
DeepConsensus: Gap-Aware Sequence
Transformers for Sequence Correction
Gunjan Baid1*, Daniel E. Cook1*, Kishwar Shafin1, Taedong Yun1, Felipe Llinares-López1‎,
Quentin Berthet1, Aaron M. Wenger2, William J. Rowell2, Maria Nattestad1, Howard Yang1,
Alexey Kolesnikov1, Armin Töpfer2, Waleed Ammar1, Jean-Philippe Vert1, Ashish Vaswani1, Cory
Y. McLean1, Pi-Chuan Chang1^, Andrew Carroll1^

* These authors contributed equally; ^ These authors contributed equally

1. Google LLC, 1600 Amphitheatre Pkwy, Mountain View, CA
2. Pacific Biosciences, Menlo Park, CA, USA

Correspondence: awcarroll@google.com

Abstract
Pacific BioScience (PacBio) circular consensus sequencing (CCS) generates long (10-25 kb),
accurate "HiFi" reads by combining serial observations of a DNA molecule into a consensus
sequence. The standard approach to consensus generation uses a hidden Markov model (pbccs).
Here, we introduce DeepConsensus, which uses a unique alignment-based loss to train a
gap-aware transformer-encoder (GATE) for sequence correction. Compared to pbccs,
DeepConsensus reduces read errors in the same dataset by 42%. This increases the yield of
PacBio HiFi reads at Q20 by 9%, at Q30 by 27%, and at Q40 by 90%. With two SMRT Cells of
HG003, reads from DeepConsensus improve hifiasm assembly contiguity (NG50 4.9Mb to
17.2Mb), increase gene completeness (94% to 97%), reduce false gene duplication rate (1.1%
to 0.5%), improve assembly base accuracy (Q43 to Q45), and also reduce variant calling errors
by 24%.

Introduction
Modern genome sequencing samples the genome in small, error-prone fragments called reads.
At the read level, the higher error of single molecule observations is mitigated by consensus
observations. In Illumina data, the consensus is spatial, through clusters of amplified
molecules1. Pacific Biosciences (PacBio) uses repeated sequencing of a circular molecule to
build consensus across time2. The accuracy of these approaches, and the manner they fail,
ultimately limits the read lengths of these methods and the analyzable regions of the genome3,4

Recent breakthroughs in PacBio throughput have enabled highly accurate (99.8%) long reads
(>10 kb), called HiFi reads5 to set new standards in variant calling accuracy6 and the first
telomere-to-telomere human assembly7. The remaining sequencing errors are strongly
concentrated in homopolymers3,8, and the need to manage these errors constrains the minimum
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number of passes required for acceptable accuracy, and therefore the yield and quality of
PacBio sequencing.

The existing algorithm for consensus generation from HiFi sequencing data uses a hidden
Markov model to create a draft consensus sequence, which is iteratively polished9. The
underlying process of removing errors using an alignment of reads is also used in genome
assembly10, and in assembly polishing methods like Racon11, Pilon12, and
PEPPER-Margin-DeepVariant13. All of these methods correct from a given alignment to a
reference or contig. These methods use statistical heuristics for the correction model itself,
except for PEPPER-Margin-DeepVariant.

To improve consensus generation of HiFi sequencing data, we introduce a deep learning-based
approach leveraging a transformer14 architecture. Transformers have gained rapid adoption in
natural language processing15 and computer vision16. In biology, transformers have been applied
to Multiple Sequence Alignment (MSA) of protein sequences17 and dramatically improved
AlphaFold2’s protein structure prediction18.

We present DeepConsensus, an encoder-only transformer model that uses an MSA of the
PacBio subread bases and a draft consensus from the current production method (pbccs).
DeepConsensus incorporates auxiliary base calling features to predict the full sequence in a
window (by default 100bp). Since insertion and deletion (INDEL) errors are the dominant class
of error in this data, we train the model with a novel alignment-based loss function inspired by
differentiable dynamic programming19. This gap-aware transformer-encoder (GATE) approach
more accurately represents misalignment errors in the training process.

DeepConsensus reduces errors in PacBio HiFi reads by 41.9% compared to pbccs in human
sequence data. We stratify performance across mismatches, homopolymer insertions and
deletions, and non-homopolymer insertions and deletions, and DeepConsensus improves
accuracy in each category. DeepConsensus increases the yield of reads at 99% accuracy by
8.7%, at 99.9% accuracy by 26.7%, and at 99.99% accuracy by 90.9%. We demonstrate that
using reads from DeepConsensus improves the contiguity, completeness, and correctness of
genome assembly when compared to assemblies generated using pbccs reads. Similarly, we
demonstrate improved accuracy of variant calling when using DeepConsensus reads. Finally,
we demonstrate that improvements in accuracy allow for longer PacBio reads lengths while
retaining acceptable read accuracy, enabling improvements in contiguity of genome assembly
and increasing the experimental design options for PacBio sequencing.
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Results

Overview of DeepConsensus

Figure 1 Overview of DeepConsensus This figure illustrates the DeepConsensus workflow. Subreads are
combined with a CCS read divided into 100 bp partitions. Each partition is converted to a tensor object containing the
pulse width, interpulse duration, signal-to-noise (SN) ratios, and strand information. These tensors can then be used
during training or inference using an encoder-only transformer. The trained model produces a polished segment
which is stitched together to produce a polished read.

