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Among the technologies available for protein biomarker discovery and validation, reverse-phase protein array 
(RPPA) benefits from unequalled sample throughput. Panels of high-quality antibodies enable the 
quantification by RPPA of protein abundance and posttranslational modifications in biological specimens with 
high precision and sensitivity. Incorporation of RPPA technology into clinical and drug development pipelines 
requires robust assays that generate reproducible results across multiple laboratories. We implemented the first 
international multicenter pilot study to investigate RPPA workflow variability. We characterized the proteomic 
responses of a series of breast cancer cells to two cancer drugs. This analysis quantified 86,832 sample spots, 
representing 108 biological samples, arrayed at three independent RPPA platforms. This unique integrated set 
of data is publicly available as a resource to the proteomic and cancer research communities to catalyse further 
analysis and investigation. We anticipate that this dataset will form a reference for the comparison of RPPA 
workflows and reagents, which can be expanded in the future, and will aid the identification of platform-robust 
treatment-marker antigens in breast cancer cells. 
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Background & Summary 
In oncology, the therapeutic potential of personalized medicine has been realized for many patients. The targeted 
therapies imatinib and trastuzumab are examples of drugs that have revolutionized patient survival in certain types 
of cancer1,2. Yet, besides a few success stories, there is little evidence that treatment selection based on genetic 
alterations is of real benefit to patients3,4, possibly because the vast majority of targeted therapies target proteins, 
and most frequently the active form of the protein. Activation of proteins and their associated signaling pathways 
often cannot be predicted from genetic alterations. For example, in breast cancer, a PIK3CA mutation is not 
necessarily associated with activation of the phosphoinositide 3-kinase–Akt pathway5,6. Moreover, if parallel 
signaling pathways are activated in the tumor, the patient will show resistance to the administered targeted therapy. 
An emerging consensus view has therefore identified the need to include proteomic analyses in drug development 
pipelines and molecular screening programs7–11. However, successful implementation of this requires robust, 
reproducible, and affordable high-throughput proteomics technologies. 

Reverse-phase protein array (RPPA) technology is a high-throughput dot-blot technology that uses panels 
of high-quality antibodies to enable the quantification of protein abundance, and that of posttranslational 
modifications, from a limited amount of biological sample12. The technology offers precise and sensitive 
multiplexed quantification of the abundance of proteins and posttranslational modifications in hundreds of 
arrayed samples, providing the opportunity for high-throughput proteomic profiling of cells and tissues13–15. RPPA 
therefore provides a valuable tool for the targeted analysis of disease-relevant signaling mechanisms, including in 
cancer16–35. 

To date, RPPA technology has been, and is currently being, applied in several cancer clinical trials11,36, 
mostly retrospectively to detect markers of response and resistance37–45, but in some cases also prospectively to 
select the most appropriate therapy for a given patient46,47. As RPPA technology is readying itself for further 
implementation in drug development and clinical laboratory settings, there was a demand to evaluate the 
robustness and reproducibility of RPPA datasets derived from different RPPA platforms. 

To address this need for crossplatform validation of RPPA technology, we conducted the first international 
multicenter pilot study to investigate RPPA workflow variability and potential for multiplatform data integration. 
With the overarching goal of learning from distinct analysis pipelines and improving RPPA technology, the 
objectives of this open, collaborative project were to acquire, normalize, and integrate data from multiple RPPA 
platforms to facilitate crossplatform data comparison. We characterized the protein-level responses of six breast 
cancer cell lines to two clinically relevant cancer drugs at two treatment timepoints, generating a total of 108 
biological samples, incorporating 36 experimental conditions, which were normalized and analyzed at three 
different research centers (Fig. 1a–c). The dataset consists of original RPPA slide scan images and image 
quantification of 86,832 sample spots derived from 972 arrayed lysates, incorporating independent biological 
replicate samples, serial lysate dilution series, and technical replicate sample spots, from three independent RPPA 
platforms. Integrative analysis of a subset of these data enabled the identification of platform-independent protein 
markers of breast cancer cell response to drug treatment48. We report here the raw and processed data from our 
assessment of multiple RPPA workflows at different research centers. Our data will serve as a starting point for the 
appraisal of the reproducibility of RPPA technology and its capacity to identify robust protein markers of response 
to cancer therapies. The data can be reused by multiple researchers over the world to implement and validate their 
RPPA quality control, data normalization, and data integration methods. Moreover, the dataset can be expanded 
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Figure 1.  Schematic overview of the sample preparation and data analysis work�ows. 
(a) Sample preparation work�ow. Six breast cancer cell lines were treated with lapatinib, 
selumetinib, or DMSO (vehicle) for 20 min or 24 h. Cells were lysed (n = 3 biological 
replicates), and cell lysates were snap frozen and sent to the di�erent research centers. 
(b) Multicenter RPPA analysis work�ow. Cell lysates were arrayed and processed for 
RPPA analysis using the platform-speci�c setups at the respective research centers [IC, 
Institut Curie (platform 1); DKFZ, Deutsches Krebsforschungszentrum (platform 2); 
IGC, Institute of Genetics and Cancer, University of Edinburgh (platform 3)]. 
(c) Antigen selection decision tree. Data derived from validated antibodies targeting the 
same antigen, including di�erent antibodies from di�erent suppliers, acquired at all 
three research centers were used for dataset integration. (d) Data reuse exemplar 
work�ow. Normalized RPPA data from each research center were centered and 
integrated to enable various modes of data reuse. a and b were adapted from Fig. 1a in 
our related work48.
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to support a framework for the integration, interrogation, and interpretation of RPPA data derived from multiple 
research centers (Fig. 1d). 
 
