripheral Nups, Nup358, Nup214, Nup153, and Tpr, resulting in the transient block of nuclear export pathways. Consequently, several nuclear export signal (NES)-containing focal adhesion proteins accumulate in the nucleus where they function as transcription cofactors\(^5\). One such protein, FAK (focal adhesion kinase), drives a global reconfiguration of MBD2 (methyl CpG binding domain protein 2)-mediated genome regulation. Caspase-mediated NPC trimming was also observed during neurogenesis and endoplasmic reticulum (ER) stress. Our results illustrate that NPC composition can be proteolytically modulated in response to non-apoptotic cues, and call for a reassessment of the death-centric view of caspases.

Caspase-mediated NPC proteolysis has been extensively studied in apoptotic cells\(^1,2\), where it enables rapid nuclear translocation of pro-apoptotic proteins\(^6-9\). However, it remains unknown whether caspases target NPCs in differentiating cells where their activation is sublethal and transient. We therefore assessed Nup degradation in C2C12 cells undergoing myoblast-to-myotube transition\(^10\). Strikingly, during the first few days of myogenesis, 4 peripheral Nups, Nup358, Nup214, Nup153, and Tpr, were reversibly and completely degraded in a caspase-dependent manner (Fig. 1a and Extended Data Fig. 1a). Interestingly, Nup96 and Nup93, which form NPC scaffold and are cleaved by caspases during apoptosis\(^1\), remained intact (Fig. 1a). This agrees with our previous report showing the persistence of the same Nup96 and Nup93 copies through the course of differentiation\(^11\). Hence, from the NPC quaternary structure perspective, caspases trim the cytoplasmic filaments and nuclear basket while sparing the membrane-traversing Nups, allowing rapid re-assembly of functional NPCs upon their quenching (Fig. 1b).

Although calpains, another class of proteases that are activated during myogenesis\(^12\), can proteolyze Nups like caspases\(^13\), calpain inhibition delayed but did not prevent Nup degradation in differentiating C2C12 cells (Extended Data Fig. 1a).

To assess the functional consequences of NPC trimming, we examined the nuclear permeability barrier and active transport. The exclusion of ≥40-kDa dextrans demonstrates that the passive barrier remains functional (Extended Data Fig. 1b). This can be explained by the fact that none of the central FG Nups, such as Nup98 and Nup62, are targeted by caspases\(^1,2\). However, the removal of Nup358, Nup214, Nup153, or Tpr has been shown to block nuclear
export and cause nuclear accumulation of RNAs and NES-containing proteins14-17. We thus monitored mRNA export by combining nuclear isolation and oligo(dT) bead-based poly(A)+ RNA purification. The nuclear-to-total mRNA ratio surges from 34\% to 60\% during differentiation, indicating an impairment in nuclear export (Fig. 1c). Of note, the distribution of 18S rRNA and Gapdh transcript remains unchanged (Extended Data Fig. 1c). The presence of RNAs with long half-lives18,19 allows cells to maintain homeostasis even when RNA export is temporarily inhibited.

We then asked if the localization of α-tubulin is affected. In control conditions, α-tubulin is completely cytoplasmic due to multiple NESs20. Strikingly, one day after switching to differentiation medium when NPCs are partially disintegrated, α-tubulin was detectable in the nucleus, although at a relatively low level (Fig. 1d). We next checked if focal adhesion proteins with genome-regulatory functions accumulate in the nucleus since they (1) contain NESs and (2) are likely to be released to the cytoplasm by calpains in differentiating C2C12 cells12 and enter the nucleus by passive diffusion or by hitchhiking on their respective partner transcription factors5. Out of five focal adhesion proteins that we examined (Supplementary Table 1), four (Hic-5, zyxin, paxillin, and FAK) transiently became nuclear during myogenesis (Fig. 1e). To confirm that the nuclear accumulation of NES-containing focal adhesion proteins is a consequence of caspase-mediated NPC trimming, we blocked Nup proteolysis using a pan-caspase inhibitor, Q-VD-OPh (Fig. 1f). The nuclear entrapment of Hic-5, zyxin, paxillin, and FAK was notably suppressed, albeit not fully. The residues can be ascribed to forced import by partner transcription factors (e.g., MBD2 for FAK21 and nuclear receptors for Hic-522). Finally, the cytoplasmic-to-nuclear ratio of NES-GFP is significantly lower in myoblasts undergoing cell-cell fusion than in myotubes (1.26 vs 1.63; Extended Data Fig. 2). In short, differentiation-associated caspase activity blocks nuclear export and leads to the nuclear retention of NES-containing proteins.

