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Abstract

Phosphoproteomic experiments routinely observe thousands of phosphorylation sites.
To understand the intracellular signaling processes that generated this data, one or more
causal protein kinases must be assigned to each phosphosite. However, limited knowledge
of kinase specificity typically restricts assignments to a small subset of a kinome. Start-
ing from a statistical model of a high-throughput, in vitro kinase-substrate assay, I have
developed an approach to high-coverage, multi-label kinase-substrate assignment called
IV-KAPKE (“In vivo-Kinase Assignment for Phosphorylation Evidence”). Tested on hu-
man data, IV-KAPhE outperforms other methods of similar scope. Such computational
methods generally predict a densely connected kinase-substrate network, with most sites
targeted by multiple kinases, pointing either to unaccounted-for biochemical constraints or
significant cross-talk and signaling redundancy. I show that such predictions can poten-
tially identify biased kinase-site misannotations within families of closely related kinase
isoforms and they provide a robust basis for kinase activity analysis.

Introduction

Protein phosphorylation is the most common form of post-translational modification and it
plays a central role in intracellular signaling. Diverse protein kinases catalyze the binding of

a phosphate group to a substrate acceptor residue, typically serines (S), threonines (T) or ty-
rosines (Y) in eukaryotes. The active sites of kinases’ enzymatic domains exhibit phosphoacceptor-
residue specificity, which can be broadly classified in eukaryotes as serine/threonine (S/T)-
specific, tyrosine (Y)-specific, or so-called “dual-specificity” kinases. Kinase substrate-specificity
is further determined by the protein primary and secondary structural contexts around the phos-
phoacceptor residue, as well as by allosteric structural mediation of docking (Ochoa et al.,
2018; Bradley et al., 2021).

The sequence contexts around known phosphorylation sites (“phosphosites’) have been widely
used in computational approaches to predict new substrate sites of a protein kinase. Numer-
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ous methods have been developed to achieve this, employing, for example, scoring matrices
(Yaffe et al., 2001; Obenauer et al., 2003; Miller et al., 2008; Jung et al., 2010; Safaei et al.,
2011; Wagih et al., 2015; Krystkowiak et al., 2018), neural networks (Blom et al., 1999, 2004;
Linding et al., 2007), support vector machines (Kim et al., 2004; Dou et al., 2014), sequence
clustering (Zhou et al., 2004; Xue et al., 2011; Wang et al., 2020), kinase structure (Brinkworth
et al., 2003), or grammatical inference (Datta and Mukhopadhyay, 2015). With the emergence
of phosphoproteomics by liquid chromatography and tandem mass spectrometry (LC-MS/MS)
enabling the routine detection thousands of phosphorylation sites in a single experiment (von
Stechow et al., 2015), there is now little need to predict new phosphorylation sites in silico.
The problem has instead changed to one of kinase-phosphosite assignment. Accordingly, new
methods have emerged, based on models such as support vector machines (Zou et al., 2013;
Yang et al., 2016), multiple kernel learning (Wang et al., 2017), Naive Bayes (Ayati et al.,
2019), networks (Wagih et al., 2016; Ma et al., 2020), and knowledge graphs (Novécek et al.,
2020). Classical scoring matrices are often still used within these or related methods to model
kinase substrate specificity (Wagih et al., 2016; Wang et al., 2017; Ma et al., 2020; Invergo
et al., 2020).

Two major challenges face modern kinase-substrate assignment methods. First, dependence
on literature-derived annotations for model training is subject to biases towards more com-
monly studied protein kinases (Invergo and Beltrao, 2018). This strongly limits and biases the
kinases for which assignments can be made, whereas phosphoproteomic data requires unbi-
ased, kinome-scale assignment. Many phosphosite-prediction methods resolve this imbalance
by making predictions at the level of kinase families, however these predictions will still be
biased towards the features of the well-studied family members (Invergo and Beltrao, 2018).
Given the increasing evidence of distinct functional roles even among closely related kinase
isoforms (see, e.g., Stambolic and Woodgett (2006); Linnerth-Petrik et al. (2014); Hinz and
Jiicker (2019); Higgins et al. (2021)), it is exigent that phosphorylation events be resolved at
the level of individual kinases. The second challenge is that many sites can be phosphorylated
by more than one kinase (Hornbeck et al., 2015). However, a lack of complete, “all-versus-all”
kinase-site training sets has prevented assignment methods from having been constructed and
evaluated in such a multi-label setting. As a result, the predictive performance for promiscu-
ous or strongly specific kinases can dominate validation metrics calculated across all kinase
assignments.

Here, 1 describe improvements in multi-label, kinase-phosphosite assignment over previous
methods for a large subset of the human kinome. I achieve this without sophisticated machine-
learning methods by focusing on the above considerations and building on the latest proteome-
scale, hypothesis-free data. The result is a nested model called IV-KAPhE which is built on
models of in vitro kinase specificity and in vivo functional association. First, I describe the
approach used to construct the model. Then I consider the hypotheses produced by it and
other computational methods about the topology of the human phosphorylation network and the
utility of these methods in inferring protein kinase activity from quantitative phosphoprotoemic
data.
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Results

I developed IV-KAPHE over three stages. First, I sought the best sequence-based model to
represent in vitro kinase sequence specificity. Next, I incorporated physical-interaction and
structural factors that mediate phosphorylation under the in vitro, context-free conditions of
the training data. Finally, I nested the results of the in vitro model with features for predicting
kinase-substrate functional associations in a predictor of in vivo phosphorylation (Figure 1).
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Figure 1: A schematic of the nested IV-KAPhE model for kinase-substrate assignment. Naive
Bayes+ consists of sub-models for each kinase, trained from kinase-specific, high-throughput
in vitro kinase-substrate relationships. These sub-models together comprise a final, multi-label
Naive Bayes model. IV-KAPhE is a monolithic, multi-kinase Random Forest model trained
from all literature-derived kinase-substrate annotations and random pairs as negative cases.

Naive Bayes is more appropriate than PSSM models for building a multi-
label assignment method

To construct specificity models for a large fraction of the human kinome, I used results from a
recent phosphoproteomic, in vitro assay of kinase specificity (Sugiyama et al., 2019). In this
experiment, protein extracts from HeLa cells were first treated with a thermo-sensitive protein
phosphatase and then spiked with a recombinant protein kinase. The phosphorylated extracts
were digested and subjected to phosphoproteomic analysis by LC-MS/MS. This provided in
vitro substrates for 349 protein kinases, ranging from 1 to 1672 substrates per enzyme, with
322 kinases having at least 20 substrates. As a benefit of using a single cell line, each kinase
was exposed to approximately the same set of potential substrates, detectable within the limits
of random sampling by shotgun proteomics.