Methods 
Experimental design 
For this multicenter RPPA study, six breast cancer cell lines were cultured in the presence or absence of two kinase 
inhibitors for two time periods. For each experimental condition, three biological replicate cell lysates were 
generated, frozen, and sent to three different research centers for RPPA analysis (Fig. 1a, b). Cell lysates were 
processed for RPPA analysis using the platform-specific setups at the respective research centers, including 
incorporation of serial lysate dilution series and technical replicate sample spots (detailed below). Raw RPPA data 
were processed and normalized according to the respective in-house data analysis pipelines. Each antibody used 
was assigned a unique antibody identifier linked to a Research Resource Identifier (RRID) (Online-only Table 1). 
Normalized data derived from validated antibodies targeting the same antigen acquired at all three research centers 
were integrated to support data reuse (Fig. 1b–d). 

Some of the following methods are expanded versions of descriptions in our related work48. 
 
Cell culture and drug treatment 
HCC1954 (RRID CVCL_1259), MCF7 (RRID CVCL_0031), MDA-MB-231 (RRID CVCL_0062), MDA-MB-453 
(RRID CVCL_0418), MDA-MB-468 (RRID CVCL_0419), and SKBR3 (RRID CVCL_0033) breast cancer cells 
(Table 1) were purchased from American Type Culture Collection (LGC Standards, Molsheim, France) and were 
cultured according to the supplied instructions. Cells were routinely tested for mycoplasma and used within three 
months of recovery from frozen. Lapatinib [Selleck Chemicals, Houston, TX, USA, catalog number (cat. no.) 
S2111], a dual epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2; 
also known as ErbB2) inhibitor, and selumetinib (Selleck Chemicals, cat. no. S1008), a mitogen-activated protein 
kinase kinase (MEK) inhibitor, were prepared as 10 mM stock solutions in DMSO (Online-only Table 2). Cells 
were treated with 1 µM lapatinib, 1 µM selumetinib, or DMSO (vehicle control) in growth medium for 20 min or 
24 h. 
 
Cell lysis 
Following treatment with drug or vehicle control, cells were washed twice with ice-cold phosphate-buffered saline 
(PBS). Cells were lysed in hot Laemmli buffer [50 mM Tris-HCl (pH 6.8), 2% (w/v) sodium dodecyl sulfate, 5% 
(w/v) glycerol, 2 mM DTT, 2.5 mM EDTA, and 2.5 mM EGTA], supplemented with 4 mM sodium orthovanadate, 
20 mM sodium fluoride, 1× Perbio Halt phosphatase inhibitor cocktail (Thermo Fisher Scientific, Waltham, MA, 
USA, cat. no. 78420), and 1× Roche cOmplete protease inhibitor cocktail (Sigma-Aldrich, Gillingham, UK, cat. no. 
11697498001), for 10 min at 100°C. Lysates were passed through a 25-gauge needle five times and then clarified by 
centrifugation at 18,000 × g for 10 min at room temperature. Protein concentration was determined for each 
sample using a Pierce reducing agent-compatible BCA protein assay kit (Thermo Fisher Scientific, cat. no. 23250). 

Clarified lysates were aliquoted and snap-frozen in liquid nitrogen prior to shipment to the participating 
research centers on dry ice. Samples prepared in biological triplicate were analyzed at each research center using 
the respective in-house RPPA platforms (platform 1, Institut Curie; platform 2, Deutsches 
Krebsforschungszentrum; platform 3, Institute of Genetics and Cancer, University of Edinburgh) (Table 2). 
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Cell type Breast 
cancer 
subtype 

Protein expression ERBB2 
amplification 

Drug treatments 

ER PR E-cad. EGFR-high 

HCC1954 Basal-like 
HER2-
positive 

  + + + Lapatinib (20 min, 24 h) 

Selumetinib (20 min, 24 h) 

DMSO (20 min, 24 h) 
 

MCF7 Luminal A + + +   Lapatinib (20 min, 24 h) 

Selumetinib (20 min, 24 h) 

DMSO (20 min, 24 h) 
 

MDA-MB-231 Claudin-low    +  Lapatinib (20 min, 24 h) 

Selumetinib (20 min, 24 h) 

DMSO (20 min, 24 h) 
 

MDA-MB-453 HER2-
positive 

    + Lapatinib (20 min, 24 h) 

Selumetinib (20 min, 24 h) 

DMSO (20 min, 24 h) 
 

MDA-MB-468 Basal-like 1   + +  Lapatinib (20 min, 24 h) 

Selumetinib (20 min, 24 h) 

DMSO (20 min, 24 h) 
 

SKBR3 Luminal-
like HER2-
positive 

   + + Lapatinib (20 min, 24 h) 

Selumetinib (20 min, 24 h) 

DMSO (20 min, 24 h) 
 

 

Table 1. Breast cancer cell types and drug treatments used to generate samples 

analyzed in this study. Receptor status of breast cancer cell types is indicated. The breast 
cancer subtype for MDA-MB-231 cells is also referred to as mesenchymal stem-like. For 

MDA-MB-453 cells, the ERBB2 gene, which encodes HER2, is amplified but HER2 is not 
overexpressed; its breast cancer subtype is sometimes referred to as luminal androgen 

receptor. E-cad., E-cadherin; EGFR, epidermal growth factor receptor; ER, estrogen 
receptor; HER2, human epidermal growth factor receptor 2; PR, progesterone receptor. 
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Platform Center Slides Slide 
labeling 

Signal 
readout 

Scanner Spot 
detection 

Normalization 

1 IC Grace Bio-Labs 
ONCYTE 
SuperNOVA 
nitrocellulose film 

DAKO 
autostainer 

Alexa 
Fluor 647 

GenePix 
400B 

MicroVigene SYPRO Ruby 
and NormaCurve 

2 DKFZ Grace Bio-Labs 
ONCYTE AVID 
nitrocellulose film 

By hand Alexa 
Fluor 680 

Odyssey GenePix Pro Fast Green FCF 
and RPPanalyzer 

3 IGC Grace Bio-Labs 
ONCYTE AVID 
nitrocellulose film 

By hand DyLight 
800 

InnoScan 
710 

Mapix Fast Green FCF 

 
Table 2. RPPA workflows used at each center. All research centers used the 2470 

Arrayer for slide printing. Only platform 1 used signal amplification (Bio-Rad Amplification 
Reagent). For further details, including manufacturer information, see the Methods section. 

