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Although the nervous system is elegantly orchestrating movements, the under-

lying neural principles remain unknown. Since flexor- and extensor-muscles

alternate during movements like walking, it is often assumed that the respon-

sible neural circuitry is similarly alternating in opposition. Here, we present

ensemble-recordings of neurons in the turtle lumbar spinal cord that indicate

that, rather than alternation, the population is performing a ”rotation” in neu-

ral space, i.e. the neural activity is cycling through all phases continuously dur-

ing the rhythmic behavior. The radius of rotation correlates with the intended

muscle force. Since existing models of spinal motor control offer inadequate

explanation of this dynamics, we propose a new theory of neural generation

of movement from which rotation and other unresolved issues, such as speed

regulation, force control, and multi-functionalism, are conveniently explained.
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The neural circuitry behind movement encompasses several distinct forebrain regions, cere-

bellum and the brainstem. The core executive circuits for movement such as locomotion, how-

ever, reside in the spinal cord (1). These spinal motor circuits, often referred to as central pattern

generators (CPGs), are capable of autonomous generation of rhythmic activity and coordination

of muscles. Although great progress has been made in characterizing the cellular properties of

spinal inter- and motor neurons, including their genetic lineages (2, 3), the network architec-

ture as well as the associated neuronal ensemble dynamics remain elusive. Due to the apparent

right-left and flexor-extensor alternation, it has often been proposed that distinct groups of in-

terneurons, or ‘modules’, are active in a push-pull fashion and that the rhythm is ensured by

cellular pacemaker properties (4, 5). It is unknown if and how such organization and different

motor programs are manifested in ensemble activity of spinal networks.

Here, we examined the activity in spinal motor networks using extracellular multi-electrode

recording in the turtle lumbar spinal cord. This preparation provides mechanical stability, which

allows simultaneous monitoring of large numbers of spinal interneurons in laminae VII-VIII

and motoneurons during the execution of various rhythmic motor programs (6–8). The activity

of individual neurons was rhythmic in relation to the nerves as expected, but the population

activity as a whole appeared rather incomprehensible (Fig. 1A-C). However, when sorting

these neurons according to phase of the motor nerve output we found that the population activity

resembled a continuous sequence, that covered all phases of the cycle (Fig. 1D-E). To better

understand the sequential activity, we performed a principal component analysis (PCA) of both

the neuronal population and the nerve activity. Both the neuronal activity and 6 motor nerves

followed a low-dimensional manifold, i.e. most variance was explained by few components

(Fig. 1D). Whereas the nerve activity appeared entangled, the neuronal activity had a simple

rotation (Fig. 1F). Rotational population activity was observed in all trials and across animals

(Fig. S1-2, Movie S1).
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Figure 1: Neuronal population activity in the lumbar spinal cord has rotational dynam-
ics. (A) Activity of 3 selected motor nerves (ENG) during rhythmic hindlimb movement. (B)
Concurrent ensemble activity in the turtle lumbar spinal cord as raster of spinal neurons (top,
n=214) and estimated firing rates (bottom). (C) Sorting the neurons in (B) according to phase
(hip flexor) reveals sequential activity. (D) First principal components explains most variance
of ENG activity (green) and neuronal ensemble activity (gray). First two principal components
of nerve activity (E) and neuronal population (F).

These data indicate that, rather than alternation, the neuronal population is executing a ”ro-

tation”, i.e. the ensemble is cycling through all phases. There did not seem to be any discrete

phase preference as otherwise expected in an alternating modular network (Fig. S1-2). Ro-

tational dynamics has been observed in the motor cortex and elsewhere (9–11), but it has not

been described for spinal circuits previously. Nevertheless, indications can be found as wide

phase-distributions in the scarce literature on spinal population recordings (6, 12–14).

Because conventional CPG models, that are founded on a push-pull organization with in-

trinsically rhythmic modules (15, 16), do not readily explain rotational dynamics, we sought to

conceive a new theory that can accounts for this and other open questions in motor control. In

particular, the mechanisms for generation of rhythms have remained nebulous. Cellular pace-
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maker properties has been suggested (4), but decades of research has not been able to pinpoint a

responsible cell type (16). Here, we propose that the rhythm arises from the network rather via

cellular properties. We show that a network, which is close to the transition point of dynamical

instability, can have rhythmogenetic properties without requiring specific cellular properties.

Since the CPG network structure is unknown, our starting point is a parsimonious structure,

where glutamatergic neurons are randomly and recurrently connected. To prevent catastrophic

run-away activity (17, 18) the excitation (E) is balanced by recurrent glycinergic inhibition (I)

(Fig. 2A-B), in line with reports of balanced synaptic input in various motor circuits (19–21).

