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Abstract 

Previous research using electroencephalography (EEG) and magnetoencephalography (MEG) 

has shown that neural oscillatory activity within the alpha band (8-12 Hz) becomes slower 

and lower in amplitude with advanced age. However, most studies have focused on 

quantifying age-related differences in periodic oscillatory activity with little consideration of 

the influence of aperiodic activity on these measures. The aim of this study was to 

investigate age differences in aperiodic activity inherent in the resting EEG signal. We 

assessed aperiodic activity in 85 healthy younger adults (mean age: 22.2 years, SD: 3.9, age 

range: 18–35, 37 male) and 92 healthy older adults (mean age: 66.1 years, SD: 8.2, age 

range 50–86, 53 male) by fitting the 1/f-like background activity evident in EEG power 

spectra using the fitting oscillations & one over f (FOOOF) toolbox. Across the scalp, the 

aperiodic exponent and offset were smaller in older compared to younger participants, 

reflecting a flatter 1/f-like slope and a downward broadband shift in the power spectra with 

age. Before correcting for aperiodic activity, older adults showed slower peak alpha 

frequency and reduced peak alpha power relative to younger adults. After correcting for 

aperiodic activity, peak alpha frequency remained slower in older adults; however, peak 

alpha power no longer differed statistically between age groups. The large sample size 

utilized in this study, as well as the depth of analysis, provides further evidence that the 

aperiodic component of the resting EEG signal is altered with aging and should be 

considered when investigating neural oscillatory activity.  

Keywords: electroencephalography, oscillations, age, alpha, aperiodic, 1/f    
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1. Introduction 

Aging is associated with various physical, biological, and cognitive changes that can greatly 

impact one’s physical and mental health. From mid to late life, the brain undergoes age-

related changes in both morphology and physiological dynamics, each of which has been 

linked to changes in behavior and cognition (Harada et al., 2013; Phillips and Andres, 2010). 

A considerable body of research using electroencephalography (EEG) and 

magnetoencephalography (MEG) has shown changes in neural oscillatory dynamics with 

increasing age, especially in the alpha band (~8–12 Hz) (Babiloni et al., 2006; Grandy et al., 

2013; Michels et al., 2013; Scally et al., 2018)t al., 2018; Schaworonkow and Voytek, 2021; 

Vaden et al., 2012). Individual peak alpha frequency has been found to represent an 

individual, physiological characteristic that increases from childhood to adulthood, but 

begins slowing around mid-life (Michels et al., 2013; Scally et al., 2018). Older adults exhibit 

significantly lower peak alpha parameters (both frequency and power) relative to younger 

adults (Babiloni et al., 2006; Klimesch, 1999; Sghirripa et al., 2020), with slowing of alpha 

oscillatory activity and reduced alpha power also observed in multiple age-related 

dementias, including Alzheimer’s Disease (Neto et al., 2015; Neto et al., 2016), Parkinson’s 

Disease (Jeong et al., 2016), Lewy Body Dementia (Colloby et al., 2016; Garn et al., 2017), 

and frontotemporal dementia (Nishida et al., 2011).  

 

In addition to periodic oscillations, recent research has shed light on other components of 

the EEG broadband signal that could have implications for the interpretation of past 

findings. Neural oscillations are reflected as “periodic” fluctuations in the EEG signal and are 

commonly quantified by averaging across fixed frequency bands in EEG power spectra. 

However, this approach ignores the contribution of “aperiodic” activity to the power 
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spectra, commonly referred to as background noise, which is characterized by a 1/f-like 

distribution, and changes with task demand and behavioral state (Donoghue et al., 2020; 

Grigolini et al., 2009; Kumar and Parmananda, 2018; Voytek et al., 2015). Aperiodic activity 

can be characterized by two parameters:  an offset parameter reflecting the uniform shift of 

power across frequencies and a slope parameter, which delineates the steepness of the 1/f-

like function. This slope parameter, often referred to as ‘aperiodic exponent’, is thought to 

reflect a shift in the excitation/inhibition balance and a decoupling of neuronal spiking 

activity from the oscillation frequency (Donoghue et al., 2020; Gao et al., 2017; Manning et 

al., 2009; Miller et al., 2012; Voytek and Knight, 2015; Winawer et al., 2013).  