An overview of the DeepConsensus algorithm is shown in Figure 1. PacBio CCS sequencing
produces a set of subreads which are processed by pbccs to produce a consensus (CCS) read.
Subreads are combined with the CCS read, and divided into 100 bp partitions. Each partition is
then transformed into a tensor to be used as input to the DeepConsensus model for training or
inference.

The tensor contains additional information beyond the sequence extracted from each subread.
This includes the pulse width (PW) and interpulse duration (IP). These are raw values provided
by the basecaller that are used to call bases. Additionally, DeepConsensus incorporates the
signal-to-noise ratio for each nucleotide, and strand information. For training, we use a custom
loss function that considers the alignment between the label and predicted sequence. For
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inference, the outputs for each 100bp partition in the full sequence are stitched together to
produce the polished read.

DeepConsensus increases HiFi accuracy and Yield

Figure 2 DeepConsensus improves the accuracy of CCS reads (a) Comparison of observed read accuracy
) for the intersection of pbccs and DeepConsensus (HG002 chr20 11kb) reads. Each light green dot(𝑄

𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒

corresponds to a single read. Dark green dots represent reads that were perfect matches to the reference. (b)
Observed read accuracy across the number of available subreads for DeepConsensus and pbccs.

We first evaluated the performance of DeepConsensus (v0.1) by aligning polished 11kb chr20
reads from HG002 against a high-quality diploid assembly20. HiFi reads output from pbccs were
processed similarly, and we used a custom script to calculate a phred-scaled read accuracy
score for each read ( ; See methods). When examining the intersection of reads to𝑄

𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒

assess relative improvement, we observe accuracy improvements are distributed across the full
range of pbccs scores (Figure 2A). We observe an average of 28.94 for𝑄

𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒
𝑄

𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒

DeepConsensus and 26.6 for pbccs, which corresponds to an average read quality
improvement of 2.34 points. We also examined read accuracy by the number of𝑄

𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒

subreads used to generate each HiFi read and observe improvements for all𝑄
𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒

subread bins (Figure 2B).

Sequencing errors can be classified by type (SNP, Indel) and according to their sequence
context (homopolymer, non-homopolymer). Homopolymer indels have previously been
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characterized as the largest contributors to PacBio HiFi error rates5. We used
bamConcordance5 to examine the improvements for each error class. Notably, DeepConsensus
reduces errors across all error classes, including significant reductions in homopolymer indels
and a 70.39% reduction in non-homopolymer insertions (Table 1).

We next asked how improvements in read accuracy contribute to increases in sequencing yield.
DeepConsensus and pbccs are both configured to output reads with a predicted Q > 20. We
compared the total yield and yields at Q thresholds of 20, 30, 40, and perfect match. We
observed that DeepConsensus increases sequencing yield across all quality bins  (Table 2).

In addition to producing a polished sequence, our model also outputs predicted base qualities.
The average base quality should match the . We filtered reads with𝑄

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
𝑄

𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒

identity=1 and found that the . A comparison of pbccs𝑚𝑒𝑎𝑛(𝑄
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

 −  𝑄
𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒

) =  2. 77

and DeepConsensus is available in Supplementary Figure 1.

Metric
pbccs (bp /
read) DeepConsensus (bp / read) % Decrease

Mismatch 1.82 0.99 45.6%

Homopolymer Deletion 9.41 6.74 28.4%

Homopolymer Insertion 10.28 5.01 51.3%

Non-Homopolymer Deletion 1.05 0.97 7.6%

Non-Homopolymer Insertion 2.06 0.6 70.9%

All Errors 24.61 14.31 41.9%

Table 1 Corrections by error type The average number of bp affected for each error class per-read are listed for
pbccs and DeepConsensus. The percent decrease reflects the reduction in errors in DeepConsensus as compared to
pbccs.

