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An integrated pipeline and multi-model graphical user interface for 

accurate nano-dosimetry  

Accurate dosing of nanoparticles is crucial for risk assessment and for their safe 

use in medical and other applications. Although it is well-known that nanoparticles 

sediment, diffuse and aggregate as they move through a fluid, and that therefore 

the effective dose perceived by cells may not necessarily be that initially 

administered, dose quantification remains a challenge. This is because to date, 

methods for accurate dose estimation are difficult to implement, involving precise 

characterization of the nanomaterial and the exposure system as well as complex 

mathematical operations. Here we present a pipeline for accurate nano-dosimetry 

of engineered nanoparticles on cell monolayers, based on an easy-to-use graphical 

software - DosiGUI - which integrates two well-established particokinetic and 

particodynamic models. DosiGUI is an open source tool which was developed to 

facilitate nano-dosimetrics. The pipeline includes methods for determining the 

stickiness index which describes the affinity between nanoparticles and cells. Our 

results show that accurate estimations of the effective dose cannot prescind from 

rigorous characterization of the stickiness index, which depends on both 

nanoparticle characteristics and cell type. 

Keywords: in vitro nano-dosimetry; effective dose; dose-response 

characterization; in silico modelling; graphical user interface 

Introduction 

The unique physicochemical properties of nanomaterials (NMs) are of interest for a wide-

range of applications [1], [2]. For this reason, several NMs are now produced industrially 

and are referred to as engineered nanomaterials (ENMs). For instance, ENMs are 

extensively employed in the form of engineered nanoparticles (ENPs) for modulating 

mechanical characteristics of scaffolds, delivering drugs and genes, and labelling in tissue 

engineering, or as nano-transducers for directing cell behaviour in targeted therapy [3]–

[5].  
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However, the very same nanoscale-related features that make nanoparticles (NPs) 

- be they natural, incidental or ENPs - so attractive confer potential toxicity to NMs [2], 

[6]. For this reason, an essential point in nanotoxicology is the characterization of 

biological effects induced in human tissues and organs as a function of NP dose, along 

with the investigation of mechanisms triggering their cytotoxicity. Cell cultures in vitro 

represent one of the most common methods for dose assessment, although the 

extrapolation of dose-response behaviour to the in vivo context is still a challenge [7], [8].  

A proper definition of the cytotoxic “potential” of a specific NP would require 

correlating harmful effects to the cumulative amount of material effectively interacting 

with cells during the exposure test, or what we refer to as the “effective dose” [9], [10]. 

Cells in culture are known to be sensitive to NPs (and their dissolved ions) that are 

internalized or even in their immediate vicinity. The cytotoxic effects depend on several 

intrinsic factors, for example NP size distribution and their effective physical density. 

Nanotoxicity is also conditioned by extrinsic (e.g., experimental set-up geometry, cell 

monolayer uptake) factors which determine the rates of physicochemical phenomena 

occurring in the system [11]. Although the mechanisms by which NPs induce cellular 

damage have yet to be fully understood (e.g., uptake kinetics, oxidative stress) [12], [13], 

there is plenty of evidence to suggest that only a fraction of the total amount of material 

initially administered within the suspension (i.e. the nominal dose) is delivered to cells, 

representing the effective dose [9], [14]. Moreover, the latter is strongly dependent on the 

time of exposure and the geometry of the experimental set-up. Due to experimental 

difficulties in measuring the effective dose, most reports in the literature of in vitro 

dosimetry and nanotoxicology refer to the administered dose, which remains constant in 

time and is independent of the exposure configuration. Thus, toxicity may be 

underestimated (i.e. biological effects are associated with doses higher than those which 
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effectively cause them), making it difficult to properly assess NP hazard and set 

constraints necessary for the safe use of ENPs [11], [14]. 

Given this background, in silico models are a crucial tool for estimating the 

effective amount of NPs reaching tissues and cells in specific configurations and 

performing a more accurate dose-response characterization [9], [10]. In particular, two 

models represent the state-of-the-art in this field: the in vitro sedimentation, diffusion, 

dissolution and dosimetry (ISD3) model and the distorted grid (DG) model [15], [16].  

Prior to using the models, a systematic physicochemical characterization of NPs 

of interest as well as the identification of unknown extrinsic parameters (i.e. those 

determining the uptake kinetics of cells) are essential [17]. In fact, both models require a 

number of physicochemical characteristics of NPs and the adsorptive or “stickiness” 

properties of the cell monolayer as inputs. The ISD3 and DG models are distributed as 

MATLAB codes, requiring full installation of a licensed computing environment and 

basic programming knowledge for entering input parameters and obtaining dose 

predictions. As a result, the valuable support that computational models could offer to in 

vitro dosimetry is unexploited, and benefits to NM hazard assessment are limited.  