 

A number of recent studies have demonstrated age differences in aperiodic activity. For 

example, task-related EEG studies have suggested that as age increases, the aperiodic slope 

flattens (Dave et al., 2018; Voytek et al., 2015; Waschke et al., 2017), possibly reflecting age-

related changes in excitation/inhibition balance (Gao et al., 2017) and an increase in 

asynchronous neuronal population spiking that is detrimental to cognitive performance 

(Voytek et al., 2015; Voytek and Knight, 2015). However, it remains largely unknown how 

these differences in the aperiodic component, if left unaccounted for, might affect the 

measurement of alpha oscillatory dynamics in aging. A recent study by Donoghue et al. 

(2020) assessed age differences in resting alpha oscillations, as measured by EEG, after 

isolating the oscillatory peak from the aperiodic background. Similar to previous studies 

measuring EEG during task performance, they observed a flatter aperiodic slope and 

reduced offset in older, relative to younger adults. Peak alpha characteristics also differed 

between age groups after adjusting for aperiodic activity, with older adults having 

decreased peak alpha power and a slower peak alpha frequency, although the age 
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difference in aperiodic-adjusted peak alpha power was reduced compared to non-adjusted 

power. 

 

It is worth noting that the intention of the Donoghue et al. (2020) study was to introduce an 

algorithm for parameterizing neural power spectra into periodic and aperiodic components, 

and that analysis of age-related differences in resting EEG spectral parameters were 

included as one example to demonstrate the algorithm’s utility. Accordingly, the scope of 

analysis was understandably limited to include just a single channel and a relatively small 

sample size (16 younger, 14 older). Therefore, the aim of the present study was to extend 

these findings to consider whole-scalp resting EEG recordings from a much larger sample of 

younger and older adults. We hypothesized that, in accordance with previous research, 

aperiodic exponent and offset would be reduced in older adults, and that these age 

differences in aperiodic activity drive some of the differences in peak alpha characteristics 

that are otherwise attributed to oscillatory changes. 

 

2. Methods 

2.1 Participants 

Data were combined from six similarly designed studies that all included an eyes-closed 

resting EEG recording, resulting in 85 younger adults (mean age: 22.2 years, SD: 3.9, age 

range: 18–35, 37 male) and 92 older adults (mean age: 66.1 years, SD: 8.2, age range 50–86, 

53 male) in the final sample. All older adults were without cognitive impairment, as assessed 

using either Mini-Mental State Examination (score >24) (Folstein et al., 1975) or 

Addenbrooke’s Cognitive Examination (ACE-III) (score >82) (Mioshi et al., 2006). Exclusion 

criteria for both age groups were history of psychological or neurological disease, a history 
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of substance abuse, medications that alter the function of the nervous system, and an 

uncorrected hearing or visual impairment. All participants gave written consent and the 

studies were approved by the University of Adelaide Human Research Ethics Committee, 

The Queen Elizabeth Hospital Human Research Ethics Committee, and the University of 

South Australia Human Research Ethics Committee. 

 

2.2 EEG data acquisition 

Participants were seated in a comfortable chair in a quiet room. They were asked to keep 

their eyes closed during recording, to remain as still, quiet, and relaxed as possible, and to 

refrain from actively engaging in any cognitive or mental tasks. EEG data were recorded for 

3 minutes from either 57 or 62 electrodes arranged in a 10-10 layout (Waveguard, ANT 

Neuro, Enschede, The Netherlands) using a Polybench TMSi EEG system (Twente Medical 

Systems International B.V, Oldenzaal, The Netherlands) or an ASA-lab EEG system (ANT 

Neuro, Enschede, Netherlands). Conductive gel was inserted into each electrode using a 

blunt-needle syringe in order to reduce impedance to <5 kΩ. The ground electrode was 

located at AFz. Signals were sampled at 2048 Hz, amplified 20x, online filtered (DC–553 Hz), 

and referenced to the average of all electrodes. 

 

2.3 EEG pre-processing 

Resting EEG data were pre-processed using EEGLAB (Delorme and Makeig, 2004), TESA 

(Rogasch et al., 2017), and customized scripts in MATLAB (R2019a, The Mathworks, USA). 