Dataset Total Reads Q > 20 Q > 30 Q > 40 Perfect match

pbccs 90,432 88,561 47,767 10,207 4,395

DeepConsensus 103,093 96,260 60,490 19,485 9,291

% Increase 14.00% 8.69% 26.64% 90.90% 111.40%

Table 2 Yield improvement Polished HG002 chr20 11kb reads from pbccs and DeepConsensus are quantified
according to the total number of reads, reads at given thresholds ( > 20 / 30 / 40), and reads that𝑄

𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒
perfectly match the diploid assembly. Total reads is the set of initial reads output by pbccs and DeepConsensus using

> 20. The percentage increase in terms of yield achieved by DeepConsensus is listed for each category.𝑄
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
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Using DeepConsensus reads improves de novo assembly

Figure 3: DeepConsensus improves the contiguity and quality of the genome assemblies generated with
hifiasm. (a) Contiguity of the hifiasm assemblies with reads from pbccs and DeepConsensus with two PacBio SMRT
Cells. (b) Reference-free estimated quality (using YAK) of the hifiasm phased assemblies with reads from pbccs and
DeepConsensus with two PacBio SMRT Cells. (c) Contiguity of the hifiasm assemblies with three PacBio SMRT
Cells. (d) Estimated quality of the hifiasm phased assemblies with three PacBio SMRT Cells.
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To evaluate the improvements achieved in de novo assembly with the increased yield
(Supplementary figure 2-5, Supplementary table 1) and higher quality reads from
DeepConsensus, we generated phased assemblies of four human genome samples using the
hifiasm21 assembler. We generated assemblies with reads from two SMRT Cells (HG003,
HG004, HG006, HG007) and three SMRT Cells (HG003, HG004, HG006). To assess the
contiguity, we derived the contig N50, NG50 and genome coverage against GRCh38 using
QUAST 22. In Figure 3, we show the improvements in assembly quality and contiguity as a result
of increased yield and quality of reads from DeepConsensus. With reads from two SMRT Cells,
we see that the NG50 of the assemblies with DeepConsensus reads (17.23Mb, 12.37Mb,
31.54Mb, 8.48Mb) are on average 3x higher than assembly NG50 with pbccs reads (4.91Mb,
3.72Mb, 18.55Mb, 1.94Mb) (Figure 3a, Supplementary table 2).

We evaluated the correctness of the assembly using YAK21, which overlaps the assembly with
k-mers observed in short-read sequencing. The YAK estimated quality of the assemblies with
DeepConsensus reads achieve Q44 on average compared to Q42 with assemblies using pbccs
reads (Figure 3b, Supplementary table 3). We also used dipcall23 to derive the small variants
from the assembly and compared the small variants against Genome-In-a-Bottle (GIAB) truth
sets24 of the associated sample. We observe the assemblies derived from DeepConsensus
reads have on average 43% fewer total errors (false positives and false negatives) compared to
the assemblies derived from pbccs reads (Supplementary table 4, 5).

To evaluate the gene completeness of the assemblies, we used asmgene25 with the Ensembl
homo sapiens cDNA sequences as input and GRCh38 as the reference sequence. We observe
that the assemblies generated with pbccs have a 2-fold higher false duplication rate (average
540 false duplications) compared to the assemblies generated with DeepConsensus (average
231 false duplications) (Supplementary table 6, 7).

Similarly, in assemblies generated with three SMRT Cells, we see that the contig NG50 of the
assemblies with DeepConsensus reads (55Mb, 41Mb, 51Mb) are on average 1.3x higher than
contig NG50 with pbccs reads (33Mb, 36Mb, 41Mb) (Supplementary table 2). The average
assembly quality is Q49.4 with DeepConsensus reads compared to Q48.1 for assemblies with
pbccs reads (Figure 3d, Supplementary table 3). The assembly-based small variant evaluation
shows that assemblies from DeepConsensus reads have 33% fewer total errors compared to
assemblies with pbccs reads (Supplementary table 4, 5). The gene completeness analysis
shows that the assemblies generated with pbccs (average 162 false duplications) have higher
number of false duplications compared to the assemblies generated with DeepConsensus
(average 134 false duplications) (Supplementary table 6, 7).

In summary, we observe consistent improvements in contiguity, correctness, and completeness
in assemblies generated with reads from DeepConsensus, using either two or three SMRT
Cells.
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Using DeepConsensus reads improves variant calling accuracy

Figure 4: DeepConsensus improves variant calling performance of DeepVariant. (a, b) HG003 Variant calling
performance of DeepVariant with pbccs and DeepConsensus reads from two and three SMRT Cells for (a, b) HG003,
(c, d) HG004, (e, f) HG006.
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To assess small variant calling improvements with DeepConsensus reads, we mapped pbccs
and DeepConsensus reads to the GRCh38 reference with pbmm225 and called variants with
DeepVariant26 for four human genome samples. We used the DeepVariant v1.2 PacBio HiFi
model for variant calling with pbccs reads. We trained a custom DeepVariant model to call
variants with DeepConsensus reads from chr1-chr19 with HG002 GIAB v4.2.1 as the small
variant benchmark set.

For the variant calling analysis, we used HG003, HG004, HG006, HG007 samples. For HG003
and HG004, we used GIAB v4.2.1 and for HG006 and HG007 we used GIAB v3.3.2 benchmark
set to evaluate the variants. We used hap.py27 to assess the variants against the GIAB
benchmark set. For each sample, we report the number of false positives (FP) and false
negatives (FN) variants in SNP (single nucleotide polymorphism) and INDEL (insertions and
deletions) categories.