With this data, I sought to identify the best-performing specificity model on which to build
a kinase-substrate assignment method. I first considered three scoring matrix-based speci-
ficity models: the position-frequency matrix (PFM) alone, the position-specific scoring ma-
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trix (PSSM) with log-likelihood ratios of the PFM to proteomic residue frequencies, and the
log-likelihood ratio PSSM backed by position-specific phosphoproteomic residue frequencies.
I hypothesized that the phosphoproteome-backed PSSM would be most appropriate for the
task. Next, I took advantage of the of the fact that the design of the experiment provides true-
negative kinase-site assignments to reformulate PFM-based specificity as a multi-label Naive
Bayes model (Zhang et al., 2009). I expected that the additional prior probability information
would further strengthen assignments over PSSM models.

Breaking from convention (e.g. Wagih et al., 2015), for performing multi-label kinase-substrate
assignment I retained the central residue in scoring. This allowed me to assign S/T and Y ki-
nases simultaneously and to handle dual-specificity kinases cleanly. To strengthen the distinc-
tion between assignment to S/T and Y kinases, I incorporated a position-weighting scheme into
the models to provide greater scoring weight to highly resolved positions. I opted to use rela-
tive entropy for weighting as it provides better separation between well-defined and degenerate
positions than information content does (Supplemental Figure S1). To simplify multi-label as-
signment, | aimed to use a single score cutoff for all kinases. Because each kinase’s PFM is
unique, the scores produced by PFMs or PSSMs will have different theoretical and empirical
ranges for each kinase (Supplemental Figure S2). As a result, an effective score cutoff for one
kinase might be outside the theoretical range for another kinase. To overcome this, I min-max
normalized the PFM and PSSM scores to be between 0 and 1 (Wagih et al., 2015).

I evaluated the models via 10-fold cross-validation. As the goal is to have good performance
across all kinases, I chose macro-averaged precision and recall (i.e. averaged across kinases) as
evaluation metrics. I avoided the Receiver Operator Characteristic (ROC) analysis commonly
used in single-label prediction because the strong imbalance between positive and negative
cases per kinase would de-emphasize false positives and inflate the area under the curve (Davis
and Goadrich, 2006). Using these metrics, I found that raw PFMs performed poorly, while
PSSM-based methods and Naive Bayes showed overall similar performance (Figure 2a). Nev-
ertheless, phosphoproteome-backed PSSMs out-performed proteome-backed ones, confirming
that a phosphoproteome background is preferable for kinase-substrate assignment. They also
performed slightly better than Naive Bayes, against my expectations.

The shapes of the precision-recall curves (Figure 2a) may appear strange compared to standard
dual-label curves. They can be explained first by the strong imbalance between positive and
negative cases per kinase, producing very low precision at low cutoffs (i.e. at high recall).
Second, at more stringent cutoffs (low recall) a growing subset of kinases is no longer assigned
to any sites, in which case precision is undefined and set to O for each kinase so affected. Thus,
the “hump” in the macro-averaged precision-recall curves (Figure 2a) represents the point at
which further gains in precision from more stringent cutoffs are offset by not only lower average
recall but also a reduction in effective kinome coverage.

Turning to the macro-averaged F1 score (macro-F1), which assesses the balance between pre-
cision and recall, we see different relationships between macro-F1 and cutoff (Figure 2b). No-
tably, macro-F1 scores of scoring-matrix methods peak at specific cut-offs before dropping
precipitously, whereas Naive Bayes gives a consistent score across much of the cutoff range.
This can be explained by observing the distributions of scores or probabilities produced by the
different methods (Figure 2c). While the scoring-matrix methods produce many intermediate
scores (particularly for S/T kinases), Naive Bayes mostly assigns probabilities close to 0 or
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Figure 2: a) PSSM methods and Naive Bayes perform similarly in cross-validation of multi-
label kinase-substrate assignment via macro-averaged precision versus recall. The expanded
Naive Bayes+ model outperforms the other methods. Points indicate the scores at the cutoff
that maximizes that macro-F1 score. Black error bars showing 95% confidence intervals at
these points are indiscernible in most cases, indicating highly robust performance across cross-
validation folds. b) The macro-averaged F1 scores behave differently with score/probability
cutoff for scoring matrix-based models versus Naive Bayes. PSSM and PFM-based models
require a strictly defined cutoff. Naive Bayes+ again outperforms the others and retains the
same flat relationship with cutoff as basic Naive Bayes. Points indicate the maximum value.
Bands indicate the 95% confidence interval. Color assignments are the same as in (a). c)
Example score distributions for a S/T kinase (AKT1) and a Y kinase (FYN) from one round
of cross-validation. For S/T kinases, Naive Bayes probabilities are largely distributed close to
0.0 and 1.0 while PSSM scores take more intermediate values, notably including scores for
Y sites. Y kinases show better separation for both methods. d) Left: Logistic curves relating
phosphoproteome-backed PSSM scores to Naive Bayes probabilities. Each curve represents a
fitted logistic function for each kinase. The color of the curve represents the number of kinase
substrates used to fit each specificity model. Right: The fitted logistic curve parameters versus
number of substrates. S/T and Y kinases have negative relationships between inflection point
and numbers of substrates. e) Min-max normalization of PSSM scores does not produce a
stable inflection point independent of the number of substrates.
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1 (Figure 2c). Moreover, the Naive Bayes model better rejects inappropriate phosphoaccep-
tors (e.g. Y phosphoacceptors for S/T kinases) in this way (Figure 2c). Thus, the PFM and
PSSM-based models are particularly sensitive to the chosen score cutoff.

Naive Bayes has the convenient property of a well-defined probability cutoff for assignment
for all kinases (P > 0.5; see Supplemental Methods). No such definition exists for the PSSM
model. Given the PSSM models’ sensitivity to cutoff selection, I sought to determine a ro-
bust selection method. As illustrated in Figure 2c, there is a sigmoidal relationship between
phosphoproteome-backed PSSM scores and Naive Bayes posterior probabilities, which could
possibly be used to produce a PSSM score cutoff analogous to 0.5 posterior probability. Indeed,
the phosphoproteome-backed PSSM score can be approximated by a logit transformation of the
Naive Bayes posterior probability (see Supplemental Methods). This approximation includes a
dependency on the number of substrates used to fit a model, such that the 0.5-equivalent cutoff
decreases with increasing number of substrates. In other words, because of varying training-set
sizes, the log-likelihood PSSM score at which the foreground evidence effectively outweighs
the background evidence also varies, whereas this is stabilized through normalization against
total probability in Naive Bayes.

To verify this, for each kinase 1 fit a logistic curve to their PSSM scores versus Naive Bayes
posterior probabilities calculated on a high-confidence set of human phosphosites (Ochoa et al.,
2020) (Figure 2d). The fitted inflection point provides the PSSM score that is equivalent to
a posterior probability of 0.5. As predicted, I observed a strong dependence between this
inflection point and the number of substrates used to fit the models, which differed with kinase
type. I then checked whether min-max normalization of the PSSM scores remedies the problem
(Figure 2e). For S/T kinases, the inflection points were generally around 0.75, which is close
to the observed macro-F1-maximizing cutoff of 0.803 (Figure 2b). However, both kinase types
still had a decreasing inflection point with increasing number of substrates.