Poor or disconnected channels were removed. Data were then band-pass (1–100 Hz) and 

band-stop (48–52 Hz) filtered (zero-phase Butterworth, fourth-order) and epoched in 2-

second segments. Due to differences in pre-processing pipelines between studies, a subset 
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of data had been down-sampled to 256 Hz prior to epoching (25 younger and 32 older 

participants; chi-square test, χ2
1 = 0.58, p = .44). Independent component analysis was 

performed using the FastICA algorithm (Hyvärinen and Oja, 2000) and artefacts reflecting 

eye blinks or scalp muscle activity were identified and removed from the mixing matrix 

before reconstructing the data. Epochs were then visually inspected for any remaining non-

stereotypic artefacts and excluded if necessary. Removed channels were replaced using 

spherical interpolation. 

 

2.4 Spectral analysis 

Frontal channels FP1, FPz, FP2, AF7, and AF8 were excluded from datasets collected using 62 

electrodes, leaving the same common subset of 57 channels for spectral analysis. Power 

spectral densities were calculated for each channel using Welch’s method (2-s Hamming 

windows, 50% overlap). We used the fitting oscillations & one over f (FOOOF) algorithm 

(Donoghue et al., 2020) to parameterize power spectra into aperiodic and periodic 

components, extracting the offset and exponent parameters for the aperiodic component 

across the frequency range 2–40 Hz (knee parameter fixed to 0). Peak alpha frequency 

(defined as the frequency with largest logarithmic power between 6–13 Hz, detected using 

MATLAB’s findpeaks function) and peak alpha power (the logarithmic power at the peak) 

were assessed from power spectra at each channel, first without controlling for the 

aperiodic component (i.e., ‘uncorrected’), then after subtracting the aperiodic component 

from the original spectra (i.e., ‘1/f-corrected’) (Mahjoory et al., 2020) (see Figure 1). If a peak 

was not observed for a given channel (<0.1% of cases for all participants and channels), then 

peak alpha frequency and power for that channel were spherically interpolated using 

EEGLAB’s pop_interp function.  
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Figure 1. Evaluating peak alpha frequency and power before and after correcting for 
aperiodic neural activity in the resting EEG power spectrum. Data are from channel Cz in one 
young (A) and one older (B) participant. The 1/f-like aperiodic component (dashed red line) 
was estimated from the original power spectrum (left), then subtracted to provide a 1/f-
corrected spectrum (right). The grey-shaded region denotes the 6–13 Hz extended alpha 
range. The green cross denotes the alpha peak. 
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In addition to the aperiodic offset and exponent parameters, the FOOOF algorithm also 

outputs parameters for periodic components by modelling individual oscillatory peaks of the 

1/f-corrected power spectrum with a Gaussian (for details, see Donoghue et al., 2020). 

Periodic parameters include the center frequency of the peak, the peak’s height over and 

above the aperiodic component (i.e., aperiodic-adjusted peak power), and its bandwidth. In 

order to assess whether our procedure for deriving 1/f-corrected peak alpha characteristics 

impacted the outcomes of this study, comparisons between younger and older adults were 

repeated using FOOOF-derived center frequency and aperiodic-adjusted power for the 

largest peak in the 6–13 Hz extended alpha range (roughly equivalent to 1/f-corrected peak 

alpha frequency and power, respectively). 

 

2.5 Statistics 

Statistical analyses were performed using MATLAB (R2019a). Statistical significance was set 

at p < .05 (two-tailed), and data were checked for normality using the Kolmogorov-Smirnov 

test. Resting EEG power spectra (both uncorrected and 1/f-corrected) and the aperiodic 

component were averaged across all channels and compared between age groups using 

mixed-factorial ANOVA, with ‘age group’ (2 levels: younger and older) as between-subject 

factor and ‘frequency’ (77 levels: 2–40 Hz, in 0.5 Hz steps) as within-subject factor. Post hoc 

comparisons between age groups at each frequency step were performed using 

independent samples t tests, with the false-discovery rate (FDR) procedure used to correct 

for multiple comparisons (Curran-Everett, 2000). Age differences in aperiodic and peak 

alpha parameters were assessed in two ways. First, parameter values were averaged across 

all channels and compared between younger and older adults using Wilcoxon rank sum 

tests. Second, parameter values were compared between age groups at each channel using 
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non-parametric cluster-based permutation statistics to control for multiple testing across 

channels (cluster threshold: p < .05, independent samples t test; test-statistic: maximum 

within-cluster summed t value; randomization: 5000 Monte-Carlo permutations) (Maris and 