To promote the routine use of NP dosimetry models for accurate prediction of 

effective dose in in vitro systems, we have developed an in vitro-in silico pipeline 

leveraged on a graphical user interface (DosiGUI) which integrates the ISD3 and DG 

models. DosiGUI is an open-source standalone application and allows standardizing the 

input and output datasets for both models, facilitating their comparison and enabling the 

identification of the most suitable one for a given NM and experimental configuration. 

The pipeline includes methods for validating the models through the use of reference 

highly adsorptive (very sticky) and non-adsorptive (reflective) surfaces for different 

ENPs. Following this pipeline, we evaluated DosiGUI’s performance for insoluble ENPs 
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by fitting predictions on data generated from experiments performed first with a reflective 

and maximally adsorptive bottom. Finally, as a proof-of-concept, we applied the pipeline 

to estimate the effective dose of three different types of ENMs perceived by HepG2 cells 

in a standard exposure scenario. 

 

Materials and methods 

The DosiGUI-based pipeline 

As depicted in Figure 1, DosiGUI is an essential part of a broader in vitro-in silico 

pipeline. The first step of the pipeline is the characterization of NMs. Both the ISD3 and 

the DG models require NM physicochemical properties as quantitative inputs to perform 

predictions (Figure 1A). Indeed, NP characteristics such as size, agglomeration and 

effective density have a major impact on effective dose and must be measured properly. 

If they are not determined a priori, the accuracy of dosimetry calculations may be 

compromised. Methods for characterizing NPs are extensively reported in the literature, 

well-established and routinely used [17]–[20]. Extrinsic parameters typical of the specific 

in vitro configuration are also needed (Figure 1B). While some of these features are 

known by design (e.g., suspension height, exposure time), those defining the adsorption 

kinetics (a stickiness index of the bottom boundary) depend on both the properties of the 

NP and the cell type and should be identified for optimizing the predictive power of the 

models. Once the input dataset is complete, the models can be reliably run within 

DosiGUI for simulating the dynamics of NPs and ions in an in vitro set-up (Figure 1C). 

In many cases, simulation results can themselves be used for estimating parameters of the 

in vitro system which may otherwise be difficult to measure, such as the empirical 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.31.458389doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.31.458389
http://creativecommons.org/licenses/by-nc-nd/4.0/


constants describing the affinity between NPs and cells (see the subsection Identification 

of stickiness parameters for insoluble ENPs interacting with HepG2 cells).  

Given a specific NP, the validation of DosiGUI predictions (Figure 1D) consists 

in comparing the experimentally measured deposited mass over time in a fully 

characterized test system with the corresponding profile estimated by simulating the 

chosen set-up in silico (see the subsection DosiGUI validation for three insoluble ENPs). 

If there is a statistically significant correlation between the two, the model(s) can be 

assumed valid and hence used to predict the effective dose of the given NP in different 

exposure scenarios (Figure 1E). 

DosiGUI: a multi-model graphical user interface for in vitro nano-dosimetry 

DosiGUI was developed as an open source, standalone desktop application. We 

implemented it in the MATLAB computing environment (R2020b, The MathWorks® 

Inc., Boston, Massachusetts) by means of the App Designer Toolbox. Its source code was 

compiled to run as a desktop application for both Windows and iOS operating systems, 

without MATLAB. When DosiGUI is installed, MATLAB Runtime (version 9.9 for 

DosiGUI) is automatically downloaded and run. A practical guide on how to download 

and install DosiGUI is provided in the SI (section SI1).  

Once the installation is complete, launching the application from the desktop 

shortcut opens a main window where a brief description of ISD3 and DG is provided 

(Figure 2A). After initiating one of the two models by clicking on the corresponding Start 

button, the user can manually enter all input parameters needed for running simulations. 

Alternatively, a pop-up menu (Figure 2B) allows the input parameters to be either directly 

loaded from a specific file containing the information requested for the chosen model 

(Load from file) or obtained by automatic rearrangement of an input file which may have 

been already stored for the other model (in Figure 2B, Load DG simulation). A single 
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harmonized input dataset which is suitable for both models is one of the unique features 

of DosiGUI: the same experimental configuration can be simulated using ISD3 and DG, 

and the consistency of their predictions can be compared to determine the most suitable 

model for estimating the effective dose of NPs for a given set-up. As an example, Figure 

2B show the interface panels for ISD3 and all categories of inputs required by the model, 

including intrinsic and extrinsic parameters (left side). Specific plot settings are also listed 

on the right: predicted effective doses as well as any other available output variable can 

be plotted as a function of time or height, and the generated figures can be saved as .png, 

.jpg, .tif or .pdf files. Once started, a status bar shows the current status of the simulation. 