NPC proteolysis and its effect on nuclear transport were further analyzed by immunofluorescence. Using four different antibodies (Fig. 2a), we first analyzed whether various domains of Nup153 and Tpr are retained in late-stage apoptotic nuclei where caspase levels are significantly higher than in differentiating cells. Surprisingly, only the C-terminal epitope of Tpr dissociated from the NPC while proteolysed Nup153 and Tpr N-terminus remained bound (Fig. 2b). The nucleoplasmic pool of Crm1 was lost and it became confined to the nuclear periphery, whereas the localization of importin-β was unaffected (Extended Data Fig. 3a and b). Differentiating myoblasts exhibited an attenuated form of these phenotypes. The C-terminal fragment of Tpr dissociated in 5-10\% of the cells (Fig. 2c and d). This “TprC$^{-}$” population can be clearly distinguished from dying cells by their nuclear morphology (Extended Data Fig. 3c).

Interestingly, even TprC$^{-}$ cells showed identical Crm1 localization to myoblasts in growth medium.
(Figure 2c). This might explain why only a limited fraction of NES-containing proteins becomes nuclear and the majority remain in the cytoplasm during NPC trimming (Figure 1d and e).

What determines whether a myoblast will be TprC− or TprC+ during caspase activation? During early apoptosis when caspase activity is modest, Tpr is cleaved likely at a single locus within the Asp-rich region (Fig. 2a). As caspase levels increase, at least two additional aspartates nearby are targeted for proteolysis. Hence, TprC− cells may represent a subpopulation that experience highest-possible sublethal caspase activation in which Tpr is cleaved at multiple aspartates and loses its C-terminus.

Among the focal adhesion proteins that accumulate in the nucleus, FAK is particularly intriguing since it can facilitate cell survival, migration, cytoskeleton remodeling, and gene (de)activation, all of which are required for cell differentiation. For example, FAK binds and removes MBD2, the main component of the gene-repressive NuRD (nucleosome remodeling and deacetylation) complex, from methylated CpGs within the Myog promoter. We speculated that the FAK-mediated MBD2 dissociation during myotube formation is not limited to Myog but occurs genome-wide. To test this, we employed CUT&RUN-sequencing and examined how MBD2-binding landscape changes in differentiating C2C12 cells (Extended Data Fig. 4a). In confluent myoblasts, we detected 9791 MBD2-bound loci, and the number decreased to 354 in 24 hours (Fig. 3a). Pharmacological caspase inhibition, which partially blocks the nuclear accumulation of FAK (Fig. 1f), attenuates the loss of MBD2 binding (Extended Data Fig. 4b). Of note, MBD2 protein level remains constant during this time window, although it is eventually reduced in mature myotubes (Fig. 3b and Extended Data Fig. 4c). After the completion of myogenic differentiation, only few tens of MBD2-interacting sites were identifiable, suggesting that MBD2 binding rapidly dissolves during myogenesis.

MBD2 overexpression has been reported to cause heterochromatin clustering like its cousin, MeCP2 (methyl CpG-binding protein 2). However, we find that at the endogenous levels, only MeCP2 localizes to the chromocenters and that MBD2 does not spatially overlap with MeCP2 (Extended Data Fig. 5a and b), indicating that the two methyl CpG-binding proteins carry out disparate tasks. To better understand MBD2 in the context of myogenesis, we further analyzed MBD2 CUT&RUN-sequencing data from confluent myoblasts (Day 0 in Fig. 3a). About a quarter of the peaks were in promoters, roughly one-third in introns, and another one-third in distal intergenic regions (Extended Data Fig. 6a). Intense peaks were predominantly located within promoters (Extended Data Fig. 6b), and the gene ontology (GO) term analysis revealed that MBD2 primarily targets the promoter of the genes that have a direct link to myogenic differentiation, with actin cytoskeleton organization (0030036) and muscle structure development.
We then evaluated how transcription changes after MBD2 is removed from the promoters. Considering that most MBD2-bound promoters are tri-methylated at Histone H3 lysine 4 in myoblasts (Extended Data Fig. 7a and b), we expected that MBD2-target genes would be upregulated after MBD2 dissociation, or the loss of the NuRD complex. However, RNA-sequencing revealed that out of 1508 genes, only 218 exhibit >2-fold increase in transcript levels whereas 336 show >2-fold decrease (Fig. 3d and Extended Data Fig. 7c). It is possible that other gene-repressing mechanisms are taking over during myogenesis (e.g., non-MBD2 methyl CpG binding proteins, heterochromatin reorganization, and gene-specific repressors).