Oostenveld, 2007). Cluster effect sizes were computed as the average Cohen’s d for all 

channels within the cluster. For both global average and cluster-based analyses, p values 

were Bonferroni-corrected for 6 comparisons (2 aperiodic parameters: offset and exponent; 

4 peak alpha parameters: uncorrected peak alpha frequency, uncorrected peak alpha 

power, 1/f-corrected peak alpha frequency, and 1/f-corrected peak alpha power).  

 

Lastly, the association between aperiodic activity, uncorrected peak alpha, and age were 

assessed by first using Spearman’s rank correlations between global average aperiodic and 

uncorrected peak alpha parameters in each age group separately (Bonferroni-corrected for 

10 correlations). Correlation coefficients were transformed to z scores using Fisher’s 

transformation for comparisons between age groups. These were followed by binomial 

logistic regression analyses using aperiodic and uncorrected peak alpha parameters as 

predictor variables and age group (younger or older) as the outcome variable. This was 

included to further explore the confounding effect of aperiodic neural activity on the 

relationship between resting EEG peak alpha and age, examining the independent 

contributions of aperiodic and peak alpha parameters in predicting older age group 

membership. All p values reported in text and in figures have been Bonferroni-adjusted as 

required, unless otherwise indicated. 

 

3. Results 

3.1 Age differences in aperiodic offset and exponent 
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The aperiodic component averaged across all channels differed between age groups (age 

group × frequency: F76,13300 = 33.43, p < .001, η2
p = 0.16), with reduced power in the low-

frequency range spanning delta, theta, alpha and low-beta frequencies (2–19 Hz) in older 

adults compared to younger adults (FDR-adjusted p ≤ .046) (Figure 2A). This age difference 

in aperiodic activity was reflected by a lower global average aperiodic offset (Z = -5.84, p = 

3.1 x 10-8, r = -0.44) (Figure 2B) and a smaller aperiodic exponent (i.e., flatter slope) (Z = -

5.34, p = 5.7 x 10-7, r = -0.40) (Figure 2C) in older adults. Cluster-based analyses similarly 

showed an age-related lowering of the aperiodic offset (max. summed t = -311.82, p = .002, 

d = -0.89) and exponent (max. summed t = -296.05, p = .002, d = -0.87), and suggest the age 

differences in aperiodic activity were not restricted to any particular region, with diffuse 

clusters extending across the whole scalp (Figures 2D–E).  
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Figure 2. Age differences in resting EEG aperiodic neural activity. (A) The 1/f-like aperiodic 
component, as well as its (B) offset and (C) exponent parameters, averaged across all 
channels in younger and older adults. The thick red line above the x-axis in A indicates 
frequencies where logarithmic power differs between age groups (younger > older; FDR-
adjusted p < .05; independent samples t test). (D) Topographical maps showing aperiodic 
offset and exponent for all channels in younger and older adults, and (E) t-statistic values 
comparing aperiodic offset and exponent between age groups. White dots in E indicate 
significant channels forming negative clusters (cluster-based permutation statistics). 
 
 

3.2 Age differences in peak alpha before and after correcting for aperiodic activity 

Figure 3 shows the influence of 1/f-like aperiodic neural activity on resting EEG power 

spectra and their peak alpha characteristics in younger and older adults, with results shown 

for uncorrected spectra on the left (Figures 3A1–E1) and 1/f-corrected spectra on the right 
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(Figures 3A2–E2). Power spectra averaged across all channels differed between age groups, 

both for the uncorrected spectrum (age group × frequency: F76,13300 = 18.20, p < .001, η2
p = 

0.094) (Figure 3A1) and after the aperiodic component was removed (age group × 

frequency: F76,13300 = 13.43, p < .001, η2
p = 0.071) (Figure 3A2). However, there were notable 

differences in the frequency bands affected and the direction of age effects. For the 

uncorrected spectrum, older adults had reduced power at delta, theta, and alpha 

frequencies (2–6.5 Hz and 9.5–12 Hz) (FDR-adjusted p ≤ .028) (Figure 3A1). Conversely, after 

correcting for aperiodic activity, they had reduced power at high-alpha frequencies (10–12 

Hz) (FDR-adjusted p ≤ .043), but increased power at delta (3–3.5 Hz), low-alpha (8 Hz), beta 

(14–18.5 Hz and 22.5–28 Hz), and gamma frequencies (35.5 Hz) (FDR-adjusted p ≤ .043) 

(Figure 3A2). 