In Figure 4, we show the variant calling performance of DeepVariant with DeepConsensus and
pbccs reads for two and three SMRT Cells. Variant calling with DeepConsensus reads from two
SMRT Cells has on average 25% fewer errors for HG003, HG004 and 30% fewer errors for
HG006, HG007 samples compared to variants with pbccs reads (Figure 4a, 4c, 4e,
Supplementary Figure 6). Similarly, variants derived from DeepConsensus reads from three
SMRT Cells have on average 8% fewer total errors for HG003, HG004 and 28% fewer for
HG006 compared to variants with pbccs reads. Furthermore, we observe the SNP errors on
average, decreasing 35% for two and 8% for three SMRT Cells of HG003 and HG004 samples
(Figure 4b, 4d, 4f). Similarly, INDEL errors on average decrease 15% for two and 6% for three
SMRT Cells in variants with DeepConsensus reads for HG003 and HG004 samples
(Supplementary table 8). In summary, DeepConsensus improves variant calling performance
across samples in both SNP and INDEL categories with reads from two and three SMRT Cells.
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Use of longer reads improves yield, assembly, and variant calling

Figure 5: DeepConsensus with longer reads improves genome assembly contiguity. (a) HG002 read length
distribution for 15kb and 24kb DeepConsensus reads from two SMRT Cells. (b) Contiguity of the HG002 hifiasm
assembly with 15kb and 24kb DeepConsensus reads from two SMRT Cells. (c) HG002 variant calling performance
for 15kb  and 24kb reads from DeepConsensus for two SMRT Cells.
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With higher consensus accuracy for HiFi reads, the number of passes can be reduced while
maintaining accuracy (Figure 2b), potentially allowing for sequencing of longer insert sizes while
preserving the quality of downstream analyses. To test this, we sequenced a HG002 sample
with 15kb and 24kb insert sizes, each with two SMRT Cells on Sequel II System using
Chemistry 2.2. We generated DeepConsensus reads for the 15kb and 24kb insert size (Figure
5a, Supplementary table 9). Details on the library preparation protocol for 24kb reads are
provided in the online methods.

In Figure 5, we show the improvements in genome assembly and variant calling we achieve
with 24kb reads compared to 15kb reads of HG002 sample. The hifiasm assembly with 24kb
reads achieves higher contig NG50 of 34.05Mb compared to 24.81Mb with 15kb reads, though
the assembly quality is higher with 15kb (Q51.7) reads than with 24kb (Q50.8) (Supplementary
table 10, 11). The assembly-based variant calling evaluation shows the assembly with 24kb
reads has higher INDEL accuracy and comparable SNP accuracy against the assembly with
15kb reads (Supplementary table 12, 13). Notably, the multi-copy gene completeness in the
assembly with 24kb reads is 80.91% compared to 76.93% in the assembly with 15kb reads
while the single-copy gene completeness remains comparable (97.2% with 24kb reads and
97.3% with 15kb reads) (Supplementary table 14, 15). In variant calling with DeepVariant, the
24kb DeepConsensus reads have fewer total errors compared to 15kb reads in HG002 chr20
(Figure 5c, Supplementary table 16).

In summary, the increased accuracy of DeepConsensus expands the window of experimental
choices. This allows researchers to consider using longer reads for applications which
disproportionately benefit, such as assembly of genomes with high duplication rates, difficult to
assemble regions such as the MHC, phasing across a long gene or amplicon, or variant
detection in hard-to-map regions.

Discussion
The correction of errors in sequencing data is fundamental to both the generation of initial data
from a sequencer and to downstream analyses which assemble, map, and analyze
genomes28–30. We introduce a transformer-based consensus generation method, reducing errors
in PacBio HiFi reads by 42% and increasing yield of 99.9% accurate reads by 27%. We show
that with existing downstream methods, the improved reads result in better assembly contiguity,
completeness, and accuracy, as well as more accurate variant calling.

The problem of correcting errors from a MSA of repeated sequencing is a single example of a
broader category of problems that analyze the alignment of similar sequences. The most similar
adjacent applications are error correction of Unique Molecular Identifiers31, as well as error
correction of Oxford Nanopore Duplex reads. Genome assembly polishing, which uses
alignments of sequences from many molecules, is a similar application11,13,32. DeepConsensus
models could be trained for these applications with minimal changes to its architecture. The
gap-aware loss function used in the GATE approach could have utility to broader MSA-related
problems. For example, related work by Rao 202117 demonstrated improved prediction
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performance across multiple tasks, including contact maps and secondary structure, and Avsec
et al. 202133 used a long-range Enformer to predict gene expression. These applications could
potentially benefit from the incorporation of alignment-based loss used in DeepConsensus, or
the DeepConsensus framework could be applied to similar problem areas.

