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ABSTRACT

Although the generation of movements is a fundamental function of the nervous system, the underlying neural principles remain
unclear. Since flexor- and extensor-muscles alternate during rhythmic movements like walking, it is often assumed that the
responsible neural circuitry is similarly displaying alternating activity. Here, we present ensemble-recordings of neurons in
the lumbar spinal cord that indicate that, rather than alternating, the population is performing a low-dimensional "rotation" in
neural space, in which the neural activity is cycling through all phases continuously during the rhythmic behavior. The radius of
rotation correlates with the intended muscle force and a perturbation of the low-dimensional trajectory can modify the motor
behavior. Since existing models of spinal motor control offer an inadequate explanation of rotation, we propose a new theory of
neural generation of movements from which this and other unresolved issues, such as speed regulation, force control, and
multi-functionalism, are readily explained.

Main
The neural circuitry behind movement encompasses several distinct forebrain regions, cerebellum and the brainstem. The core
executive circuits for movement such as locomotion, however, reside in the spinal cord1. These spinal motor circuits, often
referred to as central pattern generators (CPGs), are capable of autonomous generation of rhythmic coordination of muscles.
Although great progress has been made in characterizing the cellular properties of spinal inter- and motor neurons, including
their genetic lineages2, 3, the detailed network architecture as well as the associated neuronal ensemble dynamics remain elusive.
Due to the apparent right-left and flexor-extensor alternation, it has often been proposed that distinct groups of interneurons, or
‘modules’, are active in a push-pull fashion and that the rhythm is ensured by cellular pacemaker properties4, 5. It is unknown if
and how such organization and different motor programs are manifested in ensemble activity of spinal networks.

Rotation in spinal motor circuits
Here, we examined the activity in spinal motor networks using extracellular multi-electrode recording in the turtle lumbar
spinal cord. This preparation provided mechanical stability, which allowed simultaneous monitoring of large numbers of spinal
interneurons in laminae VII-VIII and motoneurons during the execution of various rhythmic motor programs6–8. As expected,
the activity of individual neurons was rhythmic in relation to the nerves, but the population activity as a whole appeared rather
incomprehensible (Fig. 1a-b). However, when sorting these neurons according to phase of the motor nerve output we found
that the population activity resembled a continuous sequence, that covered all phases of the cycle (Fig. 1c). To better understand
the sequential activity, we performed a principal component analysis (PCA) of both the neuronal population and the nerve
activity. Both the neuronal activity and the 6 motor nerves followed a low-dimensional manifold, i.e. most variance was
explained by few components (Fig. 1d). Whereas the nerve activity appeared entangled, the neuronal activity had a simple
rotation (Fig. 1e-f). Rotational population activity was independent on the sorting and it was observed in all trials and across
animals (Extended data Fig. 1-2, Supplementary Video 1). To quantify this distinction further, we applied a previously
defined metric9, that quantifies the "tangling" of neural trajectories, i.e. the degree to which points along the trajectory are
close to each other, but move in different directions. We found the tangling to be larger for the muscle trajectories than the
neuronal trajectories in the majority of the time (>96.3%), which was consistent across data sets (Extended Data Fig. 3).
Since the tangling for rotational trajectories is lower than for trajectories with points that are close to each other and moving
in opposite direction, as would be the case for alternating activity (Extended data Fig. 1a), these data are consistent with a
neuronal population that is executing a rotation. There did not seem to be any discrete phase preference as otherwise expected
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Fig. 1. | Neuronal population activity in the lumbar spinal cord has rotational dynamics. a, Activity of 3 selected motor
nerves (ENG) during rhythmic hindlimb scratching movement. b, Concurrent ensemble activity in the turtle lumbar spinal cord
as raster of spinal neurons (top, n=214) and estimated firing rates (bottom). c, Sorting the neurons in (b) according to phase
(hip flexor) reveals sequential activity. d, First principal components explains most variance of ENG activity (green) and
neuronal ensemble activity (gray). First two principal components of nerve activity, e, and neuronal population, f. Tangling of
the nerve was higher than the network in 96% of the time.

in an alternating modular network (Extended data Fig. 1-3). Rotational dynamics has been observed in the motor cortex and
elsewhere10–12, but it has not been described for spinal circuits previously. Nevertheless, indications can be found as wide
phase-distributions in the scarce literature on spinal population recordings6, 13–15.