To summarize, caspase-mediated NPC trimming coincides with nuclear sequestration of NES-containing proteins (Fig. 3e), which can be transformative as in the case of FAK or inconsequential (presumably) as in the case of α-tubulin. Our finding agrees with a previous immunofluorescence-based study28 that described (1) the transient nuclear translocation of an NES-containing E3 ligase Nedd4 during myogenesis, which causes Pax7 degradation, and (2) the 2- to 3-fold enhancement of myogenin activation in the presence of leptomycin b, a Crm1 inhibitor. We validated that a partial dose of leptomycin b increases myogenin at 24 hours-post-differentiation by immunoblotting (Extended Data Fig. 7d).

We then sought to determine how caspase-3 is sublethally activated during myogenic differentiation. Given the modest processing of caspase-9 (Extended Data Fig. 8a), we reasoned that there might be additional factors that contribute to caspase-3 activation, and checked whether caspase-inhibiting proteins are downregulated. Among eight inhibitors of apoptosis proteins (IAPs), cIAP-1/2, XIAP, and survivin are considered the major caspase counteractors29. XIAP and survivin can be regulated by the Notch signaling pathway30,31, which plays a key role in myogenesis. We thus monitored the expression of these IAPs during myotube formation in the absence or presence of DAPT, a γ-secretase inhibitor that blocks Notch intracellular domain release (Fig. 4a). We noted two intriguing points. First, survivin was dramatically downregulated in the first 24 hours. Second, none of the examined IAP levels were affected by DAPT, indicating that Notch signaling does not control these proteins during myogenesis.

To validate that survivin downregulation amplifies caspase-3 activity, we incubated HCT116 cells with 1541B and/or YM155, chemicals that catalyze the proteolytic processing of...
upregulate myogenin, the master regulator, and that the key function of caspases is to promote the transcriptional activation of myogenin enabled the upregulation of both endogenous myogenin and MHC even when a pan-caspase inhibitor was present. (The myotubes, however, appeared not as robust as the ones formed in the presence of DMSO or doxycycline alone; data not shown). This demonstrates that the key function of caspases is to upregulate myogenin, the master regulator, and that the proteolyses of other targets are ancillary events that render cells amenable for differentiation.

We also explored whether caspase-3 activation is linked to the phosphatase activity of calcineurin (Fig. 4c), as it is required for the nuclear translocation of NFAT (nuclear factor of activated T-cells) and the transcriptional activation of myogenin. We differentiated C2C12 cells in the absence or presence of FK506, a calcineurin-inhibiting macrolide, and found that the p17 form of caspase-3 arises even when myogenin upregulation is blocked. This result illustrates that the calcineurin/NFAT/myogenin pathway is orthogonal to the caspase/myogenin pathway. Taken together, we have identified a new cascade – (1) caspase activation, (2) peripheral Nup degradation, and (3) nuclear retention of NES-containing proteins – that regulates the expression of myogenin, Pax7, and other myogenesis-related genes (Fig. 4d).
at the individual cell level, NPC trimming will precede and coincide briefly with myogenin expression. Consistently, we could identify both myogenin-negative and -positive TprC- C2C12 cells (Fig. 4e). The same transitory cell states appear in differentiating primary myoblasts as well (Extended Data Fig. 9). Lastly, we found that pharmacological ERK1/2 inhibition, which recently has been shown to stimulate myogenesis\(^4\), accelerates survivin downregulation, caspase-3 activation, Nup153 degradation, and myogenin induction (Extended Data Fig. 8d). This highlights that caspase-mediated NPC trimming is one of the earliest key events in myogenesis.

We then asked whether caspase-mediated NPC trimming is a general phenomenon associated with cell differentiation. Neural precursor cells were differentiated into mature, post-mitotic neurons, and caspase-related events were analyzed (Fig. 5a). As in myogenic differentiation, survivin is highly expressed in precursor cells but undetectable in mature neurons. As survivin decreases, caspase-3 is activated and Nup153 and PARP are degraded. This suggests that caspases play similar roles during neuronal differentiation, albeit over a longer duration.