DeepConsensus presents opportunities to alter experimental design to better leverage its
improvements to accuracy. We demonstrate that DeepConsensus allows for longer read lengths
while maintaining a high standard of read accuracy and yield. Certain applications, such as
assembling difficult genome regions, may disproportionately benefit from use of longer reads.
Additionally, because DeepConsensus learns its error model directly from training data, it allows
a tighter coupling between library preparation, instrument iteration and informatics.
DeepConsensus could be trained on data from a modified procedure or additional data stream
to more accurately estimate the potential advantage of the new method, decreasing the chance
that the modification’s advantages might not be apparent due to optimization of the informatics
to the older approach.

The improvements we demonstrate to assembly and variant calling use unmodified downstream
tools (hifiasm), or tools with unmodified heuristics that use an adapted model (DeepVariant).
Further iterating on the heuristics in these methods may allow them to take additional advantage
of the DeepConsensus error profile, or better use its higher yield of longer reads.

Future improvements to DeepConsensus include training with an expanded dataset that
includes additional samples and chemistries, since our current training datasets only include
Sequel II data from a few SMRT Cells. Assessing DeepConsensus on non-human species and,
if needed, supplementing training data with diverse species is an area of active development.
There are substantial opportunities for improvements by refining the attention strategy, for
example AlphaFold2 uses a modified axial attention34, or by leveraging efficiency improvements
to the transformer self-attention layer to consider wider sequence contexts35–37. Investigating the
trade-offs between model size and accuracy could also enable faster versions which preserve
high accuracy. These and other improvements will enable DeepConsensus to help scientists
realize the potential yield and quality of their sequencing instruments and projects.
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Code Availability
Code and pretrained models are available on https://github.com/google/deepconsensus.

Data Availability
Sequencing data, predictions, and analysis files are available at:
https://console.cloud.google.com/storage/browser/brain-genomics-public/research/deepconsens
us/publication

Sequencing data is available from the following sources:
● Sequel II data from Novogene:

https://console.cloud.google.com/storage/browser/brain-genomics-public/research/seque
ncing

● 15kb HG002 and 24kb HG002 reads from PacBio:
https://console.cloud.google.com/storage/browser/brain-genomics-public/research/deepc
onsensus/publication/sequencing

● Sequel II data from PacBio:
https://downloads.pacbcloud.com/public/dataset/HG002_SV_and_SNV_CCS/

● HG002 diploid assembly:
https://obj.umiacs.umd.edu/marbl_publications/hicanu/hg002_hifi_hicanu_combined.fast
a.gz

Online Methods

Generation of 24kb PacBio reads
DNA was extracted from HG002/NA24385 cell pellets (Coriell Institute) with the MasterPure
Complete DNA and RNA Purification Kit (Lucigen MC85200) and sheared on Megaruptor3
(Diagenode) at speed 30. SMRTbell libraries were constructed with SMRTbell Express Template
Prep Kit 2.0 (PacBio 100-038-900). Size selection was performed with BluePippin (Sage
Science) with an 18kb high-pass filter. Sequencing was performed on the Sequel II System
using Chemistry 2.2 and 30 hour movies.

Dataset preparation
For all SMRT Cells, we ran pbccs on the subreads to generate CCS sequences. pbccs
generates a prediction for the overall read quality for each CCS read, and reads below Q20 are
filtered out of the final HiFi read set. For dataset generation, we did not apply any filtering based
on read quality for the CCS reads, and reads of qualities were included for training and
inference. To generate labels for each set of subreads, the CCS sequence predicted by pbccs
was mapped to the HG002 diploid assembly. The coordinates of the primary alignment were
used to extract the label sequence from the HG002 diploid assembly.
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Subreads and labels were aligned to the corresponding CCS sequence. The cigar string from
this alignment was used to match bases across the subreads and assign a label for each
position. Subreads were broken up into 100bp windows, and the corresponding label for each
window was extracted from the full label sequence. In some cases, the label was longer than
the subreads due to bases for which there was no support in the subreads.

Each subread base has associated pulse width (PW) and interpulse duration (IPD) values, and
each set of subreads has four signal to noise ratio (SN) values, one for each of the four
canonical bases. PW and IP values were capped at 9, and SN values were rounded to the
closest integer and capped at 15.

Model and training
The Transformer has emerged as the primary architecture for language understanding and
generation tasks14,15. It uses self-attention to efficiently capture long and short-range interactions
between words, crucial for understanding text. In recent work, this capability has been
successfully leveraged to improve modeling of protein sequences38.

We train a six layer encoder-only transformer model with a hidden dimension of 560 and 2
attention heads in each self-attention layer. The inner dimension of the feedforward network in
each encoder layer is 2048. The model considers 100 bases at a time from the full subreads,
and the input at each position contains subread sequences and auxiliary features. The
maximum number of subreads considered is 20. Auxiliary features include the pulse width (PW)
and interpulse duration (IPD) measured by the basecaller, the signal to noise ratio (SN) for the
sequencing reaction, the strand of each subread, and the sequence of the CCS read as
predicted by pbccs. Each feature type is embedded using a separate set of learned
embeddings, which are trained jointly with the model. An embedding size of two is used for the
subread strand, and all other embeddings are of size eight. We used positional encodings that
were a mix of sampled sine and cosines, as defined in the Transformer14. For training, the
Adam optimizer was used with a learning rate of 1e-4, and input, attention, and ReLU dropout
values were set to 0.1. Our implementation builds off the one provided in the Tensorflow Model
Garden.