Together, these results suggest first that a raw PFM (as used in, e.g., Yang et al., 2016) is the
weakest model. PSSMs perform best with a position-specific phosphoproteome background,
but they require kinase-specific cutoffs, even after normalization, for multi-label assignment.
The Naive Bayes model offers good performance and a stable and universal cutoff. It is thus a
better foundation for incorporating other features.

Physical-interaction and structural features improve in vitro Naive Bayes
predictive performance

Kinases can be optimized to bind with their substrates by physical interactions outside the enzy-
matic kinase domain’s active site, and structural features of the substrate might further impact
these interactions. These would remain relevant in the in vitro experimental environment and
thus may be exploited to improve the model. Given the Naive Bayes assumption of feature
independence, it is trivial to incorporate other features. Thus, I constructed a second Naive
Bayes model (“Naive Bayes+”) with added features based on: proteins physically interacting,
directly or indirectly, with the kinase; proteins carrying a domain that is enriched among the
kinase’s substrates or interactors; and the phosphosite being within a protein domain. These
features were modeled as Bernoulli-distributed, and each showed an overall difference across
the kinome in empirical probability among substrates versus non-substrates (Figure 3). As with
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calculating residue frequencies in substrate sequences, these empirical probability estimations
may be impacted by stochastic detection of low-abundance substrates by LC-MS/MS, particu-
larly for kinases with few substrates.

SIT kinases Y kinases

20+

uonoelaul
eaisAyd

104

159

101

=
3
© 52
«© 28
£ 5 ge
3 probability
2 04 among:
% 300 [] other sites
o [ substrates
g 200 B
L EE
o3
100+ =
o [N
94 =
o b
6 E
EE
3 2
0- T T T T T T
0.0 0.5 1.00.0 0.5 1.0

empirical probability

Figure 3: Distributions of empirical probabilities of four additional predictive features of in
vitro kinase substrates. Distributions are represented by the kernel density estimate of the
kinases’ respective Bernoulli probability parameters. Each feature trends towards higher prob-
ability in in vitro substrates than in other sites.

In cross-validation, the Naive Bayes+ model produces superior macro-averaged precision and
recall than the other methods (Figure 2a). Its F1 score is similarly higher, while exhibiting the
same flat behavior as the sequence-only Naive Bayes model (Figure 2b). Given this improve-
ment in performance I carried the Naive Bayes+ model forward for nesting into the in vivo
model.

IV-KAPAE produces accurate multi-label assignment of in vivo kinases to
phosphosites

I constructed an in vivo kinase-substrate assignment method using the Random Forest model
on five features for protein-protein functional association (Figure 1): the kinase-specific Naive
Bayes+ posterior probability for the site; the semantic similarities between the Gene Ontology
(GO) “biological process” (BP) and “cellular component” (CC) annotations of kinase and sub-
strate; and coexpression and high-throughput experimental scores between kinase and substrate
from the STRING database (von Mering et al., 2005; Szklarczyk et al., 2019). Other features
from STRING were discarded either by feature importance analysis (gene fusion, genome
co-occurence, conserved neighborhood) or to avoid potential circularity with the training set
(database imports, text-mining, combined score). I added three further features to strengthen
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possible discrepancies in performance (Figure 1): whether or not the substrate is itself a kinase,
necessary because the functional association scores are symmetrical and can therefore produce
false positives if the enzymatic roles are, in fact, reversed; whether the kinase is a S/T or Y ki-
nase, to account for kinase-type differences in Naive Bayes+ probability distributions; and the
phosphoacceptor type (S/T or Y), for similar reasons. Because there are relatively few features
and none of these require any special consideration, other machine learning models could be
substituted in for in vivo prediction. Here, I chose Random Forest for its simplicity and for its
facility in the analysis of feature importance.

For brevity, I will call this model “IV-KAPhE” (“In Vivo-Kinase Assignment for Phosphoryla-
tion Evidence”). For training IV-KAPhE, I took advantage of the fact that all kinase-specific
substrate specificity information was used when training the underlying Naive Bayes+ model.
I thereby trained IV-KAPhE as a monolithic, non-kinase-specific model on the 7322 human
in vivo kinase-substrate relationships annotated in the PhosphoSitePlus database (Hornbeck
et al., 2015) and on an equally sized set of random assignments of kinases to human phospho-
rylation sites (Hornbeck et al., 2015; Ochoa et al., 2020) as negative cases. During training,
feature importance analysis revealed the Naive Bayes+ posterior probability, the STRING “ex-
perimental” score, and GO BP semantic similarity to be the most important (Figure 4a). The
features accounting for substrate kinases, S/T versus Y kinases, and S/T versus Y sites carried
low importance but their omission worsened performance, particularly for Y kinases.

While IV-KAPHhE was built as a multi-label method, the training set does not represent a full,
all-versus-all compendium of kinase-phosphosite assignments among the represented kinases
and sites. This prevents full evaluation of the method in a true multi-label setting. I neverthe-
less evaluated it and the individual features using multi-label metrics as described above. As-
sessing the quantitative features’ individual predictive performances via macro-precision and
macro-recall on 10 folds of the training data, GO BP semantic similarity and the STRING “ex-
perimental” score showed the highest performance (Figure 4b). Overall, the full model showed
strong performance in cross-validation, reaching an average precision of 0.713 and recall of
0.679 at its nominal probability cutoff of 0.5 and outperforming the individual features (Figure
4c). The macro-F1 score at this cutoff, 0.679, was near-maximal (Figure 4c). Relaxing the cut-
off slightly would improve recall, and thus F1, without significant loss of precision. To verify
that the choice of machine learning model does not strongly impact performance, I repeated
the cross-validation analysis, substituting a Support Vector Machine for the Random Forest
model. Performance was overall quite similar (macro-precision: 0.676; macro-recall: 0.620;
macro-F1: 0.626), confirming that the choice of in vivo model is indeed flexible.

I next evaluated IV-KAPhE’s performance on an external data set. To achieve this, I collected
kinase-substrate relationships identified using the ProtMapper method from databases and text-
mining (Bachman et al., 2019). I omitted any relationships present in the PhosphoSitePlus
database, from in vivo or in vitro experiments, to avoid validating on sites used in training I'V-
KAPhHE or other methods. I then matched these 6199 previously unseen relationships with an
equal number of random kinase-site relationships.