When the simulation is complete, inputs and outputs are saved as .xlsx and .mat files. 

Finally, all calculations performed by DosiGUI are summarized and saved into a .txt file 

named logfile. The logfile helps in identifying interruptions caused by computational 

errors when the GUI is running. 

Basic principles of integrated dosimetry models 

The ISD3 and DG models simulate the temporal and spatial dynamics of NPs suspended 

in cell culture medium, in a container with constant cross-sectional area. They both 

consider a one-dimensional (1D) model of sedimentation, diffusion and, if applicable, 

dissolution with an adsorptive bottom surface, which mimics the presence of a cell 

monolayer [15], [16]. The different processes are described through a series of rate 

equations (reported in SI2), which are solved numerically to give NP diameter (𝑑𝑝 (m)) 

and number surface density (𝑁 (m-2)) as functions of time (𝑡 (s)) and the 1D space 

dimension (𝑥 (m), corresponding to height). They differ in: i) the method of solving 

equations, ii) the way they treat dissolution and iii) the boundary layer condition, which 

basically describes the adsorptive properties of the bottom. In particular, the DG model 

accounts for NP dissolution considering a first order rate equation with a rate constant 
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that depends on 𝑑𝑝. On the other hand, the ISD3 implements dissolution as a surface area-

driven phenomenon based on a NP-specific kinetic model. This description can be more 

accurate but less general than that provided by the DG model. It does however require an 

in-depth characterization of dissolution kinetics for determining an analytical formulation 

of the associated rate suitable for the NP of interest. 

As far as the bottom boundary condition (i.e. the cell monolayer adsorption) is 

concerned, both models provide a tuneable stickiness to be set through a parameter, which 

describes adhesive behaviour ranging from a purely reflective condition up to a total 

instantaneous adsorption. The DG model accounts for this by means of a Langmuir 

isotherm adsorption, expressed as in Eq. (1): 

 

𝜃(𝑡) =  
[𝑁𝑃](0, 𝑡)

𝑘𝐷 + [𝑁𝑃](0, 𝑡)
 (1) 

 

where 𝜃 is the surface fraction of the bottom boundary occupied by adsorbed NPs and 

[𝑁𝑃](0, 𝑡) (mol L-1) is the molar concentration of NPs in the vicinity of the boundary. 𝑘𝐷 

(mol L-1) - the parameter to be set for modulating the bottom boundary stickiness - 

denotes the equilibrium dissociation constant; it is inversely proportional to the NP-cell 

affinity or stickiness index. The ISD3 deals differently with the bottom adsorption, 

implementing Eq. (2). 

 

𝑁(𝑑𝑝; 0, 𝑡) +
𝜕𝑁(𝑑𝑝; 0, 𝑡)

𝜕𝑥
= 0 (2) 

 

This is the typical formulation of a boundary condition for the partial differential equation 

(PDE) solved by the model. As detailed in SI3, we have modified Eq. (2) to encompass 
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the entire range of possible stickiness conditions, from the totally reflective (no 

adsorption) to the maximally adsorptive (instantaneous uptake) boundary, through a 

parameter 𝐾 (m) which is inversely proportional to the stickiness index. Methods for the 

identification of parameters describing the stickiness index of the bottom boundary and 

their application to a specific exposure set-up are reported in the subsection Identification 

of stickiness parameters for insoluble ENPs interacting with HepG2 cells. 

Intrinsic and extrinsic parameters constitute the input dataset requested by 

DosiGUI to run simulations. In Table 1, we provide a list of the most important 

parameters which impact the outcome of the models. 

In this work, for the proof-of-concept application of the approach, we focused on 

demonstrating the rigorousness of our nano-dosimetry pipeline for three referenced 

insoluble ENPs: titanium oxide (TiO2 - NM-105), cerium oxide (CeO2 - NM-212) and 

barium sulphate (BaSO4 - NM-220). The input physicochemical datasets were taken from 

Keller et al. [19], since the same ENPs and dispersion protocols were employed in this 

study.  