For some examples, there exists a base in the label for which there is no evidence in any of the
subreads. The predicted sequence for such examples would be longer than the input sequence
length. The transformer encoder block outputs an encoding for each input token. In natural
language applications, variable-length prediction is implemented using a decoder block, which is
not constrained in the number of outputs. For consensus generation, we did not use a decoder
block due to computational constraints. To allow for variable-length prediction using only the
encoder, we add a fixed number of padding tokens to the input sequence for each window. This
allows the model to predict sequences longer than the subread sequences by replacing some of
the padding tokens with additional bases.

The outputs from the encoder block are independently decoded using a shared feedforward
layer with softmax activation. At each position, we predict a distribution over the vocabulary,
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which consists of the four canonical bases, A, C, T, G, and an additional token to represent
alignment gaps or padding, which we denote as $.

For training, we used chromosomes 1-19 from PacBio Sequel II sequencing of HG002, an
extensively characterized genome curated by Genome in a Bottle39. Chromosomes 21 and 22
were used for tuning model parameters, and chromosomes 19 and 20 were held out entirely
during training and used for final assessment. For additional full holdouts, we use PacBio
Sequel II sequencing of HG003, HG004, HG006, HG007. Models were trained for 50 epochs on
128 TPU v3 cores TPUs with a batch size of 256 for each core. Five models were trained with
the production settings, and we chose the checkpoint with lowest loss on the tuning data. A
custom gap-aware alignment loss was used, which is described in more detail in the following
section. We call the combination of the gap-aware loss with transformer-encoder architecture
GATE (gap-aware transformer-encoder).

Loss Function
Given an input MSA consisting of subreads and a consensus read and auxiliary features, the
output of the transformer is a sequence of probability distributions over the 5-letter𝑦 = 𝑦

1
𝑦

2
... 𝑦

𝑁

alphabet , where refers to an empty character to model possible insertion𝑁 = {𝐴, 𝑇, 𝐶, 𝐺, $} $
errors in the HiFi consensus or padding. In other words, each is a probability distribution of𝑦

𝑖

nonnegative entries that satisfies . At inference time,𝑦
𝑖
(𝐴) + 𝑦

𝑖
(𝑇) +  𝑦

𝑖
(𝐶) + 𝑦

𝑖
(𝐺) + 𝑦

𝑖
($) = 1

the predicted nucleotide sequence is simply obtained by keeping the character𝑧 = 𝑧
1
𝑧

2
... 𝑧

𝑁

with largest probability at each position, i.e., and removing the $ character𝑧
𝑖

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎 ∈𝑁

𝑦
𝑖
(𝑎)

from the resulting sequence. At train time, when parameters of the transformer-based model are
updated, we need to define a loss function differentiable with respect to the𝑙𝑜𝑠𝑠(𝑦, 𝑡)
transformer output given the correct nucleotide sequence (notice that the lengths𝑦 𝑡 = 𝑡

1
𝑡

2
... 𝑡

𝑀

of the transformer output and of the correct nucleotide sequence may differ due to possible𝑁 𝑀
insertion or deletion in the consensus read). If we know that a given position of the1 ≤ 𝑖 ≤ 𝑁
transformer output should predict the nucleotide at position of the true sequence,1 ≤ 𝑗 ≤ 𝑀
then it is natural to use the cross-entropy loss to assess how good the𝑙𝑜𝑠𝑠

𝐶𝐸
(𝑦

𝑖
, 𝑡

𝑗
) =− log 𝑦

𝑖
(𝑡

𝑗
)

prediction is. However, we need to choose which position of predicts which position of . For𝑦 𝑡
that purpose, we formally define an alignment of length as an increasing subset of positions𝑘 𝑘

in bothπ = {1 ≤ π(𝑦, 1) < π(𝑦, 2) <... < π(𝑦, 𝑘) ≤ 𝑁, 1 ≤ π(𝑡, 1) < π(𝑡, 2) <... < π(𝑡, 𝑘) ≤ 𝑀} 
and , such that position in predicts position in , for . Given such an𝑦 𝑡 π(𝑦, 𝑣) 𝑦 π(𝑡, 𝑣) 𝑡 𝑣 = 1,..., 𝑘

alignment, positions of not in the alignment correspond to insertion errors, and ideally theπ(𝑦)‾ 𝑦
prediction in those positions should be so that they are removed from the prediction at test$
time. For those positions, we therefore use the cross-entropy loss . On the other𝑙𝑜𝑠𝑠

𝐶𝐸
(𝑦

𝑖
, $)

hand, positions of not in the alignment corresponds to deletion errors, i.e., nucleotides inπ(𝑡) ‾ 𝑡
the correct sequence that are missed in the MSA. For those errors, we consider a fixed error