I compared IV-KAPhE to the in vitro Naive Bayes+ and phosphoproteome-backed PSSM mod-
els, as well as to other previously published methods with similar or better kinome coverage
(Supplemental Figure S3). To the best of my knowledge, the methods that meet that crite-
rion are GPS 5.0 (Wang et al., 2020) and LinkPhinder (Novacek et al., 2020), both of which
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Figure 4: a) Naive Bayes+ posterior probability, GO BP semantic similarity, and STRING ex-
perimental score had the greatest importance when training the Random Forest models. Error
bars show standard error across cross-validation runs. b) Predictive performance of individual
quantitative features, as assessed by average macro-precision and macro-recall across 10 folds
of the training data, reveals GO BP semantic similarity and STRING experimental score as be-
ing the most predictive individual features. c) Cross-validation evaluated via macro-averaged
precision, recall and F1 all reflect strong performance by IV-KAPhE. d) IV-KAPhE’s cover-
age of the external test data set is similar to LinkPhinder’s but is lower than that of GPS 5.0.
e) Kinase-specific F1 scores reveal IV-KAPhE’s consistently strong performance across most
kinases, with similar performance for S/T and Y kinases, compared to other methods. f) IV-
KAPhHE outperforms the simpler PSSM-based and Naive Bayes+ methods as well as other pre-
viously published methods in kinase-substrate assignment of an external validation set. Points
indicate the scores for simple assignments (GPS) or the scores at nominal cutoffs for quan-
titative predictions (cutoffs — IV-KAPhE: 0.5, PSSM: 0.75, Naive Bayes+: 0.5, LinkPhinder:
0.672 (Novacek et al., 2020), NetworKIN 3.0: 1.0 (Horn et al., 2014)). Error bars show the
95% confidence intervals at these points. g) IV-KAPHE has a higher macro-averaged F1 score
than the other methods. Points and color assignments are as in (e). Bands indicate the 95% con-
fidence interval. h) IV-KAPhE similarly outperforms the other methods in Receiver Operating
Characteristic (ROC) curve analysis for this balanced test set. Points and color assignments are
as in (e). Error bars show 95% confidence intervals. 1) Focusing on multi-label assignment for
sites in the test set with known kinases, the macro-averaged false discovery rate (FDR; i.e. rate
of novel assignments) dominates the average true positive rate (TPR). The curves are similar
for most methods. At its nominal cutoff, [V-KAPHE has the highest FDR, but it is matched by
the highest TPR.
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have greater coverage than IV-KAPhE. I also compared it to NetworKIN 3.0 (Linding et al.,
2007; Horn et al., 2014), which has much lower coverage, but it shares a similar in vitro/in
vivo hierarchical structure as [IV-KAPhAE. It must be stressed that none of these previously pub-
lished methods were developed for multi-label assignment. Nevertheless, in order to compare
their performance to IV-KAPhHE, they will herein be evaluated under a multi-label paradigm.
Assignments from GPS were as selected by the software’s default, “medium”-stringency be-
havior, because each kinase requires a different score cutoff. For LinkPhinder and NetworKIN,
I evaluated performance over a range of cutoffs, with a focus on LinkPhinder’s published high-
stringency cutoff of 0.672 (Novacek et al., 2020) and NetworKIN’s nominal likelihood-ratio
cutoff of 1.0 (Horn et al., 2014). Each method covered a different, incomplete subset of the
kinases in the test set (Figure 4d), with GPS 5.0 having the greatest coverage. NetworKIN has
a significantly smaller coverage than the other methods. In order not to penalize models for
coverage, each one was evaluated only on the subset of kinases that it could assign.

Like the training set, this test set is likely incomplete and cannot be fully evaluated in an all-
versus-all multi-label sense. Therefore, only those relationships explicitly annotated in the
test set were evaluated. I first looked at per-kinase F1 score performance, which underlies the
macro-averaged metric (Figure 4e). From this view, it is clear that IV-KAPhE produces largely
consistent, high F1 performance across both S/T and Y kinases compared to the other methods.
NetworKIN, GPS, and LinkPhinder all exhibit highly varied performance, with GPS notably
showing weaker performance for Y kinases. PSSMs and Naive Bayes+ likewise show varied
performance and weak Y-kinase performance. Note that kinases with few test-case sites tend
to cluster near 0 and 1 due to lack of resolution in calculating precision and recall.

In macro-averaged precision and recall, LinkPhinder and GPS 5.0 performed only as well as
the simpler, in vitro PSSM and Naive Bayes+ models (Figure 4f). NetworKIN and IV-KAPhE
together showed the best precision, but IV-KAPE provided it with superior recall and averaged
across a much larger portion of the kinome (Figure 4f). Returning to the macro-F1 score, we
similarly see that IV-KAPhE better balances precision and recall than the other methods (Figure
4g). As this test set is balanced for each kinase between positive and negative cases, a ROC
analysis is feasible (Figure 4h). Comparing the macro-averaged false-positive and true-positive
rates provides further evidence that [V-KAPhE (AUC = 0.833) out-performs the other methods
(AUC: LinkPhinder = 0.705; NetworKIN 3.0 = 0.673; Naive Bayes+ = 0.599; PSSM = 0.572;
as a range of cutoffs were not tested for GPS 5.0, no AUC could be calculated).

I next evaluated how many novel assignments are generated by the methods when performing
all-versus-all kinase-site assignment. Considering only the kinases assignable from the test set
and only the test-set sites for which at least one true kinase had been assigned, I compared the
macro-averaged false discovery rate (FDR) and true positive rate (TPR) across the different
methods. Here “false discovery rate” is a misnomer, as we do not know whether these assign-
ments are true or false. For all models, FDR dominates the TPR: while the fraction of known
cases correctly assigned may be high, the fraction of assignments that are novel is much higher
(Figure 41). IV-KAPhE’s high FDR is nevertheless matched by a higher TPR than the other
models. Thus, although IV-KAPhHE also produces many novel assignments, we have a greater
expectation of precision in its predictions
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Computational assignments hypothesize widespread signaling cross-talk
and redundancy

The topology of the human phosphorylation network is largely unresolved and biased towards
commonly studied kinases (Hornbeck et al., 2015; Invergo and Beltrao, 2018). One open
question is to what degree sites are phosphorylated by few kinases, as illustrated in canoni-
cal signaling pathway maps, versus multiple kinases through signaling noise, redundancy, or
cross-talk between pathways. By applying a near kinome-scale kinase-site assignment model
to a set of phosphosites representative of the phosphoproteome, we can produce hypotheses for
such questions. Accordingly, I used Naive Bayes+ and IV-KAPhE to generate all-versus-all
kinase-substrate assignments for a set of 271432 unique human phosphosites (P > 0.5 assign-
ments in Supplemental Table S1; a full, unfiltered table has been archived at doi: 10.5281/zen-
0d0.6325198), derived from the union of the entire PhosphoSitePlus human phosphosite set
(Hornbeck et al., 2015) and a high-confidence human phosphoproteome (Ochoa et al., 2020).
I compared these to literature-derived assignments from PhosphoSitePlus and to LinkPhinder’s
assignments for human phosphosites in PhosphoSitePlus (high-stringency cutoff).