IC, Institut Curie; DKFZ, Deutsches Krebsforschungszentrum; IGC, Institute of Genetics and 
Cancer, University of Edinburgh. This table was adapted from Supplementary Table 2 in our  

 related work48.
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RPPA sample handling 
Platform 1. The protein concentration of all samples was adjusted to 1.0 mg/ml. Samples were then serially diluted 
in lysis buffer to produce four serial two-fold dilutions of each sample (1 mg/ml, 0.5 mg/ml, 0.25 mg/ml, and 0.125 
mg/ml concentrations). Samples were printed onto Grace Bio-Labs ONCYTE SuperNOVA nitrocellulose film 
slides (Sigma-Aldrich, cat. no. 705170) under conditions of constant 70% relative humidity using an Aushon 
BioSystems 2470 microarrayer (Quanterix, Billerica, MA, USA). Two technical replicate spots were printed per 
sample dilution. 
 
Platform 2. Vehicle control samples only were serially diluted in lysis buffer to produce six serial two-fold dilutions 
of each sample (1.8 mg/ml, 0.9 mg/ml, 0.45 mg/ml, 0.225 mg/ml, 0.1125 mg/ml, and 0.05625 mg/ml 
concentrations). The protein concentration of all samples was then adjusted to 1.5 mg/ml. Samples were printed 
onto Grace Bio-Labs ONCYTE AVID nitrocellulose film slides (Sigma-Aldrich, cat. no. GBL305108) under 
conditions of constant 70% relative humidity using an Aushon BioSystems 2470 microarrayer. Three technical 
replicate spots were printed per sample dilution. 
 
Platform 3. The protein concentration of all samples was adjusted to 1.5 mg/ml. Samples were then serially diluted 
in PBS containing 10% (w/v) glycerol to produce four serial two-fold dilutions of each sample (1.5 mg/ml, 0.75 
mg/ml, 0.375 mg/ml, and 0.1875 mg/ml concentrations). Samples were printed onto Grace Bio-Labs ONCYTE 
AVID nitrocellulose film slides under conditions of constant 70% relative humidity using an Aushon BioSystems 
2470 microarrayer. Three technical replicate spots were printed per sample dilution. 
 
RPPA sample analysis 
Platform 1. Slides were hydrated in deionized water (four 15-min washes), washed with Tris-buffered saline (TBS) 
containing 0.1% (w/v) Tween 20 (TBS-T) (three 5-min washes), and incubated with TBS-T containing 5% (w/v) 
bovine serum albumin (TBS-T-BSA) for 10 min. Slides were washed with TBS-T (three 5-min washes), incubated 
with Dako biotin (cat. no. X0590) and peroxidase (cat. no. S200389) blocking reagents (both Agilent, Santa Clara, 
CA, USA), and incubated with primary antibodies (diluted in TBS-T-BSA; Online-only Table 1) for 60 min. Slides 
were washed with TBS-T (three 5-min washes), incubated with TBS-T-BSA for 10 min, and washed with TBS-T 
(three 5-min washes). Bound antibodies were detected by incubation with horseradish peroxidase-conjugated anti-
mouse (cat. no. 115-035-062; RRID AB_2338504) or anti-rabbit (cat. no. 111-035-045; RRID AB_2337938) 
secondary antibodies (both Jackson ImmunoResearch Europe, Ely, UK) for 60 min. To amplify the signal, slides 
were incubated with Bio-Rad Amplification Reagent (Bio-Rad, Watford, UK, cat. no. 1708230) for 15 min. The 
arrays were washed with TBS-T (three 5-min washes), probed with Alexa Fluor 647-coupled streptavidin (Thermo 
Fisher Scientific, cat. no. S32357), incubated with TBS-T-BSA for 60 min, and washed in TBS-T (three 5-min 
washes). Slides were washed with deionized water (one 5-min wash), spun at 2,000 r.p.m. for 5 min, and stored in 
the dark. 

For normalization against total protein, an additional slide was incubated with destain solution 1 [7% (v/v) 
acetic acid, 10% (v/v) methanol in deionized water] for 15 min and washed with deionized water (two 5-min 
washes). The slide was then incubated with SYPRO Ruby staining solution (Thermo Fisher Scientific, cat. no. 
S11791) for 5 min, washed with deionized water (five 5-min washes), spun at 2,000 r.p.m. for 5 min, and stored in 
the dark. All steps were performed at room temperature with agitation on a rocking platform. 
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Platform 2. Slides were hydrated in deionized water (four 15-min washes), washed with TBS-T (three 5-min 
washes), and incubated with 50% (v/v) blocking buffer for fluorescent western blotting (Rockland 
Immunochemicals, Limerick, PA, USA, cat. no. MB-070) in TBS containing 5 mM sodium fluoride and 1 mM 
sodium orthovanadate (hereafter, Rockland blocking solution) for 2 h. Slides were washed with TBS-T (four 5-
min washes) and incubated with primary antibodies (diluted in Rockland blocking solution; Online-only Table 1) 
overnight at 4°C with agitation on a rocking platform. Slides were washed with TBS-T (four 5-min washes). Bound 
antibodies were detected by incubation with Alexa Fluor 680-conjugated F(ab′)2 fragments of anti-mouse IgG (cat. 
no. A-21059; RRID AB_2535725) or anti-rabbit IgG (cat. no. A-21077; RRID AB_2535737) secondary antibodies 
(both Thermo Fisher Scientific) (diluted 1:8,000 in TBS-T) for 1 h. Slides were washed with TBS-T (four 5-min 
washes), washed with deionized water (one 5-min wash), air dried for 10 min at 30°C in the dark, and stored at 
room temperature in the dark. 