Balanced networks of this type are known to undergo a phase transition when synaptic weights

are increased beyond a critical value (22, 23). For large networks, activity in this regime is

chaotic (24), whereas finite-sized networks in a dynamical regime close to the transition point

may display more regular activity (25). A linearization of the dynamics close to this point (Sup-

plementary material) shows that finitely-sized networks can generate oscillatory activity if the

leading eigenvalue of the connectivity matrix has a non-zero imaginary part (25). Based on

this idea, we set up a model network of rate-neurons with sparse connectivity where an input

drive, e.g. sensory-related or descending from the brain, could move the eigenvalues of the

connectivity matrix across the stability line due to change in set-point of the firing-rate function

(Fig. 2C-D). As the input was increased beyond a critical level (dashed line) the firing rates

in the network displayed self-sustained rhythmic activity (Fig 2E). Unexpectedly, when sorting

the neurons according to phase, a sequential activity was revealed, i.e. a rotation, similar to the

experimental observations (Fig. 2F-G). We dub the model the ”Balanced Sequence Generator”

(BSG). Both the BSG-model and the experimentally observed rotation are fundamentally differ-

ent from conventional models where the neurons have clustered phase preferences and modules

composed exclusively of excitatory neurons.

To model the output nerve activity from the BSG-network we connected a subset of neurons
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Figure 2: Rotational dynamics emerges in the BSG-model. (A) Sketch of the BSG-model:
An input drive activates a recurrent network with excitatory (blue) and inhibitory (green) neu-
rons. A subset of cells provides motor output. (B) Connectivity matrix has 50% excitation
and inhibition. (C) The firing rate is increased by a common drive (arrow) causing the eigen-
value spectrum to expand (purple vs. gray, D) and cross the stability line (broken red line)
and thus generate a network oscillation. (E) Input (top) and firing rates of 5 neurons (bottom).
(F) Sequential activity revealed by sorting according to phase, similar to experiments. (G) The
ensemble PCs exhibit rotation. (H) Flexor/extensors innervated by anti-phase neurons in the
strongest eigenmode (blue/gray) (I). (J) Increasing drive (a–c) ramps up ensemble activity (K)
and nerve output (bottom). (L) Higher firing rates are associated with larger radius of rotation
in PC-space. (M) Correlation between radius, drive and nerve output. (N) Experimental verifi-
cation: Trials a, b and c with different nerve output and radius (P, color-matched). (O) Nerve
amplitude (RMS±SE of 6 nerves) vs. radius of rotation (RMS of PC1 and 2). (O) Wilcoxon
test, Linear regression, ∗∗ : p < 0.01, F-statistics.

based on their phase in the dominant eigenmode to pools of motor neurons to provide the ap-

propriate nerve activity (Fig. 2H). This resulted in an alternating nerve output in resemblance

with experiments (Fig. 2I). Next, we investigated what the behavior of excitatory and inhibitory

populations are during the rotation. It turns out that both the E- and I-populations themselves

undergo rotation (Fig. S3). These results demonstrate that rotational dynamics can arise in re-

markably simple networks without fine-tuning of parameters and result in an alternating nerve

output, in line with our experimental findings. Although proprioceptive feedback from muscles

and their reflexive circuitry were not included in the BSG-model, these are expected to improve

the performance.
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Next, we evaluated whether the BSG-model could embrace previously unsolved issues, such

as independent control of force and speed of the rhythm. The ability to modulate the strength

of the output and speed is key for volitional control, but no mechanisms has been proposed for

controlling these independently to our knowledge. First, we found that collective modulation of

the gain by an input drive could indeed control the amplitude in the BSG-model (Fig. 2J-K).

As the amplitude increased so did the radius of rotation, while the frequency and sequence re-

mained largely unaltered (Fig. 2L-M, S4). To verify this prediction we inspected experimental

trials that, due to the inherent variability, had various radii of rotation (Fig. 2N, S1c). The

radius of rotation had substantial correlation with the motor nerve activity (Fig. 2O, S5), which

provide support for such muscular control in the BSG-model.

Next, we explored the capacity of the BSG-model to control the period of the rhythm. Rather

than collectively adjusting the gain, modulation of the frequency without affecting the amplitude

was indeed possible by selective gain-modulation (Fig. 3). Individual gain-modulation is a

powerful tool in network control (26) and here we tuned a subset of neurons that has most

influence on the period. A systematic perturbation of gain revealed an uneven influence on

the rhythm (Fig. 3A-F). Some neurons had a strong either positive or negative effect, which

we call ”brake-” and ”speed cells”, respectively, while others had small effects. There were

both inhibitory and excitatory neurons among both the speed- and the brake cells (Fig. 3G-H).

Interestingly, cells with a speed-modulating capacity have been demonstrated experimentally

(27,28). Since both excitatory and inhibitory members were found among the brake- and speed

cell categories in our model, we propose this as an experimental prediction. The modulation

capacity is not due to cellular properties, but rather their location in the network. A possible

link between the network location, cell identity, and speed control remains to be assessed.