New theory to explain rotation and central pattern generation
Because conventional CPG theories, that are founded on a push-pull organization with intrinsically rhythmic modules16, 17, do
not readily explain rotational dynamics, we sought to explore a new theory that can account for this and other open questions in
spinal motor control. In particular, the mechanisms for generation of rhythms have remained nebulous. Cellular pacemaker
properties has been suggested4, but decades of research has not been able to pinpoint a responsible cell type17. Here, we propose
that the rhythm arises as a network oscillation rather than via cellular properties. It is well known that a network which is close
to the transition point of dynamical instability, can have rhythmogenic properties without requiring specific cellular properties18.
Since the CPG network structure is unknown, we parsimoniously assumed a structure, where glutamatergic neurons were
randomly and recurrently connected. To prevent catastrophic run-away activity19, 20 the excitation (E) was balanced by recurrent
glycinergic inhibition (I) (Fig. 2a-b), in line with reports of balanced synaptic input in various motor circuits21–23. Balanced
networks of this type are known to undergo a phase transition when synaptic weights are increased beyond a critical value24, 25.
For large networks, activity in this regime is chaotic26, whereas finite-sized networks in a dynamical regime close to the
transition point may display more regular activity27. A linearization of the dynamics close to this point (see Mathematical Note,
Supplementary information) demonstrates that finitely-sized networks can generate oscillatory activity if the leading eigenvalue
of the connectivity matrix has a non-zero imaginary part27. Based on this idea, we set up a model network of rate-neurons
with sparse connectivity where an external input, in the form of a synaptic drive (e.g. sensory-related or descending from
the brain), could move the eigenvalues of the connectivity matrix across the stability line due to change in set-point of the
firing-rate function (Fig. 2c-d). A second type of input that modulates the gain of individual neurons28 was also included to
provide a mechanism to modify the network state. As the network received a sustained synaptic input, some of the eigenvalues
moved beyond a critical level (red dashed line) which caused firing rates in the network to display self-sustained rhythmic
activity (Fig 2d-e). When sorting the neurons according to phase, a sequential activity was revealed, i.e. a rotation, similar to
the experimental observations (Fig. 2f-g). We refer to a network in this state as a balanced sequence generator (BSG). Both
the BSG-model and the experimentally observed rotation are fundamentally different from conventional models, which are
founded on alternation where the neurons have clustered phase preferences and belong to modules composed exclusively of
either excitatory or inhibitory neurons.
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Fig. 2. | Rotational dynamics emerges in the BSG-model. a, Sketch of the BSG-model: An input drive activates a recurrent
network with excitatory (blue) and inhibitory (red) neurons. The network can both receive synaptic input and gain-modulation.
A subset of cells provides motor output. b, Connectivity matrix has 50% excitation and inhibition. c, The firing rate is
increased by synaptic input (bottom arrow). This causes the eigenvalue spectrum to expand (purple vs. gray, d) and cross the
stability line (broken red line) and thus generate a network oscillation. A gain modulation results in a change in slope (blue line
and arrow, c). e, Input (top) and firing rates of 5 neurons (bottom). f, Sequential activity revealed by sorting according to phase,
similar to experiments. g, Projection of the population firing rates on the two first PCs reveals a rotation. h, Model nerve output
displays alternating activity. i Flexor/extensor nerves are innervated by anti-phase excitatory neurons in the strongest
eigenmode (blue/gray).

To model the output nerve activity from the BSG-model we connected a subset of neurons based on their phase in the
dominant eigenmode to pools of motor neurons to provide the appropriate nerve activity. This resulted in an alternating
nerve output in resemblance with experiments (Fig. 2h-i, Supplementary Video 2). Next, we investigated the activity of
the excitatory and inhibitory populations during the motor program in the BSG-model. It turned out that both the E- and
I-populations themselves display similar sequences as the combined population activity (Extended data Fig. 4). These results
demonstrate that rotational dynamics can arise in simple networks without fine-tuning of parameters and result in an alternating
nerve output, in line with our experimental findings (Supplementary Video 2). Although proprioceptive feedback from muscles
and their reflexive circuitry were not included in the BSG-model, we expect these to improve the performance by stabilizing the
rhythmic activity.

Control of force and period
Next, we evaluated whether the BSG-model could explain previously unsolved issues, such as independent control of force
and speed of the movement. The ability to modulate the strength of the output and speed is key for volitional control but, to
our knowledge, no mechanisms has been proposed for controlling these independently. To investigate these aspects in the
model, we used gain modulation, i.e. the slope, (Fig. 2c) of the neuronal firing-rate function around the working point set by
the external input28. First, we found that collective (uniform) modulation of the gain by an input drive could indeed control
the amplitude in the BSG-model (Fig. 3a-c). As the amplitude increased so did the radius of rotation, while the frequency
and sequence remained largely unaltered (Extended data fig. 5). To verify this prediction experimentally we inspected trials
that, due to an inherent variability, had various radii of rotation (Fig. 3e, Extended data figure 1c). The radius of rotation had
substantial correlation with the motor nerve activity (Fig. 3f-g, Extended data figure 6), in line with the predictions from the
BSG-model and the proposed mechanism for amplitude control.