For normalization against total protein, an additional slide was washed with TBS for 1 min and incubated 
with 0.005% (w/v) Fast Green FCF (Sigma-Aldrich, cat. no. F7258) in destain solution 2 [10% (v/v) acetic acid, 
30% (v/v) ethanol in deionized water] for 45 min. The slide was then incubated with destain solution 2 (two 15-
min incubations), washed with deionized water (two 5-min washes), air dried for 10 min at 30°C in the dark, and 
stored at room temperature in the dark. Unless otherwise stated, all steps were performed at room temperature 
with agitation on a rocking platform. 
 
Platform 3. Slides were hydrated in deionized water (four 15-min washes), incubated with ReBlot Plus strong 
antigen retrieval agent (Merck, Watford, UK, cat. no. 2504) for 15 min, washed with PBS containing 0.1% (w/v) 
Tween 20 (PBS-T) (two 5-min washes), and incubated with SuperBlock T20 (TBS) blocking buffer (Thermo Fisher 
Scientific, cat. no. 37536) for 10 min. Slides were washed with TBS-T (two 5-min washes) and incubated with 
primary antibodies (diluted in SuperBlock T20 blocking buffer; Online-only Table 1) for 60 min. Slides were 
washed with TBS-T (two 5-min washes), incubated with SuperBlock T20 blocking buffer for 10 min, and washed 
with TBS-T (three 5-min washes). Bound antibodies were detected by incubation with DyLight 800-conjugated 
anti-mouse IgG (cat. no. 5257; RRID AB_10693543) or anti-rabbit IgG (cat. no. 5151; RRID AB_10697505) 
secondary antibodies (both Cell Signaling Technology) (diluted 1:2,500 in SuperBlock T20 blocking buffer) for 30 
min. Slides were washed with TBS-T (two 5-min washes), washed briefly with deionized water, spun at 2,000 r.p.m. 
for 5 min, and stored in the dark. 

For normalization against total protein, an additional slide was washed with deionized water (one 5-min 
wash), incubated with 1% (w/v) NaOH for 15 min, rinsed with deionized water (10 rinses), washed with deionized 
water (one 10-min wash), and incubated with destain solution 3 [7% (v/v) acetic acid, 30% (v/v) methanol in 
deionized water] for 15 min. The slide was then incubated with 0.0025% (w/v) Fast Green FCF in destain solution 
3 for 3 min, rinsed with deionized water (10 rinses), incubated with destain solution 3 for 15 min, rinsed with 
deionized water (10 rinses), spun at 2,000 r.p.m. for 5 min, and stored in the dark. All steps were performed at 
room temperature with agitation on a rocking platform. 
 
RPPA data analysis 
Platform 1. Slides were visualized using a GenePix 4000B microarray scanner (Molecular Devices, San Jose, CA, 
USA) at an excitation wavelength of 635 nm and a resolution of 10 µm, and images were acquired as tagged image 
file format (TIFF) files (stored in Images1_IC.zip)49. Scanner settings were chosen to obtain around 10–15% of 
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saturated spots, which improves subsequent data normalization. Signals were quantified using MicroVigene 
microarray image analysis software (VigeneTech, Carlisle, MA, USA). Nonspecific signals were determined by 
omitting the primary antibody incubation step. Means of technical replicate sample spots were calculated, and data 
were written to a comma-separated values (CSV) file (SampleQuantification1_IC.csv)49. Data were normalized 
using NormaCurve50, which normalizes for fluorescence background per spot and total protein stain and defines 
a log2-transformed single expression value for each biological sample, based on the entire serial dilution curve and 
all technical replicates. Next, each RPPA slide was median centered and scaled (divided by median absolute 
deviation). We then corrected for remaining sample loading effects individually for each array by correcting the 
dependency of the data for individual arrays on the median value of each sample over all the arrays using linear 
regression. Normalized, log2-transformed data were written to a CSV file (NormalizedData1_IC.csv)49. 
 
Platform 2. Slides were visualized using an Odyssey near-infrared microarray scanner (LI-COR Biotechnology, 
Bad Homburg, Germany) at an excitation wavelength of 685 nm and a resolution of 21 μm, and images were 
acquired as TIFF files (stored in Images2_DKFZ.zip)49. Scanner settings were chosen to enable the highest gain 
without saturation of the signal. Signals were quantified using GenePix Pro microarray image analysis software 
(version 7.0) (Molecular Devices). Nonspecific signals were determined by omitting the primary antibody 
incubation step. The linear fit of the relative fluorescence intensities for the dilution series of each vehicle control-
treated sample was determined for each primary antibody, and >99% of signals derived from neat samples (1.5 
mg/ml) were within the linear range of detection48. Medians of technical replicate sample spots were calculated, 
background was corrected, and quality control was performed using RPPanalyzer51, and data were written to a 
CSV file (SampleQuantification2_DKFZ.csv)49. Data were normalized for protein loading using RPPanalyzer, log2 
transformed, and written to a CSV file (NormalizedData2_DKFZ.csv)49. 
 