   

DosiGUI validation for three insoluble ENPs 

The first step towards accurate nano-dosimetry and the construction of effective dose-

response curves consists in model validation. To this end, we set up a test system to 

measure ENP sedimentation simulating the two extreme boundary conditions (i.e. 

reflective bottom and maximal adsorption). The experimental configurations were 

implemented in both ISD3 and DG within DosiGUI for providing computational 

predictions and evaluating their fitting to the corresponding in vitro data. All statistical 

analyses were carried out in GraphPad Prism (v7, GraphPad Software®).  
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Experimental measurements of mid-height mass fraction  

All the evaluated ENPs were purchased from JRC. Standard cell culture medium 

(DMEM), bovine serum albumin (BSA) and fetal bovine serum (FBS) - required for 

preparing the suspension - were supplied by ThermoFisher. For the preparation of the 

adsorptive gel, gelatin (Sigma-Aldrich) cross-linked with GPTMS (AlfaAesar) was used. 

ENP stocks were prepared dispersing the nano-powders in MilliQ water and 

0.05% w/v of BSA, following the Nanogenotox protocol [21]. Samples were prepared 

diluting the stock in DMEM with 10% w/v FBS at mass concentrations of 5, 25 and 50 

mg L-1 (corresponding to nominal doses of 1.5, 7.8 and 15.6 µg cm-2, respectively). 8 mL 

of dispersion were put in plastic vials and incubated for 1, 4 and 24 h (5% CO2, 37 °C, 

95% RH). The 8 mL were chosen because they reproduce the geometry of a 96-well plate 

on a bigger scale. To mimic the condition of maximal adsorption, we coated the bottom 

of the vials with a thick layer of sticky gel (gelatin 1% w/v cross-linked with 100 µL of 

GPTMS per gram of gelatin, see SI for further details); for the reflective boundary 

condition, the vial bottom was left untreated. In both cases, after the incubation time, a 

volume of 3 mL (𝑉𝑠𝑎𝑚) was collected from the middle of the suspension column and 

analysed. The sampling procedure was manual, according to a specific protocol validated 

by ISTEC laboratories (see SI). All experiments were carried out in triplicate.  

The elemental composition of the dispersion was assessed by inductively coupled 

plasma optical emission spectrometry (ICP-OES), using an ICP-OES 5100 – vertical dual 

view apparatus coupled with OneNeb nebulizer (Agilent Technologies, Santa Clara, CA, 

USA). Before measuring the associated ENP mass concentration, samples were acidified 

with 0.3 mL of nitric acid (HNO3 65%, Sigma-Aldrich - St. Louis, MI, USA). Calibration 

curves were obtained with standard samples containing 0.05, 0.10, 1.00, 10.00 and 100.00 
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mg L-1 of each ENP suspended in DMEM with FBS 10% w/v and after applying the same 

digestive procedure.  

Then, for each analysed sample, Eq. (3) was used to convert the outcome of the 

measurement from a mass concentration to a fraction of the initially administered ENM 

mass (𝜑𝑚
𝑒𝑥𝑝

): 

 

𝜑𝑚
𝑒𝑥𝑝 =  

𝑉𝑠𝑎𝑚 ∗ 𝑐

ℎ ∗ 𝐴 ∗ 𝑐0
 (3) 

 

where 𝑐0 (µg mL-1) is the nominally administered mass concentration, 𝑐 (µg mL-1) 

denotes the mass concentration detected by ICP-OES within the sampled volume 𝑉𝑠𝑎𝑚 at 

mid-height, ℎ (mm) is the total height of the liquid column and 𝐴 (mm2) is the cross-

sectional area of the vial. Given that the mid-height and the initial concentrations refer to 

different volumes, they have to be rescaled as absolute masses to estimate the ENP 

fraction contained in 𝑉𝑠𝑎𝑚. Equivalently, since 𝐴 is constant along the liquid column, the 

ENP fraction can be expressed as the ratio of corresponding values of dose (i.e. masses 

per unit area as a function of time and height, see SI2). 

In silico predictions of mid-height mass fraction and correlation analysis 

To model the in vitro experiments, the dynamics of ENPs along the liquid column was 

simulated separately running the models embedded within DosiGUI on a workstation 

equipped with an 8th generation CoreTM i7 (Intel Corporation®) microprocessor. The 

maximally sticky boundary condition in the presence of gelatin was taken into account 

considering  𝐾 = 0 m for ISD3 and 𝑘𝐷 = 0 mol L-1 for DG, while a purely reflective 

bottom was replicated by setting relatively high values for both parameters (𝐾 = 1012 m 

and 𝑘𝐷 = 10-5 mol L-1), such that further increasing them does not imply any further 
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reduction of the adsorption. Dissolution was disabled, given the negligible solubility in 

aqueous media of the three ENPs. The spatial and temporal resolutions were set 

respectively to 0.5 mm and 1 min to optimize the accuracy of predictions. 