a PhosphoSitePlus Naive Bayes+ b PhosphoSitePlus Naive Bayes+
p phospho- | 50000 - |
6000 acceptor 2000 4000 A
| Eu 40000 1500
4000 B | 300001 3000
1000 - 2000 ~
2000 -
o 500 ~ 1000 A J_
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Figure 5: a) Histograms of the number of kinases associated with sites in the phosphoproteome
reveal different views of the phosphorylation network. Literature annotations in Phospho-
SitePlus suggest most sites are regulated by one or two kinases. In vitro Naive Bayes+ predicts
some S/T sites are “hubs” and all Y sites can be phosphorylated by most Y kinases. LinkPhin-
der and IV-KAPhE, in contrast, predict a long tail of hub sites. b) Histograms of the median
number of kinases assigned per site for all proteins likewise show different predictions for hub
proteins. Literature annotations suggest most proteins are phosphorylated by one kinase at each
site. The computational methods all hypothesize multiple kinases per site, with some substrate
proteins being very promiscuous at all their sites.

Most sites with a causal kinase annotated in PhosphoSitePlus have a single kinase annotated
to them and very few have more than four annotated kinases (Figure 5a). Thus, from the
literature, we would suppose that multiple kinases rarely phosphorylate the same site. However
this resource contains little data for understudied kinases such as isoforms of more commonly
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studied ones, which tend to have similar sequence specificities (Invergo and Beltrao, 2018;
Bradley and Beltrao, 2019).

In contrast, Naive Bayes+ predicts that most S/T sites are phosphorylated by multiple kinases,
but generally fewer than 10 (Figure 5a). However, it also predicts that a subset of S/T sites
can be phosphorylated by around 20 different kinases. Conversely, the method assigns most
tyrosine kinases to each Y site, pointing to a clear technical shortcoming of the in vitro model:
cellular context plays the major role in determining Y kinase specificity. LinkPhinder and I'V-
KAPhHE, on the other hand, both produce long-tailed distributions, with some sites having over
100 kinases assigned to them (Figure 5a). Reassuringly, the multi-modal distribution of Naive
Bayes+ is smoothed out by the biological context incorporated into IV-KAPhE, and it assigns
fewer kinases to Y sites than Naive Bayes+.

We can similarly ask whether specific proteins act as signaling hubs between pathways, with
multiple kinases phosphorylating each of their phosphosites. To answer this, I compared the
median number of kinases assigned to sites for each substrate protein (Figure 5b). Again,
literature-based assignments in PhosphoSitePlus suggest that most proteins are phosphorylated
by a single kinase at each site. All three computational methods, on the other hand, propose
the hypothesis that many proteins can be phosphorylated by multiple kinases at each of their
sites (Figure 5b), i.e. that functional hubs on the protein-protein functional association network
encounter many kinases, each with potentially similar, degenerate sequence specificity to the
others.

One possible technical explanation of this for IV-KAPhE is that hub proteins’ strong functional
association scores may override low Naive Bayes+ probabilities via some branches in the Ran-
dom Forest model. This could arise from low, false-negative Naive Bayes+ probabilities in
the training set. As a result, [IV-KAPhE would produce false positives for proteins occupying
central positions in the network. For sites on such proteins, a post-hoc, stringent filter could be
applied to select only assigned kinases with high Naive Bayes+ scores.

IV-KAPAE predictions identify possible misannotations of kinase isoform
activity

The composition of the human kinome is the result of extensive duplication events and is thus
defined by families of kinases with highly similar sequence specificities (Bradley and Beltrao,
2019). Among closely related isoforms, often only one or two receive significant research
attention, leading to an imbalance in kinase-substrate annotations among them (Invergo and
Beltrao, 2018). Taking advantage of IV-KAPhE’s broad kinome coverage, which is less bi-
ased in composition than literature annotations, I investigated patterns of substrate assignment
among closely related isoforms.

First, I considered ribosomal protein S6 kinase alpha (S6K-) isoforms, among which isoforms
1 and 3 are the most commonly studied (Invergo and Beltrao, 2018). Using the full phospho-
proteome assignments described in the previous section, I collected IV-KAPE assignments of
S6K-o isoforms for any site annotated in PhosphoSitePlus as being phosphorylated, in vitro or
in vivo, by at least one of them (Supplemental Table S2; Figure 6a). The bias towards annota-
tions for S6K-a-1 and -3 is plainly visible. There are a number of sites that IV-KAPhE predicts
as being putative substrates of all six isoforms, pointing to multi-kinase phosphorylation, as
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well as some that are not well predicted for any isoform.
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Figure 6: a) IV-KAPhE assignments of ribosomal protein S6 kinase alpha isoforms for all
sites annotated in PhosphoSitePlus as being phosphorylated by at least one of the isoforms.
Red colors indicate assignments predicted as likely by IV-KAPhE. Highlighted sites, discussed
in the text, are examples that IV-KAPhE predicts are more likely to be phosphorylated by a
different isoform than the one annotated. b) IV-KAPhE assignments of calcium/calmodulin-
dependent protein kinase type II subunits to annotated sites, as described in (a).

More interestingly, there are sites for which an isoform has stronger probability of phosphory-
lating the substrate than the annotated isoform(s), supporting the argument that multi-label
assignment should be carried out for kinases themselves rather than for kinase families or
higher levels of classification. For example, site S103 on serum response factor (SRF; Uniprot:
P11831 / SRF_HUMAN) is annotated as a substrate of isoform 5, whereas isoform 1 has the
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strongest evidence (Figure 6a). This annotation was derived from an in vitro study, in which
the isoform used was not specified (Rivera et al., 1993). Two sites on Rho GTPase-activating
protein 31 (ARHGAP31; Uniprot: Q2M1Z3 / RHG31 HUMAN), S1106 and S1178, are anno-
tated as substrates of isoform 1, whereas IV-KAPhE gives a stronger probability to isoform 2
(Figure 6a). In this case, a S6K-a-1 gene construct was used to induce phosphorylation under
controlled conditions, while siRNAs targeting 1soforms 1 and 3 were used to validate endoge-
nous phosphorylation (Ben Djoudi Ouadda et al., 2018). Furthermore, site S1178 was not, in
fact, tested, but rather merely identified as a putative site by S6K- sequence-motif analysis
(Ben Djoudi Ouadda et al., 2018). Finally, site T929 on protein KIBRA (WWCI; Uniprot:
QS8IX03 / KIBRA_HUMAN) is annotated to isoforms 1 and 3, however [IV-KAPE assigns low
probabilities to both of these, instead favoring isoform 5 (Figure 6a). Here, the annotations
are based on an in vitro analysis using recombinant isoforms 1 and 3 (Yang et al., 2014). By
incorporating in vivo information, IV-KAPhE proposes the more likely causal isoform. I note
that in many of these cases, [V-KAPhE assigns multiple kinases to the sites, albeit at varying
degrees of probability, so the original assignments may be correct but incomplete.