Platform 3. Slides were visualized using an InnoScan 710-IR infrared microarray scanner (Innopsys, Carbonne, 
France) at an excitation wavelength of 785 nm and a resolution of 10 μm, and images were acquired as TIFF files 
(stored in Images3_IGC.zip)49. Following a preview scan to assess signal saturation, scanner settings were chosen 
to enable the highest laser power and gain with no saturation of the signal. Signals were quantified using Mapix 
microarray image analysis software (version 6.5.0) (Innopsys). Nonspecific signals were determined by omitting 
the primary antibody incubation step. The linear fit of the relative fluorescence intensities for the dilution series of 
each sample was determined for each primary antibody, to assess whether signals were within the linear range of 
detection with R2 > 0.9. Mean pixel values of sample spots were corrected by subtracting the median pixel value of 
the local background surrounding each spot (excluding a 2-pixel region at the spot–background border) using 
Mapix. Means of technical replicate sample spots were calculated, and data were written to a CSV file 
(SampleQuantification3_IGC.csv)49. Data were normalized for protein loading using the corresponding total 
protein stain. After data normalization, two data points were negative [cleaved PARP (antibody identifier 
PARP_cleaved_a) probing of MDA-MB-231 cells treated with vehicle control for 24 h (biological replicate 2) and 
with selumetinib for 20 min (biological replicate 3)]; to prevent an error upon log2 transformation, these data 
points were imputed with ~0.98 × column minimum (0.0078125). Imputed, normalized data were log2 
transformed and written to a CSV file (NormalizedData3_IGC.csv)49.  
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Dimensionality reduction 
For t-distributed stochastic neighbor embedding (t-SNE), RPPA data were scaled and subjected to principal 
component analysis, from which the leading 50 principal components were retained for t-SNE. The Barnes–Hut 
tradeoff parameter, θ, was 0.1, the exaggeration factor was 4, perplexity was 10, and the maximum number of 
optimization iterations was 5,000. For reproducibility, random seed 1 was used. 

For uniform manifold approximation and projection (UMAP), RPPA data were scaled and Euclidean 
distances between sample points were computed. The local neighborhood used for manifold approximation was 
15 neighboring sample points. Fuzzy set operation was 1.0 (pure fuzzy union). Local connectivity was 1, and 
negative sample rate was 5, with weight γ = 1.0. The effective minimum distance between embedded points was 
0.1, and the effective scale of embedded points (spread function) was 1.0. The number of training epochs for 
optimizing the low-dimensional embedding was 1,000. For reproducibility, random seed 1 was used. 
 
Multicenter dataset integration 
The log2 transforms of data normalized using the methods employed by the respective research center were 
median-subtracted antibody wise and concatenated into a single matrix. To enable comparison across all three 
research centers, data were filtered for antibodies against the same target (i.e. protein or phosphoprotein) probed 
at all centers. To consolidate antibody crossreactivity, antibodies recognizing related or multiple protein isoforms 
(e.g. MEK1 and MEK1/2) were considered to recognize the same target family (e.g. MEK1/2) and were thus 
included in the integrated dataset if the respective target family was probed at all centers. The final concatenated 
matrix was written to a CSV file (IntegratedData.csv)49. 
 
Cluster analysis 
Agglomerative hierarchical cluster analysis of Spearman rank correlation coefficients was performed using Cluster 
3.0 (C Clustering Library, version 1.54)52. Spearman rank correlation coefficient-based distance matrices were 
constructed using pairwise average linkage. Clustering results were visualized using Java TreeView (version 
1.1.5r2)53. 
 
Statistical analysis 
Three independent biological replicate samples of 36 experimental conditions were analyzed at each research 
center. No statistical methods were used to predetermine sample size. The median absolute deviation (MAD) was 
defined as MAD = median[|xi – median(x)|] for a set of biological replicate samples or correlation coefficients x1, 
x2, …, xn. Robust coefficient of variation based on the median absolute deviation (RCVM) was defined as RCVM = 
1.4826 × MAD / median(x), where the multiplier 1.4826 is a scaling factor to adjust for asymptotically normal 
consistency. Pearson correlation coefficient, coefficient of determination, Spearman rank correlation coefficient, 
and Euclidean distance were calculated for every pairwise combination of biological samples measured by RPPA. 
 
Data Records 
RPPA data records generated at each research center and the integrated RPPA dataset are summarized in Table 3. 
RPPA slide images generated at each research center are available as TIFF files via figshare49. Associated slide 
descriptor metadata, including antibody position details, and sample descriptor metadata, including spot position 
details, are available as tab-delimited text files49. Sample quantification data files (CSV files) contain background-
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Platform Center Samples Serial 
dilutions 

Technical 
replicates 

Abs Data files DOI 

1 IC 108 4 2 42 61 TIFF files stored in 
Images1_IC.zip (slide scan 
images)49 

10.6084/m
9.figshare.1
4754069 

SlideDescriptor1_IC.txt (slide 
descriptor)49 

10.6084/m
9.figshare.1
4754069 

SampleDescriptor1_IC.txt (sample 
descriptor)49 

10.6084/m
9.figshare.1
4754069 

SampleQuantification1_IC.csv 
(sample quantification)49 

10.6084/m
9.figshare.1
4754069 

NormalizedData1_IC.csv 
(normalized data)49 

10.6084/m
9.figshare.1
4754069 

CenteredData1_IC.csv (centered 
data)49 

10.6084/m
9.figshare.1
4754069 

2 DKFZ 108 1 3  44 18 TIFF files stored in 
Images2_DKFZ.zip (slide scan 
images)49 

10.6084/m
9.figshare.1
4754069 

SlideDescriptor2_DKFZ.txt (slide 
descriptor)49 

10.6084/m
9.figshare.1
4754069 

SampleDescriptor2_DKFZ.txt 
(sample descriptor)49 

10.6084/m
9.figshare.1
4754069 

SampleQuantification2_DKFZ.csv 
(sample quantification)49 

10.6084/m
9.figshare.1
4754069 

NormalizedData2_DKFZ.csv 
(normalized data)49 

10.6084/m
9.figshare.1
4754069 

CenteredData2_DKFZ.csv 
(centered data)49 

10.6084/m
9.figshare.1
4754069 

3 IGC 108 4 3 28 17 TIFF files stored in 
Images3_IGC.zip (slide scan 
images)49 

10.6084/m
9.figshare.1
4754069 

SlideDescriptor3_IGC.txt (slide 
descriptor)49 

10.6084/m
9.figshare.1
4754069 

SampleDescriptor3_IGC.txt 
(sample descriptor)49 

10.6084/m
9.figshare.1
4754069 

SampleQuantification3_IGC.csv 
(sample quantification)49 

10.6084/m
9.figshare.1
4754069 

NormalizedData3_IGC.csv 
(normalized data)49 

10.6084/m
9.figshare.1
4754069 

CenteredData3_IGC.csv (centered 
data)49 

10.6084/m
9.figshare.1
4754069 

Continued on next page. 
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1–3 Integr-
ated 
dataset 