, which is a parameter to be tuned. In total, given an alignment , the total loss is definedγ > 0 π
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as the sum of cross-entropy losses over aligned positions and insertion/mutation losses:

.𝑙𝑜𝑠𝑠
π
(𝑦, 𝑡) =  

𝑣=1

𝑘

∑ 𝑙𝑜𝑠𝑠
𝐶𝐸

(𝑦
π(𝑦,𝑣)

, 𝑡
π(𝑡,𝑣)

) +
𝑣∈π(𝑦)‾

∑ 𝑙𝑜𝑠𝑠
𝐶𝐸

(𝑦
𝑣
, $) +

𝑣∈π(𝑡)‾
∑ γ

This loss depends on the arbitrary alignment , which ideally should be chosen as a function ofπ
and so that the total loss is small. We therefore finally define the alignment loss as a𝑦 𝑡

(smooth) minimum over : , where is a parameter toπ 𝑙𝑜𝑠𝑠
ϵ
(𝑦, 𝑡) =  − ϵ log(

π
∑ 𝑒

−𝑙𝑜𝑠𝑠
π
(𝑦,𝑡)/ϵ

) ϵ ≥ 0

control how suboptimal alignments contribute to the loss. At the limit , we simply keep theϵ = 0
best alignment , and taking allows us to create a smoother𝑙𝑜𝑠𝑠

0
(𝑦, 𝑡) =

π
min 𝑙𝑜𝑠𝑠

π
(𝑦, 𝑡) ϵ > 0

loss function to better align and . This loss is a particular case of the losses studied𝑦 𝑡
previously19, and we follow their approach to derive an efficient implementation to compute the
loss and its gradient in using differentiable dynamic programming, with a specific wavefront𝑦
formulation to accelerate the computation on GPUs and TPUs.

Output FASTQ generation

DeepConsensus predictions for each 100bp window are joined together and $ tokens are
removed to produce the final sequence that is output to FASTQ. Predicted base quality scores
are generated from the output distribution at each position. The raw quality score for each base,

, is computed as follows, where is the output distribution at position :𝑞
𝑖

𝑦
𝑖

𝑖

. Each raw quality score is rounded to the closest integer and𝑞
𝑖 

=  − 10 𝑙𝑜𝑔
10

(1 −  𝑚𝑎𝑥(𝑦
𝑖
))

capped at a maximum value of 60 to produce the final base quality score, . Final base𝑄
𝑖 

qualities are used to compute an overall read quality, , in the following calculation, which𝑄
𝑝𝑟𝑒𝑑 

sums over all positions in the predicted sequence: . Reads with𝑄
𝑝𝑟𝑒𝑑 

=  − 10 𝑙𝑜𝑔
10

Σ
𝑖
10

(−𝑄
𝑖 
/ 10)

an overall predicted quality above 20 were written to the final output FASTQ, along with the
corresponding quality string.

Analysis Methods

Assessing read accuracy
HG002 11kb predictions were mapped to a high-quality HG002 diploid assembly20. For each
primary alignment, the calculate_identity_metrics.py [link] script was used to compute identity
which is defined below.

𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 = 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 / (𝑚𝑎𝑡𝑐ℎ𝑒𝑠 +  𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑠 +  𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑠 +  𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑠)

The read identity values are used to compute the concordance read qualities, , which𝑄
𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒 

are computed as phred-scaled scores of the identity: .𝑄
𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒 

=  − 10 𝑙𝑜𝑔
10

(1 −  𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦)
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Reads with identity scores of 1 are separately categorized as having a ‘perfect match.’ Subread
counts were determined using the np tag (number of full-length passes). The np tag was
extracted from the consensus reads BAM output by pbccs .

We also use the bamConcordance tool, which reports the concordance between a read and a
reference sequence along with error counts for each read. Error counts are broken down into
five categories: mismatches, homopolymer insertions and deletions, and non-homopolymer
insertions and deletions. We use the bamConcordance output to assess the quality of reads and
calculate the percentage error reduction across different categories.

Generating phased diploid assemblies with hifiasm
We used hifiasm version 0.15.3-r339 to generate phased assemblies. We used the default
hifiasm parameters which have duplication purging on for the phased assemblies. We converted
the primary assembly graph to get the primary assembly sequence and each of the haplotype
graphs to generate the assembly sequences for each haplotype. Detailed execution parameters
and commands are provided in the supplementary notes.

Reference free assembly quality estimation with YAK
We used YAK version 0.1-r62-dirty to derive estimated quality of the assemblies. For each
sample, we generated a k-mer set with k=31 from Illumina short-reads of the same sample.
Then we ran YAK to determine the quality of each haplotype sequence we generated during the
hifiasm assembly generation process. YAK reports a Q value for assemblies which is a
Phred-scale contig base error-rate derived by comparing 31-mers in contigs and 31-mers in the
short reads of the same sample. We report the balanced_qv value reported by YAK as the
estimated quality value of the assembly. The parameters and commands used are provided in
the supplementary notes.