We also tested whether partial NPC disintegration takes place during ER stress since the calpain/caspase activation pathway in unfolded protein response is similar to that in myogenesis. C2C12 myotubes, reserve cells, and myoblasts were treated with 1 µg/mL tunicamycin (Fig. 5b). Active caspase-3 arose in all three cell types and Tpr and Nup153 degradation was recognizable by 18 hours in C2C12 myoblasts and reserve cells; however, in myotubes, the two Nups were fully proteolyzed by 6 hours. The result can be attributed to the difference in survivin and XIAP expression levels, both of which are lowest in myotubes at 0 hour. We conclude that NPC trimming occurs during ER stress at varying rates in different cell types. ER stress-induced NPC trimming exhibits multiple similarities to that during myogenesis: (1) the average cytoplasmic-to-nuclear ratio of NES-GFP of myonuclei decreased from 1.60 to 1.44 (Extended Data Fig. 10a), (2) 5-10% of myotubes become TprC- (Extended Data Fig. 10b), and (3) Nup93 remains unaffected, suggesting that scaffold Nups are protected from caspases compared to peripheral Nups (Fig. 5b). Additionally, we tested whether low-level but sustained ER stress induces the same phenotype in myotubes (Fig. 5c). In fact, several myopathies involve chronic, rather than acute, ER stress and caspase activation\(^4\). We maintained differentiated C2C12 cells at low doses of tunicamycin (<50 ng/mL) for a week, and again, major peripheral Nups were noticeably degraded while the breakdown of Nup93 was minimal. NPC trimming may contribute to cellular homeostasis loss in muscular diseases that accompany ER stress (Fig. 5d).

In summary, our study demonstrates that the NPC cytoplasmic filaments and nuclear basket are transiently removed by caspases in differentiating and ER-stressed cells. This process
is distinct from terminal NPC destruction in apoptosis. Caspase-mediated NPC trimming is a reversible process that, for a set period during differentiation, impairs nuclear export. We found that during myogenesis, it is exploited to increase the nuclear levels of focal adhesion proteins that can double as transcription cofactors. In addition, NPC trimming could reset NPC-genome interaction during differentiation. NPCs bind and regulate cell identity genes, and transient proteolysis of the nuclear basket can be an elegant reinitialization mechanism. During ER stress, the same phenomenon can potentially be utilized to curtail mRNA export, thereby reducing the protein synthesis/folding load in the ER. We primarily focused on the NPC, but the degradation of other caspase substrates might promote cell differentiation in their own ways. For example, caspases target several cytoskeletal proteins (e.g. αII-spectrin in Fig. 1a) and can accelerate morphological transformation. Proteolytic inactivation of transcription factors and translation-related proteins can also facilitate transcriptome and proteome turnover. Our findings support the idea that caspases initially evolved to change cell morphology, behavior, and identity, and that apoptosis is rather an extreme form of caspase-mediated cellular transformation.
Acknowledgments

We thank the members of the Hetzer lab and Jongmin Kim (Massachusetts General Hospital) for the critical reading of the manuscript; Kenneth Diffenderfer and Aimee Pankonin (Stem Cell Core Facility at the Salk Institute) for help with neurogenesis; Carol Marchetto and Fred Gage (the Salk Institute) for providing H9 embryonic stem cells; Lorenzo Puri, Alexandra Sacco, and Luca Caputo (Sanford Burnham Prebys) for helpful discussions and sharing mouse primary myoblasts. This work was supported by a Glenn Foundation for Medical Research Postdoctoral Fellowship in Aging Research (U.H.C.), the NOMIS foundation (M.W.H.), and the National Institutes of Health (R01 NS096786 to M.W.H.).

Author contributions

U.H.C. performed experiments. U.H.C. and M.W.H. conceived the study and wrote the manuscript.

Data availability statement

CUT&RUN- and RNA-sequencing data have been uploaded to the Gene Expression Omnibus (GEO) database (NCBI) under accession numbers GSE183520 and GSE183521.

Competing financial interests

The authors declare no competing financial interests.
References

Fig. 1 | Caspases proteolyze peripheral Nups during myogenesis (+ Extended Data Fig. 1-2)

a Differentiating C2C12

<table>
<thead>
<tr>
<th>Protein</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5MT</th>
<th>5RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nup358</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Nup214</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Nup153</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Nup62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Tpr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Nup153</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Nup96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Nup93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Nup50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

b

![Diagram showing Caspases proteolyze peripheral Nups during myogenesis](https://example.com/diagram.png)

c

% mRNA in the nucleus

<table>
<thead>
<tr>
<th>Day</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5MT</th>
<th>5RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5MT</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5RC</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

d

Cytoplasmic (30 μg) | Nuclear (30 μg)