108 – – 53 IntegratedData.csv (integrated 
data)49 

10.6084/m
9.figshare.1
4754069 

 
Table 3. Data files generated at each center. A total of 108 biological samples were 

analyzed at each of the research centers using their in-house RPPA platforms. The dataset 
comprises RPPA slide scan images and image quantification and normalization of 86,832 

sample spots derived from 972 arrayed lysates in total, incorporating independent biological 
replicate samples, serial lysate dilution series, and technical replicate sample spots, from 

three independent RPPA platforms. For platform 2, a control dilution series of vehicle 
control-treated samples only was used (not included in sample spot sum total). Abs, 

antibodies used; IC, Institut Curie; DKFZ, Deutsches Krebsforschungszentrum; IGC, Institute 
of Genetics and Cancer, University of Edinburgh. 
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corrected RPPA intensity data for all biological samples49. Normalized data files (CSV files) contain log2-
transformed data normalized using the methods employed by the respective research center49. Centered data files 
(CSV files) contain antibody-wise median-centered normalized data49. The integrated dataset, compiled from the 
centered data files, is available as a CSV file49. A README markdown file (README.md), also available as a plain-
text file (README.txt), accompanies the data records49. 
 
Technical Validation 
Experimental design 
Robust, high-quality data are crucial for successful RPPA workflows, especially as RPPA pipelines are continuing 
to be developed for use in clinical settings54–58. Thus, there is a growing need for approaches to record and evaluate 
the reproducibility of different RPPA platform outputs59. To control biological and technical variability in this 
multicenter study, each cell line was cultured at one center and then lysates were distributed to all centers, so that 
all platforms analyzed exactly the same batch of protein extract. Sample shipping and transit time have been shown 
previously to have limited effects on RPPA quantification accuracy54. Importantly, the same protein extraction 
buffer was used for all experiments reported here to avoid differences in efficiency of extraction of nuclear, DNA-
bound or membrane-bound proteins. When printing the samples, negative control spots (lysis buffer) were printed 
in parallel to enable evaluation of background levels. Technical replicate sample spots were printed on different 
areas of the slides to avoid potential spatial bias.  
 
Sample variability 
The high-throughput nature of RPPA permitted the multiplexed quantification of 108 biological samples at each 
research center in this study, which yielded quantitative data from a total of 86,832 arrayed sample spots. This 
large-scale dataset enables the assessment and comparison of variability within and between independent RPPA 
platforms. Normalized RPPA data for all drug treatments and cell types were similarly distributed for all biological 
replicate samples (Supplementary Fig. 1). To measure relative variability among biological replicates, robust 
coefficient of variation based on the median absolute deviation (RCVM) was calculated using unnormalized RPPA 
data for all samples across drug treatments (Fig. 2a) and cell types (Fig. 2b). Data from all three RPPA platforms 
exhibited positively skewed distributions of RCVM values, with median RCVM ≤ 0.190 for all drug treatments 
[ranges 0.078–0.185 (platform 1), 0.045–0.063 (platform 2), and 0.098–0.190 (platform 3)] (Fig. 2a). Data for all 
cell types had median RCVM ≤ 0.274 [ranges 0.059–0.274 (platform 1), 0.041–0.107 (platform 2), and 0.076–0.249 
(platform 3)], which was no greater than 0.186 if the slightly more variable MDA-MB-231 cell type was excluded 
(Fig. 2b). Median absolute deviations (MADs) for centered RPPA data from all three RPPA platforms were 
similarly distributed, with median MADs no greater than 0.153 for all drug treatments (range 0.043–0.153 across 
platforms) and no greater than 0.211 for all cell types (range 0.037–0.211 across platforms) (Supplementary Fig. 
2). These data indicate that biological replicate samples were generally concordant at all research centers. 

To quantify the extent of agreement between all biological samples tested, multiple similarity metrics were 
calculated for each of the 11,556 pairwise combinations of RPPA samples (Online-only Table 3). Unsupervised 
cluster analysis of intersample Spearman rank correlation coefficients for each cell type partitioned sets of 
biological replicate samples together for most cell types, indicating that they were better correlated than distinct 
biological samples (Fig. 2c). Indeed, pairwise combinations of like biological replicate samples exhibited strong 
positive correlations (median ≥ 0.770) with low variability (MAD ≤ 0.066), whereas pairwise combinations of 
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Figure 2.  Comparison of RPPA data acquired at each research center. (a, b) Distributions of robust coe�cient of variation 
based on the median absolute deviation (RCVM) for biological replicate sample data derived from all antibodies used at each 
research center (n RCVM values, from n = 3 biological replicates, are indicated in gray text below each respective probability 
density). RCVM values derived from negative data points were omitted. Unnormalized RPPA data are compared across 
drug treatments (a) and cell types (b). Black bar, median; dark gray box, 95% con�dence interval; black silhouette outline, 
probability density. (c) Hierarchical cluster analysis of pairwise Spearman rank correlation coe�cients between all drug 
treatments (n = 3 biological replicates). Annotation bar color indicates drug treatment and treatment timepoint.
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nonreplicate samples were more weakly correlated over a substantially broader range of Spearman rank correlation 
coefficients (lower limit 0.485 for replicate samples, −0.006 for nonreplicated samples across cell types) (Table 4). 
 