 

Regarding peak alpha parameters averaged across all channels, older adults had slower 

global average peak alpha frequency than younger adults for both uncorrected (Z = -5.57, p 

= 1.6 x 10-7, r = -0.42) (Figure 3B1) and 1/f-corrected spectra (Z = -5.32, p = 6.1 x 10-7, r = -

0.40) (Figure 3B2). Although uncorrected peak alpha power was lower in older adults 

compared to younger adults (Z = -3.37, p = .005, r = -0.25) (Figure 3C1), this difference was 

no longer significant after removal of the aperiodic component (Z = -2.32, p = 0.12, r = -0.17) 

(Figure 3C2). The same can be seen using cluster-based analyses rather than averaging 

across all channels, with older adults having slower peak alpha frequency (max. summed t = 

-257.71, p = .002, d = -0.84) and lower peak alpha power (max. summed t = -164.14, p = 

.019, d = -0.51) before correcting for the aperiodic component (Figures 3D1–E1), as well as 

slower peak alpha frequency for the corrected spectrum (max. summed t = -260.32, p = 

.002, d = -0.84), but not differing in peak alpha power from younger adults after the 
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aperiodic component was removed (max. summed t = -93.42, p = .15, d = -0.39) (Figures 

3D2–E2). 

 

 

Figure 3. Age differences in resting EEG power spectra and their peak alpha characteristics. 
(A1, A2) The resting EEG power spectra, as well as their (B1, B2) peak alpha frequency and (C1, 
C2) peak alpha power, averaged across all channels in younger and older adults before (A1–
C1) and after (A2–C2) correcting for the 1/f-like aperiodic component. The thick lines above 
the x-axis in A1 and A2 indicate frequencies where logarithmic power differs between age 
groups (red: younger > older, blue: older > younger; FDR-adjusted p < .05; independent 
samples t test). (D1, D2) Topographical maps showing uncorrected (D1) and 1/f-corrected 
(D2) peak alpha frequency and power for all channels in younger and older adults, and (E1, 
E2) t-statistic values comparing peak alpha frequency and power between age groups. White 
dots in E1/E2 indicate significant channels forming negative clusters (cluster-based 
permutation statistics). 
 
 

Of note, none of these results were different when FOOOF-derived periodic parameters 

were used in place of 1/f-corrected peak alpha frequency and power, with slower alpha 

central frequency in older than younger adults, but no difference in aperiodic-adjusted peak 

alpha power between age groups (See Supplementary Figure 1).   
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3.3 Associations between aperiodic activity, uncorrected peak alpha, and age 

To further explore the impact of aperiodic neural activity on resting EEG peak alpha in aging, 

we applied binomial logistic regressions to examine the independent contributions of 

aperiodic and peak alpha parameters in predicting age group membership. We first 

performed a series of Spearman’s rank correlations to characterize the associations 

between parameters in each age group separately (See Supplementary Figures 2 and 3). 

Averaged across all channels, aperiodic offset and exponent were strongly positively 

correlated in both younger (rho = 0.80, p = 4.5 x 10-20) and older adults (rho = 0.87, p = 1.3 x 

10-29), with larger offset associated with a larger exponent (i.e., steeper slope) 

(Supplementary Figure 2). Aperiodic offset and uncorrected peak alpha frequency were 

moderately negatively correlated in younger adults (rho = -0.36, p = .007), with larger offset 

associated with slower peak alpha frequency (Supplementary Figure 3A). Although this 

relationship did not survive Bonferroni correction in older adults (rho = -0.26, p = .11), the 

correlation coefficients did not differ between age groups (Z = 0.70, p = .48). Offset and 

uncorrected peak alpha power were strongly positively correlated in both younger (rho = 

0.50, p = 1.4 x 10-5) and older adults (rho = 0.53, p = 1.2 x 10-6) (Supplementary Figure 3B). 