Assembly-based small variant calling assessment using dipcall
We used dipcall version 0.3 to derive small variants from the phased assemblies. Dipcall aligns
the contigs to a reference sequence and derives a set of variants from the contig to reference
alignment. We then compared the derived small variants against the Genome-In-a-Bottle truth
set of the associated sample. For all male samples we used -x hs38.PAR.bed parameter as
suggested in the documentation of dipcall.

To assess the small variants derived from the HG002, HG003 and HG004 sample we used
GRCh38 as reference and GIAB_v4.2.1 as the truth set for small variants. For HG005, HG006,
HG007 samples, we used GRCh37 and GIAB_v3.3.2 as the truth sets. All truth sets are the
latest available truth set from GIAB for the associated sample. We used hap.py to assess the
quality of the variant calls. Commands and parameters used to run dipcall are provided in the
supplementary notes.
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Gene completeness assessment with asmgene
We used asmgene version v2.21 to determine the gene completeness of the assemblies. First,
we aligned the Ensembl cDNA sequences release 102 to the GRCh38 reference genome using
minimap2 (v2.21) and found 35374 single-copy genes and 1253 multi-copy genes in the
reference. Then for each sample, we aligned the sample cDNA sequences to each of the
haplotype sequence of the assemblies and derived how many single-copy genes remained
single copy (full_sgl reported by asmgene) and how many were duplicated (full_dup
reported by asmgene). Similarly, we reported how many multi-copy genes remained multi-copy
in the assembly (dup_cnt reported by asmgene). We derived the following metrics to assess
the gene completeness of the assemblies:

𝑔𝑒𝑛𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 (%) =
 𝑓𝑢𝑙𝑙_𝑠𝑔𝑙

𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦

 𝑓𝑢𝑙𝑙_𝑠𝑔𝑙
𝐺𝑅𝐶ℎ38

𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (%) =
 𝑓𝑢𝑙𝑙_𝑑𝑢𝑝

𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦

 𝑓𝑢𝑙𝑙_𝑠𝑔𝑙
𝐺𝑅𝐶ℎ38

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑚𝑢𝑙𝑡𝑖 𝑐𝑜𝑝𝑦 (%) =
 𝑑𝑢𝑝_𝑐𝑛𝑡

𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦

 𝑑𝑢𝑝_𝑐𝑛𝑡
𝐺𝑅𝐶ℎ38

𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑚𝑢𝑙𝑡𝑖 𝑐𝑜𝑝𝑦 (%) =
 𝑑𝑢𝑝_𝑐𝑛𝑡

𝐺𝑅𝐶ℎ38
−  𝑑𝑢𝑝_𝑐𝑛𝑡

𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦

 𝑑𝑢𝑝_𝑐𝑛𝑡
𝐺𝑅𝐶ℎ38

Detailed commands and parameters of asmgene are provided in the supplementary materials.

Assembly statistics with QUAST
We used QUAST version v5.0.2 to derive assembly N50, NG50, total assembly size and
genome completeness of the assembly. QUAST is a reference-based assembly evaluation
method that uses a reference sequence of the same sample or to determine the quality of the
assembly. For our analysis, we used GRCh38 as the reference for each assembly.

We used N50 which is the sequence length of the shortest contig at 50% of the total assembly
length to determine contiguity of the assembly. NG50 is the sequence length of the shortest
contig at 50% of the estimated genome length. For our human genome assemblies, we used
GRCh38 as the reference sequence so we used 3272116950bp (3.2gb) as the estimated
genome length to derive NG50. We only report N50, NG50, total assembly length and genome
completeness against GRCh38 from the QUAST report. Detailed parameters and commands
are provided in the supplementary notes.

Variant Calling
DeepVariant performs variant calling in three stages: make_examples, call_variants, and
postprocess_variants. The make_examples stage identifies candidate variants and generates
input matrices containing pileup information. call_variants runs the input matrices through a
neural network model, and the postprocess_variants converts the neural network outputs to a
variant call and outputs a VCF.

We used the latest DeepVariant model for PacBio HiFi data, v1.2, to call variants in pbccs
predictions. Polished DeepConsensus reads or pbccs HiFi reads were aligned to GRCh38. This
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model was fine tuned from the Illumina WGS v1.2 model using PacBio HiFi sequencing reads
generated using pbccs. Since DeepConsensus reads display different error characteristics than
pbccs reads, we fine tuned a new DeepVariant model for DeepConsensus. This model was also
initialized from the v1.2 Illumina WGS model, and the training data consisted of 11kb and 24kb
Sequel II reads for HG002. We mixed both phased and unphased reads for the training, similar
to what is done for the v1.2 PacBio model. Chromosomes 1-19 were used for training,
chromosomes 21-22 were used for tuning, and chromosome 20 was held out entirely.
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