<table>
<thead>
<tr>
<th>Protein</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamin B1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>α-Tubulin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

e

Cytoplasmic (25 μg) | Nuclear (25 μg)

<table>
<thead>
<tr>
<th>Protein</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hic-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Zyxin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Paxillin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>FAK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Extended Data

Extended Data Fig. 1-2 available under a CC-BY-NC-ND 4.0 International license.
Fig. 2 | Tpr C-terminal fragment dissociates from the NPC during myogenesis (+ Extended Data Fig. 3)

a

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>657</th>
<th>874</th>
<th>1475</th>
</tr>
</thead>
<tbody>
<tr>
<td>hNup153</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nup153 (Internal)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tpr (C-term)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hTpr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coiled-coil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp-rich</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Crm1-binding region:

- Antibody
- Immunogens

b

DAPI

Nup153 (C-term)

Nup153 (Internal)

Tpr (C-term)

Merge

DAPI

Tpr (N-term)

Nup153 (Internal)

Tpr (C-term)

Merge

c

DAPI

Crm1

Nup153 (Internal)

Tpr (C-term)

Nup153/Tpr merge

Day 0

Day 1

Maximum intensity Z projection (Day 1)

DAPI

Merge

Tpr (C-term)

Nup153 (Int.)

10 μm

10 mm
Fig. 3 | Transient nuclear retention of FAK resets MBD2-mediated genome regulation during myogenesis (+ Extended Data Fig. 4-7)

(a) CUT&RUN peak number

(b) Cytoplasmic (20 μg) and Nuclear (20 μg) MBD2 peak number over time

(c) Genes with MBD2 at the promoter (Day 0)

(d) RNA-seq log₂ fold change (MT vs MB)

(e) Temporal timeline of Caspase activity, NPC export activity, and nuclear levels of NES-containing proteins during differentiation.
Fig. 4 | Caspase activation integrates multiple pathways for myogenin upregulation (+ Extended Data Fig. 8-9)

a
Day 1 Day 0 Day 1 Day 2
kDa

<table>
<thead>
<tr>
<th>μM DAPT</th>
<th>0</th>
<th>2.5</th>
<th>10</th>
<th>0</th>
<th>2.5</th>
<th>10</th>
<th>0</th>
<th>2.5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaved Notch1</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>XIAP</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Survivin</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Caspase-3 (p17)</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

b

| DMSO Dox Q-VD-OPh Dox + Q-VD-OPh |
DMSO	0	1	2	3
Dox	1	2	3	1
Q-VD-OPh	2	3	1	2
Day	3	3	3	3

| kDa |
| 250 |
| 50 |
| 37 |
| 25 |
| 15 |

c

| 0 | 18 | 24 | 30 |
| 25 |
| 100 ng/mL FK506 |

d

- Myoblasts
 - Ca²⁺→ Calpains
 - ER stress→ Caspase-12
 - Survivin
- Active Caspase-3
- Nup degradation
- Calcineurin
- Nuclear FAK
- Nuclear NFAT
- Myogenin
- Myosin heavy chains

e

Maximum intensity Z projection (Day 1)

- Myogenin
- Nup153 (Internal)
- Tpr (C-term)
- Merge

- TprC− Myog−
- TprC+ Myog+
Fig. 5 | Caspase-mediated NPC trimming occurs during neurogenesis and ER stress (+ Extended Data Fig. 10)
Figure Legends

Figure 1 | Caspases proteolyze peripheral Nups during myogenesis. a, Immunoblots showing the degradation of Nups, PARP, and αII-spectrin, the proteolytic activation of caspase-3 and -12, and the upregulation of myogenin in differentiating C2C12. MT: myotubes, RC: reserve cells. b, Schematic representation of caspase-mediated NPC trimming during myogenic differentiation. c, Nuclear-to-total mRNA ratio in C2C12 cells undergoing myoblast-to-myotube transition. In red is the average value of three replicates from each point. d, Localization of lamin B1 and α-tubulin in differentiating C2C12 cells was assessed by immunoblotting. Nuclear α-tubulin is marked with an arrow. 30 μg of protein from cytoplasmic or nuclear lysate was loaded to each lane. e, Cytoplasmic and nuclear levels of NES-containing focal adhesion proteins in differentiating C2C12 cells were assessed by immunoblotting. For both cytoplasmic and nuclear fractions, 25 μg of protein was loaded per lane. f, C2C12 cells were differentiated in the absence or presence of a pan-caspase inhibitor, Q-VD-OPh (30 μM) for 24 hours, and nuclear and cytoplasmic fractions were obtained. Nuclear accumulation of NES-containing focal adhesion proteins, caspase-mediated NPC trimming, and p53 degradation were examined by western blotting. 17.5 μg of cytoplasmic or nuclear protein was loaded per lane.