The results of simulations in terms of ENP mass along the liquid column at the 

time points of interest (i.e. 1, 4 and 24 h) were rearranged according to Eq. (4), to obtain 

the fraction of the initially administered mass (𝜑𝑚
𝑠𝑖𝑚) contained in 𝑉𝑠𝑎𝑚. 

 

𝜑𝑚
𝑠𝑖𝑚 =  

∑ 𝑚𝑖
𝑛
𝑖=1

ℎ ∗ 𝐴 ∗ 𝑐0
 (4) 

 

In the equation, 𝑚𝑖 (µg) is the ENP mass in the i-th simulation element at the considered 

time point, and 𝑛 =  𝑉𝑠𝑎𝑚 ∆𝑥 ∗ 𝐴⁄  denotes the number of simulation elements in 𝑉𝑠𝑎𝑚.  

Then, we evaluated the reliability of simulated data from both ISD3 and DG 

through correlation analysis between measured and predicted mid-height mass fraction 

profiles over time (see SI4 for details on the statistical analyses).  

 

Identification of stickiness parameters for insoluble ENPs interacting with 

HepG2 cells 

After the goodness of model predictions for NM-105, NM-212 and NM-220 was 

assessed, we used DosiGUI to estimate the effective dose delivered to HepG2 cells in a 

standard exposure configuration. As discussed previously, a crucial parameter for the 

model is the stickiness index. In fact, when adsorbed by cells, the ENPs are effectively 

removed from the suspension; consequently, the downward diffusive flux is increased 

and this may significantly impact the effective dose [16]. The stickiness index for each 

ENP was evaluated through estimation of the empirical constants 𝐾 and  𝑘𝐷 (see Eq.s (1) 

and (2)). The experiments consisted in measurements of the quantity of ENP mass 
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adsorbed by HepG2 over time. The data were compared through correlation analysis with 

their corresponding computational predictions, obtained through parametrization of 𝐾 or 

𝑘𝐷. Using this method, we were able to identify the most suitable HepG2-ENP stickiness 

index for the three ENPs used.  

 

Experimental measurements of cell adsorbed mass fraction  

HepG2 cells were seeded to confluence in 96-well plates (about 105 cells/well) and 

incubated overnight (5% CO2, 37 °C, 95% RH). ENPs were suspended in DMEM, with 

10% w/v BSA. Suspensions containing 25, 50 and 250 µg mL-1 of each ENP 

(corresponding to nominal doses of 7.8, 15.6 and 78.1 µg cm-2, respectively) were 

obtained through serial dilutions of a stock (2.56 mg mL-1). Then, a working volume of 

100 µL of suspension was added to wells in four different plates, one for each exposure 

time (i.e. 4, 8, 24 and 72 h). After incubation, the ENP suspension was removed, and 

wells rinsed twice with PBS 1X for eliminating ENPs either deposited (but not adsorbed) 

onto cells or attached to the lateral wall of the well. Trypsin-EDTA was then used for 

detaching cells, and samples were collected for measuring the adsorbed ENP mass. The 

overlaying ENP suspension together with the washing volume of PBS was also stored 

and tested to account for all the initially administered mass. Blank controls (BCs) 

consisted in cells without ENPs, while positive controls (PCs) were simply 100 µL of the 

suspension, collected immediately after the stock dilution. All experiments were carried 

out in triplicate. 

All the collected samples were diluted in MilliQ water to a total volume equal to 

𝑉𝑠𝑎𝑚. Then, the same protocol described for validation was applied for performing ICP-

OES measurements, determining the ENP mass concentration in each sample.  Note that, 

for each ENP and nominal dose, BCs and PCs represent the offset of the measurement 
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and the maximum mass concentration detectable in the samples, respectively. Thus, to 

get meaningful adsorbed fractions (𝜑𝑎
𝑒𝑥𝑝

), the raw data were post-processed as follows: 

 

𝜑𝑎
𝑒𝑥𝑝 =  

𝑐 − 𝑐𝐵𝐶

𝑐𝑃𝐶 − 𝑐𝐵𝐶
 (5) 

 

where 𝑐 (µg mL-1) is the adsorbed ENP concentration measured by ICP-OES, while 𝑐𝐵𝐶 

and 𝑐𝑃𝐶 (µg mL-1) are the ENP concentrations detected for the corresponding BCs and 

PCs, respectively. All the terms in Eq. (5) are expressed as mean ± standard deviation of 

the triplicate, and standard methods were applied to account for error propagation. Since 

they all refer to the same volume 𝑉𝑠𝑎𝑚, the adsorbed fraction 𝜑𝑎
𝑒𝑥𝑝

 refers to mass as well 

as concentration. 