Aperiodic exponent and uncorrected peak alpha frequency were moderately negatively 

correlated in both younger (rho = -0.42, p = 6.0 x 10-4) and older adults (rho = -0.32, p = 

.018), with a larger exponent associated with slower peak alpha frequency in both age 

groups (Supplementary Figure 3C). Larger exponents were also associated with higher peak 

alpha power in older (rho = 0.37, p = .003), but not younger adults (rho = 0.16, p = 1.00), 

although again, the correlation coefficients did not differ between age groups (Z = 1.47, p = 

.14) (Supplementary Figure 3D). 
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For binomial logistic regression, given the high collinearity between aperiodic offset and 

exponent, these were assessed as predictors in separate models (i.e., Models 2 and 3, 

respectively; see Table 1). First, we assessed uncorrected peak alpha frequency and power 

as predictor variables in a model without controlling for either aperiodic parameter (i.e., 

Model 1), and found that slower peak alpha frequency (p = 9.4 x 10-7) and reduced peak 

alpha power (p = .001) were both associated with older age (Table 1). When peak alpha 

frequency and power were both held constant, older age was associated with lower 

aperiodic offset (Model 2, p = 3.9 x 10-7) and smaller aperiodic exponent (Model 3, p = 1.6 x 

10-7). Older age was also associated with slower peak alpha frequency after accounting for 

aperiodic offset (p = 3.7 x 10-8) and exponent (p = 1.1 x 10-8); however, peak alpha power 

was no longer associated with age group membership in either model (p ≥ .46). Thus, 

whereas altered aperiodic activity and slower peak alpha frequency were both strong 

independent predictors of older age, uncorrected peak alpha power was no longer 

associated with age after controlling for aperiodic offset and exponent. 

 

Table 1 

Results of binomial logistic regressions for predicting older age group membership. 

Model 1 
     95% CI 

Estimate SE Z p Odds ratio Lower Upper 

(Intercept) 10.95 2.13 5.13 2.9 x 10-7 5.7 x 104 8.6 x 102 3.7 x 106 

Peak α frequency -1.06 0.22 -4.90 9.4 x 10-7 0.35 0.23 0.53 

Peak α power -1.10 0.34 -3.24 .001 0.33 0.17 0.65 

Model 2 
     95% CI 

Estimate SE Z p Odds ratio Lower Upper 

(Intercept) 16.46 2.78 5.92 3.3 x 10-9 1.4 x 107 6.0 x 104 3.3 x 109 

Aperiodic offset -3.23 0.64 -5.07 3.9 x 10-7 0.040 0.011 0.14 

Peak α frequency -1.45 0.26 -5.50 3.7 x 10-8 0.23 0.14 0.39 
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Peak α power 0.34 0.45 0.74 .46 1.40 0.58 3.40 

Model 3 
     95% CI 

Estimate SE Z p Odds ratio Lower Upper 

(Intercept) 22.69 3.55 6.39 1.7 x 10-10 7.2 x 109 6.8 x 106 7.6 x 1012 

Aperiodic exponent -5.23 1.00 -5.24 1.6 x 10-7 0.0054 7.6 x 104 0.038 

Peak α frequency -1.57 0.28 -5.71 1.1 x 10-8 0.21 0.12 0.36 

Peak α power -0.27 0.40 -0.68 .50 0.76 0.35 1.67 

Note: CI = confidence interval; SE = standard error. 

 

4. Discussion 

In the present study, resting EEG recordings were used to investigate age differences in 

aperiodic activity, and establish if age differences in peak alpha characteristics were due to 

changes in the aperiodic component of the EEG power spectra. Consistent with previous 

findings, older adults had a reduced aperiodic offset and smaller aperiodic exponent than 

younger adults. Although peak alpha frequency and power were both reduced in older 

adults before correcting for aperiodic activity, only age differences in peak alpha frequency 

remained statistically significant after the aperiodic component was removed. This was 

supported by the results from binomial logistic regressions, which indicate slower peak 

alpha frequency, but not reduced peak alpha power, was able to independently predict 

older age group membership after controlling for the effects of aperiodic offset and 

exponent. Our findings provide further evidence that aperiodic neural activity changes with 

age, and should be controlled for in future studies measuring age-related changes in neural 

oscillatory activity.  