Figure 2 | Tpr C-terminal fragment dissociates from the NPC during myogenesis. a, Domain architecture of human Nup153 and Tpr. Immunogenic fragments used to generate Nup153 and Tpr antibodies are mapped on each protein. Aspartates (D) in Tpr aspartate-rich region are colored in red. b, C2C12 cells were immunostained using two Nup153 and two Tpr antibodies. See a for corresponding immunogenic regions. In dashed boxes are apoptotic nuclei. c, C2C12 cells undergoing myogenic differentiation (day 0 and 1) were immunostained for Crm1, Nup153, and Tpr. In dashed boxes are TprC- cells. d, TprC- cells were identified by immunofluorescence and maximum intensity Z projection micrographs were reconstructed from confocal imaging.

Figure 3 | Transient nuclear retention of FAK resets MBD2-mediated genome regulation during myogenesis. a, The number of MBD2 and H3K4Me3 CUT&RUN peaks in differentiating C2C12 cells. b, Cytoplasmic and nuclear levels of MBD2 in differentiating C2C12 cells were determined by western blotting. 20 μg of protein was loaded per lane. c, GO analysis of the genes whose promoters are bound with MBD2 in confluent myoblasts (day 0). In parentheses are seven-digit GO IDs. GO ID 0048667 corresponds to “cell morphogenesis involved in neuron differentiation”. d, Transcriptional changes after MBD2 is removed from the promoter of respective
genes. Y-axis denotes MBD2 CUT&RUN peak intensity in confluent myoblasts (day 0). e, Schematic representation of caspase activation and downstream events that take place during myogenesis.

Figure 4 | Caspase activation integrates multiple pathways for myogenin upregulation. a, Immunoblots showing the expression levels of cleaved Notch1, caspase-inhibiting proteins (cIAP1/2, XIAP, and survivin), myogenin, and active caspase-3 (p17) in C2C12 cells. DAPT was added at 0, 2.5, or 10 µM on day -1, and maintained throughout differentiation. b, C2C12 stable cell line that expresses GFP-myogenin in a doxycycline-dependent manner was differentiated in the absence or presence of 0.5 µM doxycycline and/or 30 µM Q-VD-OPh. Myosin heavy chain (MHC), exogenous and endogenous myogenin, and caspase-3 (active p17 and inactive p20) levels were determined by immunoblotting. c, Upregulation of myogenin and formation of caspase-3 p17 were evaluated in the presence of 0, 25, or 100 ng/mL FK506 by immunoblotting. d, A working model for caspase activation, peripheral Nup degradation, and myogenin upregulation during myoblast-to-myotube conversion. e, C2C12 cells that have undergone myogenic differentiation for 1 day were immunostained for myogenin, Nup153, and Tpr. In yellow and blue dashed boxes are myogenin-negative and -positive TprC− cells, respectively.

Figure 5 | Caspase-mediated NPC trimming occurs during neurogenesis and ER stress. a, Expression levels of caspase-inhibiting proteins (cIAP-1/2, XIAP, survivin), neuronal differentiation markers (Sox2 and βIII-tubulin), caspase substrates (Nup153 and PARP), and active caspase-3 (p17) in differentiating neurons were determined by western blotting. b, Acute ER stress was induced using 1 µg/mL tunicamycin in C2C12 myotubes, reserve cells, and myoblasts, and the levels of Nups, BiP, caspase-inhibiting proteins (cIAP-1/2 and XIAP), myosin heavy chain (MHC), myogenin, and active caspase-3 (p17) were monitored by immunoblotting. c, Chronic ER stress was induced in differentiated C2C12 cells for 7 days using low doses of tunicamycin (0, 10, 25, or 50 ng/mL). The integrity of Nups and the induction of BiP and active caspase-3 (p17) were assessed by immunoblotting. d, Schematic representation illustrating caspase activation and NPC proteolysis patterns in apoptosis, cell differentiation, and ER stress.
Methods

Antibodies and chemicals. Primary and secondary antibodies and chemicals used in this study are summarized in Supplementary Table 2, 3, and 4.