In silico predictions of cell adsorbed mass fraction and correlation analysis 

As reported for validation, exposure tests for each ENP were replicated in silico by 

running both models in DosiGUI. After setting the input parameters (geometry and ENP 

characteristics), a parametric sweep was implemented for the stickiness index by 

iteratively varying 𝐾 and 𝑘𝐷 within reasonable ranges (reported in the SI, Table S2). 

Simulations were carried out for the same nominal doses experimentally administered, 

setting the spatial and temporal resolution respectively to 0.05 mm and 1 s to optimize 

the accuracy of predictions. 

In this case, to get predictions of adsorbed mass fractions (𝜑𝑎
𝑠𝑖𝑚) comparable to 

their experimental counterparts, for each time point of interest the model outcome was 

rearranged as in Eq. (6): 
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𝜑𝑎
𝑠𝑖𝑚 =  

𝑚𝑎

ℎ ∗ 𝐴 ∗ 𝑐0
 (6) 

 

where 𝑚𝑎 (µg) is the cumulative ENP mass adsorbed at the bottom of the column, and 

the other parameters are the same as in Eq. (4). 

Once the experimental and simulated datasets were homogenized, we performed 

a correlation analysis for identifying the most reliable value of both 𝐾 and 𝑘𝐷 for each of 

the three ENPs, i.e. the HepG2 stickiness with respect to those kinds of ENPs. 

Specifically, the best fitting regression line for 𝜑𝑎
𝑒𝑥𝑝

 as a function of 𝜑𝑎
𝑠𝑖𝑚 was estimated 

with a confidence interval of 95% for each model, ENP and nominal dose with respect to 

each stickiness index considered. The most suitable value of 𝐾 or 𝑘𝐷 was determined 

optimizing the same criteria for the goodness of fit as in the section DosiGUI validation 

for three insoluble ENPs. Details on the statistical analyses are provided in SI4. 

 

Prediction of the effective dose of insoluble ENPs delivered to HepG2 cells  

Once the specific ENP-cell type combination was fully characterized, we were able to 

reliably extend DosiGUI predictions to any exposure scenario involving that 

combination. Thus, to complete the proof-of-concept application of the introduced nano-

dosimetry pipeline, we chose to estimate the effective dose of each of the three ENPs 

perceived over time by a HepG2 monolayer using the experimental configuration 

described for identifying the stickiness index. The optimum value of 𝐾 or 𝑘𝐷 identified 

in the second set of experiments was set for each ENP; all other input parameters were as 

described in Identification of stickiness parameters for insoluble ENPs interacting with 

HepG2 cells. 
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Results 

DosiGUI validation for three insoluble ENPs 

Table 2 shows how predicted profiles of mid-height mass fraction over time correlate 

with experimental data. In particular, values of the correlation statistics considered (see 

SI4) are shown for the “worst case” of the more predictive model, i.e. for the nominally 

administered dose giving the weakest correlation when using the model which results as 

the most suitable for the specific ENP. Previous reports  have demonstrated the robustness 

of ISD3 for different kinds of NMs (Ag - NM-300K) [10].  However, for the three ENPs 

studied here, the DG model reliably estimates mass fractions over time at mid-height, 

since even the worst-case correlation is statistically significant.  

 

Identification of stickiness parameters for insoluble ENPs interacting with 

HepG2 cells 

Table 3 shows optimal values of the parameters determining the stickiness index of 

HepG2 cells with respect to each of the three ENPs analysed. For both models, the 

stickiness values obtained differ significantly for each ENP, underlining that the same 

cell type differentially uptakes NPs based on their physicochemical traits. In Figure 3, the 

mass fraction adsorbed over time by the HepG2 monolayer for each ENP estimated by 

the DG model is shown for two cases: i)  𝑘𝐷  = 0 mol L-1 (maximal stickiness, DG model); 

ii) 𝑘𝐷  values estimated from the ICP-OES data. A similar figure is reported in the SI for 

ISD3 (Figure S1). The figure highlights the importance of characterizing the boundary 

stickiness to obtain meaningful estimates of effective dose. 