The ability to execute multiple motor outputs, i.e. a multifunctional output, is the hallmark

of the motor system (29). Contriving a network model that can accommodate the rich reper-
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Figure 3: Modulation of frequency in the BSG-model. (A) Adjusting the drive to a neuron
changes the rhythm by moving the eigenvalue up or down (green arrows). (B) Capacity to
modulate the rhythm by an individual neuron is assessed by changing drive (gain). Ranking
neurons accordingly reveals ”brake-” and ”speed cells”. (C) When activating brake cells while
impeding speed cells (activation profile, top left), the rhythm is slowed down compared with
neutral (D). Sorted ensemble activity (middle) and nerve output (bottom). Radius of rotation is
largely unchanged (PCs top right) indicating a similar amplitude of motor output. (E) Reversed
activation results in faster rhythm (9 Hz). (F) Gradually modulating the speed/brake cells (inset)
can either decrease or increase frequency. (G) Capacity to modulate the rhythm has a bell-
shaped distribution. Brake and speed cells represent cells with strong modulation capacity, in
which, both excitatory and inhibitory cells are found. (H) Modulating only excitatory (gray) or
inhibitory (orange) cells is sufficient to modulate the frequency.
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toire of motor behaviors has so far been a major challenge. For this reason, we explored the

potential of generating multiple motor patterns by selective activation within the BSG-network.

We used two well-known motor behaviors in turtles and investigated these both experimentally

and in the model. These behaviors consist of hind limb movements, where either the knee is

protracted while moving the foot in small circles (pocket scratching) or protracting the foot

with stretched leg (rostral scratching) (30). Indeed, the BSG-model was able to produce quali-

tatively similar patterns. This was accomplished by identifying two distinct neuronal input sets

for gain-modulation in the network (Fig. 4A-B). A small group of output neurons drive the

motor neurons and the consequent movement was induced (Fig. 4C). The output of behav-

ior 1 had knee/hip extensors in phase (‘no shift’, Fig. 4D), whereas the second input pattern

ensured the required phase-shift (Fig. 4E). Interestingly, in spite of the difference in motor

output, the network patterns had marginal visual differences in both behaviors (cf. Fig 4D-E,

Movie S2). The neuronal phase-preference during the two behaviors were broadly scatter near

the unity line (Fig. 4F), which indicates that many neurons kept their timing in the sequence.

Roughly half of the neurons had a change in phase of less than ±45o (48.5 %) (Fig. 4G-H).

These observation were qualitatively similar to experimental observations, where the sequential

activation, although not identical, remained during the two behaviors (Fig. 4I-M). We further

tested whether other distinct motor patterns could be evoked in the BSG-model. A plethora of

patterns or ”gaits” could be induced via different activation profiles, with a diversity conspicu-

ously similar to the diversity of real motor patterns (Fig. S7-8). Generation of a desired motor

pattern is a quest of finding the appropriate combination of neurons to modulate. We suggest

this to be accomplished in trial-and-error-based motor learning.

In this report, we present compelling evidence that, rather than exhibiting push-pull activity,

the spinal motor circuitry performs rotation. This is a low-dimensional dynamics, where the

population continuously cycles through all phases and the radius of rotation correlates with the
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Figure 4: Multifunctionalism in model and experiment. (A) Hindlimb movement is quan-
tified using the hip and knee angles. (B) Two distinct motor behaviors (pocket- and rostral
scratching) are evoked in BSG-model by distinct input profiles (left inset) of neuronal subsets.
(C) The evoked motor patterns (top: pocket, bottom: rostral) translated to limb trajectory (left,
brown) and joint angles (right, hip and knee). (D-E) associated ensemble activity are not iden-
tical, but have resemblance, although their motor patterns are qualitatively distinct (’no shift’
vs. ’shift’ in shaded region). (F) Phase (φ) of neurons in behavior 1 vs. behavior 2 with respect
to hip flexor scatter around the unity line, shown ±45o. (G) Phase difference (∆φ) in polar
histogram. Orange line indicates ±45o. (H) Neuronal fraction with ∆φ < ±45o (dark), ±90o

(green) and the rest (light brown). (I-M) Experimental results in similar arrangement as (D-H)
and similar motor behaviors. (A) modified from (30) with permission.
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intended muscular force. The sequence involved in one behavior is similar to that of a different

behavior (Fig. 4, S7-8). These aspects of motor control have not previously been considered,

and to explain these we had to develop a new theory, the ‘Balanced Sequence Generator’. The

hallmark is sequential activity in a balanced network, which is induced by tonic input from

e.g. descending commands or sensory input. Interestingly, if the drive is brief or targeted,

the model network could also generate non-rhythmic movement sequences, such as stroking

a tennis ball or kicking a soccer ball. Hence, this theory could provide an important bridge

between the motor circuits for rhythmic movement with those for non-rhythmic sequences,

that has previously been absent. We predict such non-rhythmic movements to be generated

by a single cycle of neural rotation, which is sculpted by selective gain modulation the spinal

network via descending commands from the brain or via sensory input.
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