 

4.1 The aperiodic component of EEG power spectra changes with age 
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Previous research has shown that the aperiodic component of the EEG power spectra 

changes with age. Voytek et al. (2015) examined the effect of age on aperiodic activity from 

two different datasets, including recordings from the cortical surface (electrocorticography; 

ECoG) in patients with intractable epilepsy while they performed an auditory task and scalp 

EEG recordings in healthy participants while they performed a visual working memory task. 

They observed that older age was associated with a flatter 1/f-like slope in both datasets 

and, moreover, the flattening of EEG power spectra with increased age statistically 

mediated age-related impairments in visual working memory performance. A similar age-

related flattening of aperiodic activity has been observed for EEG recorded during language 

processing (Dave et al., 2018) and auditory discrimination tasks (Waschke et al., 2017), as 

well as for EEG recorded at rest (Donoghue et al., 2020; Kosciessa et al., 2020), with 

Donoghue et al. (2020) also reporting a lower aperiodic offset in older adults compared to 

younger adults. We also observed a reduction in both the aperiodic exponent and offset in 

older participants. These changes were observed across the scalp, and were not limited to 

any particular region. The results of the present study are thus in line with a growing body 

of literature demonstrating changes in aperiodic activity in older adults both at rest and 

during task performance. 

 

There are several mechanisms which could underlie the observed age-related changes in 

aperiodic activity as measured with EEG. Evidence from empirical and computational studies 

has linked aperiodic features of electrophysiological power spectra to changes in population 

spiking statistics, with lower offsets and flatter slopes associated with slower firing rates and 

less synchronous spiking activity, respectively (Freeman and Zhai, 2009; Manning et al., 

2009). According to the neural noise hypothesis, the reliability of neural communication 
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diminishes with advanced age due to noisier (i.e., less synchronized) neural activity, 

contributing to age-related cognitive decline (Cremer and Zeef, 1987; Crossman and Szafran, 

1956; Voytek and Knight, 2015). Thus, an age-related decrease in synchronous population 

spiking could explain the age differences in aperiodic activity observed here and in previous 

research.  

 

Changes in the slope of electrophysiological power spectra may also be indicative of 

changes in synaptic excitation/inhibition balance. The co-regulation of excitatory and 

inhibitory output onto cortical neurons shapes the short-term dynamics within neuronal 

synapses, affecting the ability to form oscillations and efficient information transfer (Gao et 

al., 2017; Tatti et al., 2017). Changes in excitation/inhibition balance, over time, can have 

pathological effects in neuropsychiatric diseases such as autism, schizophrenia, as well as 

age-related neurodegenerative diseases, such as Alzheimer’s Disease (Cassani et al., 2018; 

Tatti et al., 2017; Voytek and Knight, 2015). Computational evidence supported by 

experimental data from rodents and non-human primates indicates that synaptic 

excitation/inhibition balance can be inferred from the aperiodic exponent of 

electrophysiological power spectra, with flatter slopes reflecting increased excitation and/or 

decreased inhibition (Gao et al., 2017). Although age-related increases in hippocampal 

excitation/inhibition ratio have been suggested from some studies using animal models (El-

Hayek et al., 2013; Wilson et al., 2005), other studies in humans have reported no change 

(Noda et al., 2017) or lower excitation/inhibition ratios in older adults (Legon et al., 2016). 

Thus, the possible contribution of altered excitation/inhibition balance to age differences in 

aperiodic activity remains speculative and requires further research.  
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Maintaining functional neural activity throughout the lifespan is an integral part of healthy 

aging, therefore, it is essential to investigate other features of brain physiology that could 

explain differences in aperiodic activity between younger and older adults. For example, 

Muthukumaraswamy and Liley (2018) showed that the 1/f-like nature of 

electrophysiological power spectra could be modelled using a collection of damped 

oscillators with a distribution of relaxation rates. Changes in the properties of the neural 

generators proposed to underlie these damped oscillators could underlie age-related 

changes in aperiodic activity. Conversely, age differences could emerge from between-

group differences in the physical properties of brain tissue that need not necessarily be due 

to neural processes (e.g., Bedard et al., 2006; Bedard and Destexhe, 2009). Consequently, 

additional research into the neural and non-neural factors that drive 1/f scaling of EEG 

power spectra, and how these factors change with age, is required. 