Using the correct stickiness index results in significantly lower adsorbed mass 

fractions for NM-105 and NM-212 (Figure 3A and 3B). On the other hand, the two curves 
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in Figure 3C for NM-220 are similar. In fact, as reported in Table 3, this ENP is very 

highly adsorbed on the HepG2 monolayer, approaching nearly complete stickiness. 

 

Prediction of the effective dose of insoluble ENPs delivered to HepG2 cells  

Figure 4 reports simulated effective doses delivered to HepG2 cells in monolayer, starting 

from different nominal doses. These results close the loop of the proof-of-concept 

application of the integrated pipeline proposed here, leveraging on the successful 

validation of DosiGUI predictions for the insoluble ENPs analysed and exploiting the 

accurately characterized stickiness indices between ENPs and HepG2 cells. All graphs in 

the figure refer to simulations carried out with the DG model, since it proved to be the 

most suitable for replicating the dynamics of the three ENPs. Corresponding predictions 

by the ISD3 model are reported in the SI (Figure S2). 

As expected, cells do not interact with all of ENM administered, even for long 

exposure times (Figure 4A). On the contrary, a “saturation” effect is observed along with 

increasing nominal doses, in terms of a reduction of effective dose fraction (i.e. effective 

dose/nominal dose) (Figure 4B).  

 

Discussion 

Accurately determining the amount of ENPs that cells, tissues or organs are exposed to 

in specific scenarios (i.e. the effective dose) is a key step towards safely tapping the full 

potential of ENMs in biomedicine. However, due to technical limitations and the 

complexity of nano-dosimetry, toxicologists still struggle to provide rigorous estimations. 

This may result in a misleading characterization of NP toxicity and consequent hazard 

assessment.  

 To tackle these issues, we present an in silico-in vitro pipeline for accurately 

assessing effective doses in monolayer cell cultures. The approach relies on DosiGUI, a 
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purposely developed multi-model graphical user interface. DosiGUI is open source and 

embeds the two state-of-the-art in silico models for computational nano-dosimetry.  

The pipeline starts with a rigorous characterization of the exposure configuration of 

interest for the generation of an input parameter dataset. Among the intrinsic 

characteristics of NPs and the extrinsic parameters of the exposure set-up necessary for 

running the models, those determining the adsorption kinetics of NPs on cells strongly 

impact on the effective dose (as highlighted in Figure 3) but have often been neglected. 

Thus, in this work we introduced new methods for the identification of parameters 

determining the cell-NP stickiness index.   

As a proof-of-concept, we demonstrated the robustness of the approach for three 

ENPs (NM-105, NM-212, NM-220), which are reported to have a negligible solubility. 

Starting from physicochemical characterization reported by Wohlleben’s group [19], the 

reliability of simulations performed using DosiGUI was validated experimentally 

reproducing and predicting the effective dose for two reference boundaries with a totally 

adsorptive and a purely reflective surface, respectively. This allows identifying the most 

suitable model to simulate the dynamics of each ENP. For the three ENPs studied in this 

work, the DG model was the most suitable (Table 2).  

Following this first validation step, parameters describing the adsorption kinetics 

of ENPs on HepG2 cells were identified so as to set a realistic stickiness index for 

simulations. The results confirmed that the boundary stickiness is an ENP-specific 

feature. In fact, the values of kinetic constants for the three ENPs differ significantly from 

each other, with NM-220 showing the highest affinity for HepG2 (Table 3).  Thus, setting 

the right stickiness index is a crucial step for accurate effective dose estimation. However, 

in many cases the value of the stickiness index may not be readily available, since the 

parameter identification procedure is rather complicated and time-consuming. For this 
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reason, we have added a slider which allows setting the stickiness index at five levels 

(reflective, low, medium, high, maximal), which correspond to a reasonable discretization 

of the ranges of 𝐾 or 𝑘𝐷 considered for the optimization process.  

Having characterized the adsorptive behaviour of HepG2 cells, we employed 

DosiGUI to predict the effective dose of each ENP in a standard in vitro test 

configuration. As expected, only a fraction of the administered amount of ENPs is 

computed to interact with the monolayer, with a “saturation” effect emerging at high 

nominal doses (Figures 4 and S2). This is because the adsorption of sedimenting NPs is 

a surface occupancy-driven mechanism. The mechanism is explicitly modelled in DG 

(see Eq. (1) and section SI3), which may be the reason why its predictions better correlate 

with experimental data for insoluble ENPs. As expected, effective doses estimations are 

higher for ENPs characterized by higher stickiness indices.  