I then carried out a similar analysis for calcium/calmodulin-dependent protein kinase type
IT (CaMK-II) subunits, which can form homo- or heteromultimeric holoenzymes, potentially
complicating kinase assignment. As with S6K-o, some sites are assigned with similar proba-
bilities to multiple subunits, while others point to possible misannotations (Supplemental Ta-
ble S3; Figure 6b). For example, sites S252, S257, S282, and S285 on transcription factor
C-ets-1 (ETSI; Uniprot: P14921 / ETSI_HUMAN) are all annotated to the most commonly
studied subunit, o, whereas IV-KAPHE indicates that the evidence supports the least com-
monly studied subunit, B (Invergo and Beltrao, 2018), as the causal protein kinase. In the
associated study, phosphorylation was tested in vitro using the o subunit, while it was tested
in vivo through expression of a -y construct (Liu and Grundstrom, 2002). Interestingly, while
PhosphoSitePlus only features the in vitro assignment to the o subunit, the ProtMapper corpus
includes an assignment to the 3 subunit. As another example, site S2808 on ryanodine receptor
2 (RYR2; Uniprot: Q92736 / RYR2_ HUMAN) is annotated to subunit &, whereas [IV-KAPhE
most strongly assigns it to the § subunit (Figure 6b). In this case, the subunit or subunits used
in the original, in vitro experiment are not specified (Rodriguez et al., 2003). Finally, in a
similar case, sites S165 and T154 on RING finger and CHY zinc finger domain-containing
protein 1 (RCHYI; Uniprot: Q96PMS / ZN363_HUMAN) are annotated to subunit ¢, whereas
IV-KAPhHE assigns a very low probability to this subunit, strongly preferring subunit 6. This
annotation was derived from the in vitro use of a CaMK-II inhibitor (Autocamtide-2 Related
Inhibitory Peptide II, for which isoform specificity has not been described) and a recombinant
rat kinase, the isoform of which was not specified (Duan et al., 2007).

IV-KAPhAE better enables high-coverage kinase activity analysis

A primary goal in performing a phosphoproteomic experiment is to deduce the signaling events
that generated the data. Given quantitative phosphoproteomic measurements and a list of
known substrates, the relative activity of a kinase can be inferred by a variety of methods,
such as a Z-test, gene set enrichment analysis, or multiple linear regression models (Casado
et al., 2013; Hernandez-Armenta et al., 2017). Typically, literature-derived kinase-substrate
relationships are used, because false-positive substrate assignments from in silico methods in-
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troduce large variance into the pool of measurements of the substrates (Hernandez-Armenta
et al., 2017). However, doing so inherently limits the numbers of kinases for which relative
activity can be inferred.

To test whether IV-KAPOE permits more accurate inference of kinase activity over past kinase-
substrate prediction or assignment methods, I performed a kinase-activity analysis on a quanti-
tative phosphoproteomics data set in which 20 different protein kinase inhibitors were applied
to MCF7 cells (Wilkes et al., 2015). For each condition, we expect the protein kinases targeted
by the chemical inhibitor (Supplemental Table S4) to exhibit decreased activity. Furthermore,
any protein kinases that are enzymatically activated by a target kinase should also exhibit de-
creased activity, while kinases whose activity is negatively regulated by a target kinase should
show increased activity. These secondary expectations are tempered by the possibility of com-
pensatory regulatory activity by other protein kinases. To account for these secondary inhi-
bition effects, I identified all kinases that are likely to be regulated by each target kinase by
integrating a literature-derived, signed kinase regulatory network from the Omnipath service
(Tiirei et al., 2016) with a computationally predicted, signed kinase-kinase regulatory network
(Invergo et al., 2020).

For each putatively affected kinase under each condition, I calculated Z-score-based kinase
activity scores (Hernandez-Armenta et al., 2017), based on kinase-phosphosite assignments
from each of the in silico methods assessed above (Figure 7a). Similarly, I calculated kinase
activities using in vivo literature-derived annotations from PhosphoSitePlus, which provides
the gold-standard in kinase activity inference (Hernandez-Armenta et al., 2017) (Figure 7a).
Surprisingly, PhosphoSitePlus annotations enabled very few kinases to be inferred as having
altered activity, however notably these were generally targets of inhibition. LinkPhinder sim-
ilarly enabled few inferences of altered activity. NetworKIN 3.0, GPS 5.0, and IV-KAPhE all
produced substantially more inferences, however these also included inferences of unexpected
activities (e.g. up-regulation of a target kinase). Such errors could be attributable to, for ex-
ample, false-positive substrate assignments, false-positive regulatory relationships, technical
noise in phosphosite quantification, or compensatory phosphorylation of true-positive targets
by other kinases.

Focusing on kinases that are expected to be down-regulated, ideal activity inferences would be
strictly negative. By pooling these kinases from all of the conditions (noting that some kinases
may appear multiple times) and observing the distribution of inferred activities, we can compare
the general performance of each of the methods (Figure 7b). In pairwise comparisons, IV-
KAPHE infers significantly lower activities than all of the other methods (one-sided Wilcoxon
signed-rank test on matched kinase pairs, with Benjamini-Hochberg p-value correction for false
discovery rate; IV-KAPhE vs. Networkin 3.0: n =175,V =4768, p = 6.3 X 10~°; vs. GPS 5.0:
n=262,V =12272, p=2.7x 107; vs. LinkPhinder: n = 273,V = 13474, p = 3.1 x 107>;
vs. PhosphoSitePlus: n =122,V =1717, p =1.0 X 10_7). The mean difference in inferred
activities for matched pairs between IV-KAPhE and the other assignment sources ranged from
-0.614 (LinkPhinder) to -0.943 (PhosphoSitePlus).

The kinase activity score used here is based on the logip-transformed p-value of the Z-test.
These results indicate that the scores derived from IV-KAPhE assignments correspond to p-
values that are, on average, up to an order of magnitude smaller than those produced from the
other assignment sources. Taking appropriate precautions concerning the possibilities of false-
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Figure 7: Kinase activity inference is affected by the accuracy and coverage of kinase-substrate
assignments. a) Target kinases and their downstream substrate kinases in a multi-inhibitor
quantitative phosphoproteomics experiment (Wilkes et al., 2015) are expected to have altered
enzymatic activities. Assignments derived from NetworKIN 3.0, GPS 5.0, and IV-KAPhE
make stronger inferences than those from LinkPhinder or in vivo literature-derived annotations
from PhosphoSitePlus, however these methods also erroneously predict increased activity in
some target kinases and downstream substrate kinases that they enzymatically activate. Each
column represents a different kinase inhibitor condition (see Supplemental Table S4), in which
green dots are direct targets of the inhibitor, orange triangles are kinases that are enzymatically
activated by a target kinase, and violet squares are kinases that are enzymatically inhibited by a
target kinase. Gray, dashed lines indicate activity levels of -2.5 and 2.5, corresponding to Z-test
p-values of 1072, b) IV-KAPhE provides more consistent inference of negative activity in
target kinases and substrate kinases that they enzymatically activate than other computational
methods as well as in vivo literature-derived annotations from PhosphoSitePlus. Point colors
and shapes, as well as the gray dashed lines, are as described for panel (a).
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positive assignments, then, the use of [V-KAPhE kinase-substrate assignments can provide
more confident activity inferences, on average, than even in vivo literature-derived annotations
and it does so with larger kinome coverage than literature-derived sources.