Cell type-specific RPPA profiles 
To explore the protein-level relationships between the different breast cancer cell types examined in this study, we 
analyzed all centered RPPA data from each research center using t-SNE (Fig. 3a). This dimensionality reduction 
approach enabled the projection of the high-dimensional RPPA data to two-dimensional space, facilitating the 
assessment of the structure of each dataset. Visualization using t-SNE projection identified clusters of samples that 
were partitioned by cell type for each research center (Fig. 3a), supporting the notion that the RPPA data from 
each platform captured cell type-specific molecular profiles. We confirmed the clustering of cell types in the RPPA 
data from each platform using an alternative dimensionality reduction approach, UMAP (Supplementary Fig. 3a). 
In addition to analyses of centered RPPA data, which were used for multicenter dataset integration, we performed 
t-SNE and UMAP analyses of uncentered normalized RPPA data, which resulted in very similar projections to the 
centered data (Supplementary Fig. 3b, c), verifying that antibody-wise centering did not distort the data structure. 

Samples from some cell types, such as HCC1954 and SKBR3, tended to colocate in t-SNE and UMAP space 
(Fig. 3a, Supplementary Fig. 3a–c), suggesting that their RPPA profiles were more similar compared to the other 
cell types. Indeed, the six breast cancer cell lines were chosen to reflect different molecular subtypes of breast cancer 
(Table 1). Overexpression of the cell-surface receptor HER2 was correctly detected in HCC1954, MDA-MB-453, 
and SKBR3 cell lines (Fig. 3b); MCF7 was correctly identified as the only estrogen receptor (ER)-positive cell line 
(Fig. 3c); MDA-MB-468 was correctly identified as the highly EGFR-overexpressing cell line (Fig. 3d). These data 
imply that cell type-specific protein levels quantified by RPPA can distinguish distinct molecular profiles in breast 
cancer cell types. Moreover, similar coclustering of these cell types was detected in data from all research centers 
(Fig. 3a, Supplementary Fig. 3a–c), confirming the capacity for all three RPPA platforms to identify related cell 
type-specific data structures. 
 
Cell type-specific drug sensitivities 
The panel of breast cancer cell lines examined in this study were treated with two clinically relevant drugs, 
selumetinib (a MEK inhibitor) and lapatinib (a HER2/EGFR inhibitor) (Online-only Table 2). The sensitivity of 
these cell lines towards these drugs and the expected changes in major cell signaling pathways are known 
(http://www.cancerrxgene.org; refs 60–62), which thus served as an internal quality control. We assessed the 
protein-level responses of the different cell lines following drug treatment. All platforms readily detected the effect 
of selumetinib on the MEK–extracellular signal-regulated kinase (Erk) pathway, and in particular the blockade 
between phospho-MEK and phospho-Erk, resulting in the accumulation of phospho-MEK and decrease of 
phospho-Erk (ref. 63) (Fig. 4a). The two cell lines known to be sensitive to lapatinib (HCC1954 and SKBR3) 
showed, as expected, downregulation of phospho-HER2 and phospho-EGFR, as well as downregulation of 
downstream phospho-Akt and phospho-S6 ribosomal protein (Fig. 4b). Cluster analysis of intersample 
correlations also revealed subclustering of drug-treated samples that was specific to different cell types (Fig. 2c). 
For example, for MDA-MB-231 cells, Spearman rank correlation coefficients of samples treated with selumetinib 
(20 min and 24 h) partitioned from the other drug and control treatments, whereas for SKBR3 cells, samples treated 
with lapatinib (24 h) and selumetinib (20 min and 24 h) partitioned separately from the other treatment conditions 
(Fig. 2c). 
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Cell type Replicate sample Spearman rank correlation 
coefficients 

 Nonreplicate sample Spearman rank 
correlation coefficients 

Min. Max. Median MAD P Min. Max. Median MAD P 

HCC1954 0.611 0.930 0.838 0.053 ≤3.18 × 
10−10 

 
0.023 0.791 0.449 0.153 ≤8.35 × 

10−1  

MCF7 0.738 0.941 0.877 0.024 ≤3.67 × 
10−16 

 0.355 0.895 0.666 0.084 ≤7.41 × 
10−4 

MDA-MB-
231 

0.485 0.917 0.841 0.045 ≤1.88 × 
10−6 

 0.126 0.920 0.680 0.131 ≤2.46 × 
10−1 

MDA-MB-
453 

0.500 0.925 0.770 0.046 ≤8.20 × 
10−7 

 
0.088 0.771 0.437 0.117 ≤4.16 × 

10−1 

MDA-MB-
468 

0.665 0.981 0.889 0.066 ≤2.04 × 
10−12 

 
0.397 0.895 0.650 0.073 ≤1.43 × 

10−4 

SKBR3 0.618 0.918 0.814 0.052 ≤1.74 × 
10−10 

 
−0.006 0.819 0.414 0.122 ≤9.60 × 

10−1 

 
Table 4. Correlations between replicate and nonreplicate samples. Pairwise sample 

Spearman rank correlation coefficients were calculated for like biological replicate samples 
and for distinct (nonreplicate) samples for each cell type. Minimum (min.) and maximum 