Immunoblot techniques. Cultured cells were washed with phosphate-buffered saline (PBS) and harvested by tryptsinization. Cell pellet was washed with PBS, and lysed in RIPA buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% Triton X100, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate) containing protease and phosphatase inhibitors (Pierce Protease Inhibitor Mini Tablet, EDTA-free, Thermo Scientific; PhosSTOP, Roche) for 45 minutes at 4°C. Insoluble material was pelleted at 16,000 x g at 4°C for 20 minutes. 15-30 µg of total protein per sample were added 6x Laemmli sample buffer, boiled for 4 minutes, and loaded on a Tris or Bis-tris gel for electrophoresis. Proteins were transferred to a nitrocellulose membrane and stained with Ponceau S solution to confirm equal protein loading and successful transfer. After washing with Tris-buffered saline containing 0.05% (w/v) Tween 20 (TBST) several times, the membrane was blocked with 5% non-fat milk power in TBST for an hour at room temperature, and subsequently immunoblotted at 4°C overnight with primary antibodies listed in Supplementary Table 2. Chemiluminescent detection was conducted using either SuperSignal West Pico or Femto kits (Thermo Scientific) after 45-minute incubation with secondary antibodies listed in Supplementary Table 3 at room temperature. Western blot images were obtained using KwikQuant Imager (Kindle Biosciences) or Odyssey CLx (LI-COR).

Cloning. Vectors, PCR templates, and PCR primers used in this study are listed in Supplementary Table 5. In-fusion cloning was performed using the In-Fusion HD EcoDry Cloning Plus kit (Takara), and standard cut-and-paste cloning using T7 DNA ligase (New England Biolabs).

Cell culture. C2C12 and HCT116 cells were obtained from ATCC. C2C12 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 20% fetal bovine serum and penicillin-streptomycin. For myogenic differentiation, they were grown to confluency, washed with PBS twice, and added DMEM with 2% horse serum and the same antibiotics. C2C12 differentiation medium was replenished every 24 or 48 hours. After 120 hours, mature myotubes and reserve cells were obtained. Myotubes were harvested with minimal contamination of reserve cells by mild trypsinization (1:3 or 1:4 dilution of trypsin in PBS). HCT116 cells were cultured in...
McCoy’s 5A Medium supplemented with 10% fetal bovine serum and penicillin-streptomycin. H9 embryonic stem cells were differentiated to neural precursor cells using a previously published method45. Purified neural precursor cells were cultured in neurogenic conditions (DMEM/F12 based medium with 1x N2, 1x B27, 20ng/mL GDNF, 20ng/mL BDNF, 1mM cAMP, and 200nM ascorbic acid) for 4 weeks to generate mature post-mitotic neurons.

C2C12 cell fractionation. Cells were harvested by trypsinization, washed with PBS, and chilled on ice. Cells were then lysed in ice-cold 0.1% NP40 in PBS, and rotated at 4°C for 10 minutes. Nuclei were pelleted by centrifugation at 500 x g at 4°C for 4 minutes, and the supernatant (cytoplasmic fraction) was transferred to a fresh tube and stored at -80°C until use. Nuclei were again resuspended in ice-cold 0.1% NP40 in PBS, rotated at 4°C for 5 minutes, and pelleted at 500 x g at 4°C for 4 minutes. The supernatant was discarded, and the pellet (nuclear fraction) was stored at -80°C until use.

Lentivirus packaging, infection, and selection. Third-generation lentiviral protocol was followed to produced virus in HEK293T cells (obtained from the Salk Stem Cell Core Facility). C2C12 cells were infected with viral supernatant at 30-40% confluency in the presence of 6 µg/mL polybrene for 24 hours, and selected 24 hours after infection with 1 mg/mL puromycin.

RNA fluorescence in situ hybridization (FISH). C2C12 cells were grown on a No. 1.5 coverslip placed in a 12-well cell culture plate. After removing media, cells were washed with PBS, and fixed in 3.7% paraformaldehyde in PBS for 10 minutes at room temperature. Fixed cells were washed with PBS twice and permeabilized in 70% (vol/vol) ethanol at 4°C for at least a day. We then followed Stellaris RNA FISH protocol for adherent cells (https://www.biosearchtech.com/support/resources/stellaris-protocols) to fluorescently visualize RNAs. Fluorescent images were obtained using a Leica SP8 confocal microscope equipped with a 63x oil-immersion objective. Images were cropped and pseudocolored using FIJI. See **Supplementary Table 6** for RNA FISH probes used in this study.