Discussion

With the widespread availability of phosphoproteomics, methods are needed for confidently
assigning protein kinases to observed phosphosites, accounting for the possibility of multiple
causal kinases. Although many kinase-substrate prediction or assignment methods have been
produced in the past, to the best of my knowledge no method has been specifically developed
for multi-label assignment of kinases to phosphosites to meet this need. Indeed, evaluating past,
performant methods in a multi-label setting, for which they were not designed, herein revealed
a tendency for low average performance across their full set of covered kinases. By being
built around hypothesis-free phosphoproteomic data and avoiding, where possible, functional
annotations biased towards commonly studied kinases (Invergo and Beltrao, 2018), IV-KAPhE
exhibits stronger average performance across the kinome, making it more suitable than past
methods for the modern task of multi-label assignment of kinases to phosphoproteomic data.

Kinase-substrate annotations are not available for most species to the same level as humans
or model species. Thus, kinase-substrate assignment methods that depend on such annota-
tions cannot be applied to those species. The IV-KAPhE method presented here requires a
high-throughput, phosphoproteomic kinase-substrate assay; high-throughput physical interac-
tion data; Gene Ontology annotations, which are often have good coverage by orthology; and
STRING scores, which are available for many species. This makes it a suitable method for
kinase-site assignment in non-model species. While the first two requirements are, indeed,
non-trivial and expensive, they are less onerous and time-consuming than low-throughput as-
says of individual kinase-substrates at a kinomic scale. Furthermore, the generality of the
training data for the in vivo part of IV-KAPhE means that it may be possible to use kinase-
substrate annotations from humans or model species as functional-association training data for
non-model species, a possibility that remains to be explored.

Even stringently assessed, the human phosphoproteome consists of over 100,000 different
sites on at least 12,000 different proteins (Ochoa et al., 2020), of which only a fraction have
literature-derived kinase assignments. These assignments are furthermore biased towards well-
studied protein kinases (Invergo and Beltrao, 2018). Thus the functional roles of many human
protein kinases, including closely related isoforms of more commonly studied kinases, remain
unknown. Applying IV-KAPhE predictions revealed the perils of these biases. On one hand,
researchers use commonly studied isoforms for in vitro or artificial in vivo analysis, whereas
the endogenous causal kinase may be a different isoform. On the other hand, when isoforms
are not adequately specified in literature, annotators may default to inappropriately assigning
the most commonly studied isoform to a site. As a result, the network mapping kinases to each
human phosphosite remains not only largely unresolved, but its topology cannot be accurately
extrapolated from existing literature-derived annotations.

Due to poor sequence conservation, many phosphosites are expected to be “off-target” and
without function (Landry et al., 2009; Levy et al., 2012; Ochoa et al., 2020). Nevertheless,
the methods presented here confidently assign multiple kinases to most sites. They collectively
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posit, based on the best available data, that this off-target noise is not due to low-probability
events on non-optimized substrate sequences, as suggested by signaling dynamics (Kanshin
et al., 2015). They thereby propose that the kinase-substrate network is densely connected. In-
corporating further biochemical constraints into future models may reduce this apparent density
and reject the computational hypothesis. Otherwise, the results will equally suggest that on-
target, functional phosphorylation also can generally be catalyzed by multiple kinases, raising
the question of how kinase functional specialization is maintained across the human kinome.

Methods

In vitro protein kinase specificity models

For a detailed, mathematical descriptions of specificity model construction, see Supplemental
Methods. They are described here in brief. All models were built from 15-residue sequence
windows around the phosphoacceptor (+/-7 residues). Substrate sequences were weighted be-
fore counting (Henikoff and Henikoff, 1994). Position-specific pseudocounts were added us-
ing the method of Henikoff and Henikoff (1996) and supplemented according to missing tail
residues if sites localized to the 5’ or 3’ tail of the substrate protein. Column weights were
calculated as the relative entropy versus background frequencies (PFM and phosphoproteome-
backed PSSMs: position-specific residue frequencies from the full set of observed sequence
windows; proteome-backed PSSMs: proteomic residue frequencies). PFM and PSSM scores
were min-max normalized by calculating the theoretical minimum and maximum scores pro-
duced by the PSSM (Wagih et al., 2015).

The multi-label Naive Bayes model was built using four components: the PFM constructed
from a kinase’s substrates; the PFM of all the substrates not phosphorylated by the kinase;
and the prior probabilities of a site being phosphorylated by the kinase or by any other kinase.
The priors were empirically estimated as the fraction of substrates in the experiment that were
phosphorylated by the kinase or not, respectively. For determining the posterior probability
that a kinase K phosphorylates a site with sequence window S, given PFM scores sk for K and
sg for all other kinases and prior probabilities P(K) and P(K), the following was calculated:

SKP(K)
SKP(K) —I—SKP(I?)

P(K|S) =

A kinase was assigned to a site if P(K|S) > 0.5.

The Naive Bayes+ model further incorporated Bernoulli-distributed features with the PFM-
based likelihood function. Probability parameters of substrates being direct or indirect interac-
tion partners, of carrying domains enriched among a kinase’s substrates or interaction partners,
or of substrate sites being within a predicted protein domain were estimated empirically from
the training data. Domain enrichment was calculated among substrates or interaction partners
via Fisher’s hypergeometric test and p-values were adjusted for false-discovery rate before be-
ing tested at a critical value of 0.05. To facilitate the scoring of new human phosphosites, the
Naive Bayes+ model for human kinases, as generated and applicable by the motif-kit software
(see “Implementation”, below), as well as the domain enrichment and kinase interaction data
have been archived on Zenodo (doi: 10.5281/zenodo.6325198).
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Multi-label cross-validation

For multi-label performance evaluation, I performed 10 iterations of 10-fold cross-validation,
restricting to kinases with models trained on at least 20 substrates. Both kinase substrate-
domain enrichment and sequence specificity models were recalculated from each fold’s training
subset. Performance was evaluated using macro-averaged (averaged over the set of all kinases,
K) precision, recall and F1 scores:

y TPx
K TPx+FPx

K|
TP
LK TR 1INy
K]
2XPrecxrec
. Lk prec+rec

K]

prec =

IeC =

F1

where T Pk, FPg, and F Nk are the true-positive, false-positive, and false-negative counts for
kinase K, respectively. If a score was undefined due to division by 0, it was set to 0.