In conclusion, this study provides an important contribution to more accurate 

dose-response characterization of NPs and to the improvement of safety and risk 

assessment resulting from the exposure of human tissues and organs to commonly 

employed ENPs. DosiGUI should facilitate the incorporation of in silico tools in 

nanotoxicology, encouraging more data sharing, cross-laboratory comparisons and an 

exhaustive characterization of cell stickiness for a wide spectrum of phenotypes, which 

could also be integrated as an essential part of existing ENP databases. Finally, the in 

silico models embedded within DosiGUI could be extended to three-dimensional (3D) 

configurations for effective dose estimations in in vitro cell aggregates having higher 

levels of complexity, such as spheroids and organoids. Besides improvements in nano-

dosimetry, 3D models could be used to simulate the dynamics of NPs in more 

physiologically relevant scenarios and for a better in vitro-to-in vivo extrapolation.  
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Figure 1. The in silico-in vitro pipeline leveraging on DosiGUI. Both A) physicochemical 

characterization of ENPs and B) extrinsic parameters are crucial for optimizing the 

reliability of effective dose predictions and improving dose-response characterization. C) 

The complete input dataset is fed to DosiGUI for running simulations, and the outcome 

can be also exploited for refining extrinsic parameters (e.g., the cell layer stickiness). D) 

DosiGUI is validated for specific ENPs by comparing predictions and experimental 

measurements of a fully characterized test system. E) Once validated, DosiGUI 

predictions of effective dose for a given ENP can be extrapolated to various exposure 

scenarios. 
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Figure 2. The graphical user interface. A) The main window of DosiGUI. B) The interface 

panel for the ISD3 model. The input values shown refer to the validation of ISD3 for 

silver (Ag - NM-300K) nano-dosimetry, carried out in [10]. 
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Figure 3. DosiGUI predictions of mass fraction over time adsorbed by HepG2 cells 

expressed as a percentage of the total amount of ENP mass in the suspension, assuming 

a nominally administered dose of 78.1 µg/cm2. Comparison between the case of a 

maximally sticky bottom (blue line) and the identified stickiness index of HepG2 

monolayers (orange line) for: A) TiO2 (NM-105), B) CeO2 (NM-212) and C) BaSO4 

(NM-220). 
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Figure 4. DosiGUI predictions for the effective dose fraction (i.e. effective dose/nominal 

dose, percentage) delivered to HepG2 cells. A) Effective dose fraction versus exposure 

time. B) Effective dose fraction versus nominal dose.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.31.458389doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.31.458389
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. Basic intrinsic and extrinsic input parameters required by DosiGUI for running 

the ISD3 and DG models. 

ENM intrinsic parameters 
Extrinsic (configuration dependent) 

parameters  

ENP size distribution (i.e. existing 

diameters (𝑑𝑝) and corresponding 

normalized conunts) 

Medium height (ℎ) 

Density (𝜌) ENM nominal dose (𝑀𝑛𝑜𝑚) 

Effective density (𝜌𝑒𝑓𝑓) Bottom boundary stickiness (𝑘𝐷 or 𝐾) 

Dissolution constants* Total exposure time (𝜏) 

Medium density (𝜌𝑓) Spatial resolution (∆𝑥) 

Medium dynamic viscosity (𝜇) Time resolution (∆𝑡) 

Medium temperature (𝑇)  

*Depending on the kinetic model adopted for dissolution in the chosen computational framework  

 

 

 

Table 2. Results of the correlation analysis between measured and simulated mid-height 

mass fraction profiles over time. The Pearson’s coefficient (𝑟) and the p-value of the extra 

sum-of-squares F-test on the slope of the regression line (𝑝) are reported for the “worst 

case” of the more predictive model (specified in the last column). 

ENP 𝒓 𝒑 
Most suitable 

model 

TiO2 (NM-105) 0.987 0.534 DG 

CeO2 (NM-212) 0.826 0.696 DG 

BaSO4 (NM-220) 0.999 0.056 DG 
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Table 3. Optimal values for parameters determining the HepG2 stickiness indices with 

respect to insoluble ENPs, identified for both the ISD3 (𝐾𝑜𝑝𝑡) and the DG model (𝑘𝐷,𝑜𝑝𝑡). 

ENP 𝑲𝒐𝒑𝒕 (m) 𝒌𝑫,𝒐𝒑𝒕 (mol L-1) 

TiO2 (NM-105) 8.0 × 106 3.0 × 10-9 

CeO2 (NM-212) 8.0 × 104 2.0 × 10-9 

BaSO4 (NM-220) 6.4 × 104 5.8 × 10-10 
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