Immunofluorescence. C2C12 cells and mouse primary myoblasts were grown on a chambered cell culture slide (Ibidi). For the latter, slides were coated with Matrigel prior to seeding. Cells were fixed in PBS containing 2% paraformaldehyde for 10 minutes at room temperature, and washed with PBS 3 times. Fixed cells were permeabilized and blocked in immunofluorescence buffer (PBS containing 0.1% Triton-X, 0.02% sodium dodecyl sulfate, and 10 mg/mL bovine serum
albumin) for 30 minutes. The cells were then incubated with primary antibodies diluted in immunofluorescence buffer at room temperature for 2 hours, washed 3 times with immunofluorescence buffer, and incubated with the appropriate secondary antibodies diluted in immunofluorescence buffer at room temperature for 45 minutes. Finally, the cells were washed with immunofluorescence buffer 3 times, and added VECTASHIELD antifade mounting medium with DAPI (Vector Laboratories). Fluorescent images were obtained using a Leica SP8 confocal microscope equipped with a 63x oil-immersion objective. Images were cropped and pseudocolored using FIJI. See Supplementary Table 2 and 3 for antibodies used for immunofluorescence.

Poly(A)⁺ **RNA quantification.** Poly(A)**⁺** RNA was isolated from nuclei and whole cells (see C2C12 cell fractionation above) using the Magnetic mRNA Isolation Kit (New England Biolabs). Two rounds of binding, washing, and elution were performed. Eluted RNA was quantified via Qubit RNA HS Assay (Invitrogen).

Dextran exclusion assay. 20, 40, and 65-85 kDa dextrans (Sigma, FD20S/FD40S/T1162) were dissolved in “Transport Buffer (TB)” (20 mM HEPES (pH 7.3), 110 mM potassium acetate, 5 mM sodium acetate, 1 mM EGTA, and 2 mM DTT) at 10 mg/ml. Degradation products were removed using 10 and 30 kDa-cutoff size exclusion columns (Millipore UFC501096/UFC503096). Dextran stock solutions were diluted in TB 1:50 to 1:200 prior to use. C2C12 cells seeded in a chambered cell culture slides were incubated with TB supplemented with 20 µg/ml digitonin for 5 min at room temperature, washed with TB (without digitonin) three times, and added dextrans. After 7.5 min at 37°C, images were acquired using a Leica SP8 confocal microscope equipped with a 63x oil-immersion objective. Images were cropped and pseudocolored using FIJI.

MBD2 CUT&RUN-sequencing. 300-400 thousand cells were used for each CUT&RUN-sequencing reaction. C2C12 cells were harvested by trypsinization, washed in PBS, and stored in fetal bovine serum supplemented with 10% dimethyl sulfoxide until use. MBD2-bound genomic fragments were prepared using the CUT&RUN assay kit (Cell Signaling Technology, 86652). MBD2 antibody (Sigma, M7318) was used at 10 µg/mL. Sequencing libraries were prepared using NEBNext Ultra II DNA library prep kit for Illumina and NEBNext Multiplex Oligos for Illumina (New England Biolabs, E7645 and E7600). Libraries were quantified and analyzed using Qubit dsDNA HS assay kit (Thermo Fisher Scientific) and a TapeStation 2200 with high-sensitivity DNA kit (Agilent). Libraries were sequenced in paired-end 150 base pair mode on the Illumina NovaSeq
6000 platform. Paired-end fragments were trimmed, mapped to the mm10 genome, and filtered using Trim Galore (https://github.com/FelixKrueger/TrimGalore), Bowtie246, and SAMtools47, respectively. Peaks were identified using MACS248 and further filtered and analyzed with in-house Python scripts that leveraged pyBigWig (https://github.com/deeptools/pyBigWig) and pyBedTools49 packages. GO term analyses (biological processes) were performed on http://metascape.org50. Genomic annotation of the peaks was conducted using ChIPseeker51. CUT&RUN-sequencing data were plotted using karyoploteR52.

mRNA-sequencing. 1-2 million C2C12 cells were lysed in 1 ml TRIzol. 0.4 ml chloroform was added and vigorously shaken for RNA extraction. The aqueous phase was transferred to a fresh tube, and one volume of 70% ethanol was added dropwise while vortexing at the lowest speed at room temperature. The mixture was purified using RNeasy Mini kit (Qiagen) to yield several hundred ng/\(\mu\)L total RNA. mRNA-sequencing was performed in paired-end 150 base pair mode on the Illumina NovaSeq 6000 platform. Paired-end fragments were mapped to mm10, filtered, and assembled into transcripts using HISAT253, SAMtools47, and StringTie54. Differential expression was evaluated using DESeq255, and further analyzed with in-house python scripts.
References