Implementation

Kinase specificity model training and scoring were implemented in and performed using a be-
spoke, free and open-source toolkit called motif-kit (https://www.gitlab.com/brandoninvergo/
motif-kit). Version 1.0, used here, is archived at Zenodo (doi: 10.5281/zenodo.6325136).

The code was written in ANSI C99 for POSIX systems and is dependent only on the GNU
Scientific Library (https://www.gnu.org/software/gsl) and the HDFS5 library (https:
//www.hdfgroup.org/solutions/hdf5/), with unit tests further depending on the Check
testing framework (https://libcheck.github.io/check/). All other methods (domain en-
richment, multi-label CV, etc.) were implemented using R (version 4.1.0).

IV-KAPhE Model

Model construction

The IV-KAPhE model was built via the Random Forest method, as implemented in the R pack-
age “ranger’” (version 0.13.1; Wright and Ziegler, 2017). The models were built with 500 trees.
The variable importance mode (parameter “importance”) was set to “impurity” (the Gini index)
and the splitting rule (parameter “splitrule”) was set to “gini”’. The model was trained to clas-
sify a given kinase-phosphosite pair as “true” (the kinase phosphorylates the site) or “false” (it
does not) and set to provide a probability for each class. Feature selection was performed via
variable-importance analysis, as implemented in ranger. The final list of features retained for
model construction were: Naive Bayes+ posterior probability, GO BP and CC semantic sim-
ilarity, STRING coexpression and experimental scores, whether the substrate protein is itself
a kinase, the kinase type (S/T or Y), and the site class (S/T or Y). The model was also tested
using a Support Vector Machine instead of Random Forest, as implemented in the R package
“e1071” (version 1.7-9) using the default settings for classification.
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Cross-validation

In vivo kinase-substrate relationships identified in the PhosphoSitePlus database (Hornbeck
et al., 2015) were used as true positives in the training set for cross-validation. The same
kinases from the true positive set (including multiple occurrences) were randomly assigned to
other sites from the human phosphoproteome (Ochoa et al., 2020) to form a negative set. To
this end, S/T kinases were randomly assigned to S/T sites and Y kinases were assigned to Y
sites. Additionally, any S/T or Y kinases that were annotated as phosphorylating the opposite
site type in the true positive set were randomly assigned to a similar proportion of such sites
in the negative set. In all cases, the proportion of substrate kinases observed in the positive set
was maintained in the random negative set. Sites were filtered not to include sites found in the
true positive training set or the external testing set (see below). 10-fold cross validation was
performed and evaluated, restricted to kinases with Naive Bayes+ models trained on at least 20
substrates, via multi-label precision, recall, and F1 as described above. Cross-validation was
performed ensuring that any kinase present in a fold had at least one positive and one negative
site.

External Validation

IV-KAPhHE was trained using the full PhosphoSitePlus and random kinase-site pair training set
as described above. An external evaluation set was prepared by identifying kinase-substrate re-
lationships inferred via the ProtMapper method (Bachman et al., 2019) which were not present
in PhosphoSitePlus (in vivo or in vitro). These sites were accompanied by further random neg-
ative kinase-site pairs as described above. Predictions made by the model on this testing set
were evaluated via multi-label precision, recall, and F1.

I furthermore evaluated the assignments for these kinase-site pairs made by phosphoproteome-
backed PSSMs, Naive Bayes+, and three other, previously published tools with similar kinomic
scope or model architecture: NetworKIN 3.0 (Horn et al., 2014), GPS 5.0 (Wang et al., 2020),
and LinkPhinder (Novacek et al., 2020). NetworKIN and GPS were run in-house with their
default settings, whereas the LinkPhinder scores produced by the authors were used. For further
evaluation, the published stringent LinkPhinder cutoff of 0.672 (Novécek et al., 2020) and the
nominal NetworKIN cutoff of 1.0 (Horn e al., 2014) were used.

The test set was then re-evaluated with all methods, now allowing all-versus-all kinase-site
assignments, restricted to sites that had at least one true kinase assigned. The rate of novel
assignments was estimated via the macro-averaged false discovery rate (FDR) and compared
to the macro-averaged true positive rate (identical to recall):

LK 7 1 7
FDR = i
K]

TPR — Yk TP,Zf?NK
K|

“False positive” (FP) is used here by convention although it is a misnomer in the present case,
as we do not know that the assignments are false.
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Kinase Assignment Distributions

IV-KAPHE and Naive Bayes+ were applied to perform all-versus-all assignments for kinases
with specificity models built from at least 20 substrates against the full high-confidence set of
human phosphosites (Ochoa et al., 2020). The numbers of kinases assigned to each phospho-
site and the median number of kinases assigned to sites on each substrate protein were analyzed
via histograms. All literature-derived assignments in PhosphoSitePlus and all assignments pro-
vided by the authors of LinkPhinder at a cutoff of 0.672 were analyzed similarly.

Kinase Activity Analysis

Previously published quantitative phosphoproteomic measurements from a multi-inhibitor ex-
periment (Wilkes et al., 2015) were filtered to remove missing data and measurements taken
under serine/threonine-protein phosphatase 2A inhibition. If a phosphosite was observed on
multiple peptides in the data, the peptide with the greatest dynamic range between conditions
was retained. Protein kinases that are regulated downstream of the kinases targeted for inhi-
bition were retrieved from two sources: Omnipath, a meta-database of protein-protein regu-
latory relationships (Tiirei et al., 2016), keeping only kinase-kinase regulatory relationships
with a consensus sign (activating or inhibiting); and a set of computational predictions of
signed kinase-kinase regulatory relationships (Invergo et al., 2020), with a stringent posterior-
probability cutoff of 0.75. Multi-label kinase-substrate assignment was then performed for all
target kinases and each of their regulatory-substrate kinases using IV-KAPhE, NetworKIN 3.0,
and LinkPhinder at their nominal cutoffs as described above and using GPS 5.0 at its “medium”
stringency setting. Furthermore, in vivo kinase-substrate annotations were retrieved from Phos-
phoSitePlus for the sites.

For each kinase-substrate assignment source, kinase activities were inferred as follows. For
a given kinase and inhibition condition, the /og, fold-changes of any of the kinase’s assigned
substrates were tested for significant difference from the mean log, fold-change for that con-
dition via a two-sided Z-test. The final activity was inferred as —logo(p)sgn(x), where sgn is
the sign function, ¥ is the mean fold-change of the kinase’s assigned substrates, and p is the
p-value of the Z-test. For example, if the kinase’s assigned substrates have a significantly lower
distribution than the full sample, the inferred activity will take a large negative value.
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