 

4.2 Advanced age decreases peak alpha frequency, but not power 

In support of previous findings (Bablioni et al., 2006; Grandy et al., 2013; Klimesch, 1999; 

Scally et al., 2018; Sghirripa et al., 2020), this study provides more evidence that older adults 

have slower peak alpha frequency compared to younger adults, even after accounting for 

age differences in aperiodic activity. Age-related peak alpha slowing may be due to various 

neuroanatomical changes in the aging brain. Thalamo-cortical circuits have been associated 

with alpha oscillatory activity (Hughes and Crunelli, 2005; Olejniczak, 2006; Schaul, 1998), 

and biophysical models have shown peak alpha frequency to be sensitive to changes in 

conduction delays in thalamo-cortical feedback loops (Roberts and Robinson, 2008; 

Robinson et al., 2001). Accordingly, empirical data has shown that individual differences in 

peak alpha frequency are related to white matter structure (Valdés-Hernández et al., 2010), 
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pointing to white matter deterioration in thalamo-cortical circuits as a potential factor 

explaining age-related slowing of alpha oscillations.  

 

Unlike our results for peak alpha frequency, age differences in peak alpha power were not 

statistically significant after accounting for the aperiodic component. The confounding 

effect of aperiodic activity on alpha oscillatory power has been observed previously in a 

recent study by Ouyang et al. (2020), which used structural equation modelling to 

investigate the relationships between aperiodic activity, alpha power, and cognitive 

processing speed in healthy young adults. While an initial model was suggestive of an 

association between eyes-open alpha power and cognitive processing speed, this 

relationship was no longer present in subsequent models dissociating alpha oscillations 

from aperiodic activity. Regarding alpha power and aging, Donoghue et al. (2020) assessed 

age differences in resting EEG alpha after isolating the oscillatory peak from the aperiodic 

background. Although the age difference in aperiodic-adjusted peak alpha power was 

reduced compared to non-adjusted power, a statistically significant difference between 

younger and older adults was still present. Our findings from a larger sample using whole-

scalp EEG and multiple analysis approaches could not find evidence for an age effect on 

peak alpha power after accounting for aperiodic activity. These results further highlight the 

importance of accounting for aperiodic activity when analyzing age-related spectral power 

changes.  

 

4.3 Conclusions 

The present study has demonstrated age differences in aperiodic activity measured using 

resting EEG in a large sample of healthy younger and older adults. Compared to young 
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adults, older adults had reduced aperiodic offset and smaller aperiodic exponent. After 

correcting for aperiodic activity, age differences in peak alpha frequency persisted, while 

peak alpha power was no longer statistically different between age groups. Together, our 

findings provide further evidence that the aperiodic component of the resting EEG signal is 

altered with aging and should be considered when investigating neural oscillatory activity. 
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Supplementary material 

 

Supplementary Figure 1. Age differences in FOOOF-derived periodic alpha parameters. 
When averaged across all channels, older adults had (A) slower alpha center frequency than 
younger adults (Z = -5.37, p = 1.6 x 10-7, r = -0.40); however, (B) aperiodic-adjusted alpha 
power did not differ between age groups (Z = -2.02, p = .26, r = -0.15). (C) Topographical 
maps showing alpha center frequency and aperiodic-adjusted alpha power for all channels 
in younger and older adults, and (D) t-statistic values comparing alpha center frequency and 
aperiodic-adjusted alpha power between age groups. White dots in D indicate significant 
channels forming negative clusters (cluster-based permutation statistics).  
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Supplementary Figure 2. Spearman’s rank correlations between aperiodic offset and 
exponent, averaged across all channels, in younger and older adults. 
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Supplementary Figure 3. Spearman’s rank correlations between aperiodic parameters (A, B: 
offset; C, D: exponent) and uncorrected peak alpha parameters (A, C: peak alpha frequency; 
B, D: peak alpha power), averaged across all channels, in younger and older adults. 
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