(max.) values define the range of Spearman rank correlation coefficients for corresponding 
pairwise sample comparisons. 
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Figure 3.  Cell type-speci�c di�erences identi�ed by RPPA. (a) Dimensionality reduction of centered RPPA data derived 
from all antibodies used at each research center using t-SNE (n = 4,536, 4,752, and 3,024 arrayed lysates for IC, DKFZ, 
and IGC research centers, respectively, from n = 108 biological samples). Cell type classes were colored as indicated. 
(b–d) Quanti�cation of receptor expression in vehicle control-treated cells (DMSO, 24 h) analyzed by RPPA (n = 3 
biological replicates). HER2 antibody identi�ers for IC, Her2_b; DKFZ, Her2_d; IGC, Her2_a (b). ERα antibody identi�er 
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Figure 4.  Cell type-speci�c drug sensitivities identi�ed by RPPA. (a) Quanti�cation of phospho-MEK and phospho-Erk 
in selumetinib- and vehicle control-treated HCC1954 and MDA-MB-231 cells (24 h) analyzed by RPPA (n = 3 biological 
replicates). MEK1/2 (pSer217, pSer221) antibody identi�er for IC, DKFZ, and IGC, MEK1/2_pSer217,pSer221. 
Erk1/2 (p�r202/�r185, pTyr204/Tyr187) antibody identi�er for IC, DKFZ, and IGC, 
Erk1/2_p�r202/�r185,pTyr204/Tyr187_b. (b) Quanti�cation of phospho-HER2, phospho-EGFR, phospho-Akt, and 
phospho-S6 ribosomal protein in lapatinib- and vehicle control-treated HCC1954 and SKBR3 cells (24 h) analyzed by 
RPPA (n = 3 biological replicates). HER2 (pTyr1139) antibody identi�er for IC, DKFZ, and IGC, Her2_pTyr1139. 
EGFR (pTyr1068) antibody identi�ers for IC and IGC, EGFR_pTyr1068_a; DKFZ, EGFR_pTyr1068_b. Akt (pSer473) 
antibody identi�er for IC, DKFZ, and IGC, Akt_pSer473_a. S6 ribosomal protein (pSer235, pSer236) antibody identi�ers 
for IC and IGC, S6 ribosomal protein_pSer235,pSer236_a; DKFZ, S6 ribosomal protein_pSer235,pSer236_b. Black bar, 
median; light gray box, range.
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Together, these data suggest that RPPA data from each platform have the capacity to reveal inherent 
differences in drug sensitivity and pharmacodynamics between cell types, including those based on their response 
to targeted therapies. 

In summary, the dataset represents high-quality RPPA data derived from multiple distinct RPPA 
platforms, characterizing a range of human breast cancer cell lines and their response to two clinically relevant 
cancer drugs. Our collaborative multicenter proteomic approach will enable further dataset integration for the 
analysis of breast cancer therapeutic response and data reuse for the assessment of interplatform reproducibility. 
 
Usage Notes 
The data reported here serve as a valuable resource for the examination of protein-level responses to 
pharmacological inhibition in a panel of breast cancer cells, including the search for protein markers of response 
to clinically relevant therapeutics (Fig. 1d). Such investigations may be facilitated by the interrogation of the high-
dimensional RPPA data using statistical and machine learning approaches, the functional analysis of signaling 
pathway changes, or the modeling of protein complexes with protein interaction networks64. Indeed, RPPA 
technology is well placed to elucidate the mechanism-of-action of novel hit compounds or candidate drugs 
discovered by modern phenotypic screening approaches65. Robust and reproducible RPPA platforms are required 
for profiling large numbers of small-molecule hits from cell-based phenotypic screening assays across dose-
response and time series. Building a repository of publicly available RPPA data associated with pharmacological 
perturbation, such as that exemplified here, will provide valuable datasets for reuse in emerging machine learning 
approaches which aim to predict mechanism-of-action or differentiate novel compounds based on RPPA signature 
similarity with well characterized compounds. This, for example, could extend the Connectivity Map concept – 
the cataloging and connecting of transcriptional responses to genetic, chemical, and disease perturbations66 – by 
providing additional, orthogonal data at the dynamic posttranslational pathway level. 

Moreover, our multicenter analysis provides an important reference for the assessment of RPPA platform 
robustness and technology reproducibility. Individual RPPA platforms may use the dataset to quality control their 
workflows, by reproducing the experiments outlined here and comparing their results with our data (Fig. 1d). For 
interplatform comparison, only antigens analyzed by RPPA at all research centers were compiled in the integrated 
dataset in this study (Fig. 1c), so future data reuse may include the reintegration of data for antibodies targeting 
excluded antigens, which are available in the raw data files49, to enable analysis of data acquired on different 
combinations of RPPA platforms. In addition, as no standard tools exist to normalize RPPA data, the raw data 
reported here may be used to test and validate new data normalization pipelines (Fig. 1d). The data also 
complement ongoing efforts to assess the effects of sample handling on RPPA quantification in the setting of 
multisite clinical trials54. Finally, the integrated dataset can act as a framework for future interplatform 
comparisons, and this study opens the door for crossplatform validation of RPPA data to identify robust markers 
of disease and response to therapy. Expansion of the current dataset to include additional samples, antibodies, or 
RPPA platforms will improve the applicability of such projects and expand the scope of analysis to, for example, 
other drug treatments or disease models (Fig. 1d). 

The data reported here thus provide a valuable springboard for the assessment of reproducibility or 
benchmarking of platform-specific RPPA datasets, which will support the refinement of technology best practice 
and may aid development toward standardization of data processing procedures and improvements in RPPA 
platform interoperability. 
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Code Availability 
The code to implement RPPA data analysis using NormaCurve50 is freely available at 
http://microarrays.curie.fr/publications/U900-RPPA_PLT/Normacurve. The code to implement RPPA data 
analysis using RPPanalyzer51 is freely available at https://cran.r-project.org/package=RPPanalyzer. The code to 
visualize data using PlotsOfData67 is freely available at https://github.com/JoachimGoedhart/PlotsOfData. The 
code to visualize data using UMAP and t-SNE is freely available at 
https://github.com/atamaianalytics/DimensionReduction. 
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