Next, we explored if the BSG-model could control the period of the rhythm and thereby the speed of movement execution.
Rather than collectively adjusting the neuronal gain in the network, we found that selective gain-modulation could alter
the frequency of the population activity without affecting the amplitude (Fig. 4). Individual gain-modulation is a powerful
tool in network control28 and here we systematically tuned the neuronal gain to identify a subset of neurons that had most
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Fig. 3. | Network control of amplitude in the BSG-model. a, Increasing the common gain in the network (A–C) ramps up
ensemble activity, b, and nerve output (bottom). c, Higher firing rates are associated with larger radius of rotation in PC-space
(color-matched with levels A–C). d, Correlation between radius, gain and nerve output. e, Experimental verification: Trials 1, 2
and 3 with different nerve output and radius (f, color-matched). g, nerve amplitude (RMS±SE of 6 nerves) vs. radius of
rotation (RMS of PC1 and 2). g, Wilcoxon test, Linear regression, ∗∗ : p < 0.01, F-statistics.

influence on the period (Fig. 4a-f). Some neurons had a strong either positive or negative effect, which we call "brake-" and
"speed cells", respectively, while others had small effects on the rhythm. There were both inhibitory and excitatory neurons
among both the speed- and the brake cells (Fig. 4g-h). Interestingly, cells with a speed-modulating capacity have been
demonstrated experimentally29, 30. However, since both excitatory and inhibitory neurons were found among the brake- and
speed cell categories in our model, an experimentally testable predication would be that also inhibitory neurons can have similar
speed-modulating effects. The modulation capacity of individual neurons in the model is not due to their cellular properties, but
rather their specific location in the network structure. A possible link between the network location, cell identity, and speed
control remains to be assessed.

Population activity of multiple motor programs
The ability to execute multiple motor behaviors, i.e. a multifunctional output, is the hallmark of the motor system31, 32. Although
cortical network models have already been demonstrated to generate multifunctional output33, 34, contriving a model within the
conventional framework of spinal motor circuits that can accommodate the rich repertoire of behaviors has so far been a major
challenge. Here, we focused on two well-known motor behaviors in the turtle and investigated these both experimentally and
in the model. These behaviors consist of hind limb movements, where either the knee is protracted while moving the foot in
small circles (pocket scratching) or protracting the foot with a stretched leg (rostral scratching)35. We hypothesized that this
multi-functional activity is caused by a perturbation of the rotational dynamics that in turn switches the phases of the resulting
motor nerve outputs. To test this idea in the BSG-model we identified two subsets of neurons for which two distinct sets of
gain-modulation ("gain-profiles", Fig. 5a-b, Supplementary Video 3) caused a moderate change in the phase preference
of individual neurons. A comparison of the resulting neuronal phase-preferences between the two behaviors indicated that
many of the neurons kept their timing in the sequence (Fig. 5f-g). We then optimized a set of read-out weights to drive motor
nerve activity that caused a phase-shift of the hip angle between the two behaviors (Fig. 5c). In the resulting simulation the
nerve output of behavior 1 had knee/hip extensors in phase (‘no shift’, Fig. 5d), whereas the second input pattern caused
the phase of the hip extensor (and flexor) to change in relation to the knee extensor (Fig. 5e). Despite the marginal visual
differences in population activity between the two behaviors (cf. Fig 5d-e, Supplementary Video 3), the network generated
markedly different motor outputs. Using PCA, we found that the switch between behaviors was associated with a change of the
low-dimensional subspace of the rotational dynamics. When projecting the population activity of behavior 2 onto the principal
components (PCs) for behavior 1 (red) the rotational dynamics had a smaller variance compared to the variance of behavior 1
(black) (Fig. 5h). However, a comparison with the variance of the projection of the "native" PCs of behavior 2 (not shown)
showed that this was not due to a markedly lower variance of behavior 2 compared to behavior 1, but instead that a fraction

4/10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2022. ; https://doi.org/10.1101/2021.08.31.458405doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.31.458405
http://creativecommons.org/licenses/by/4.0/


Fig. 4. | Modulation of period in the BSG-model. a, Adjusting the the neuronal gain neuron the rhythm by moving the
eigenvalue up or down (green arrows). b, Capacity to modulate the rhythm by an individual neuron is assessed by changing its
gain. Ranking neurons accordingly reveals "brake-" and "speed cells". c, When activating brake cells while impeding speed
cells (gain profile, top left), the rhythm is slowed down compared with neutral, d. Sorted ensemble activity (middle) and nerve
output (bottom). Radius of rotation is largely unchanged (PCs top right) indicating a similar amplitude of motor output. e,
Reversed activation results in faster rhythm (0.9 Hz). f, Gradually modulating the speed/brake cells (inset) can either decrease
or increase frequency. g, Capacity to modulate the rhythm has a bell-shaped distribution. Brake and speed cells represent cells
with strong modulation capacity, in which, both excitatory and inhibitory cells are found. h, Modulating only excitatory (gray)
or inhibitory (orange) cells is sufficient to change the frequency.
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of the variance was in another subspace. By computing the ratio between variance explained in these two subspaces36 we
quantified the subspace overlap between the two behaviors to be 0.49. These model results were qualitatively similar to the
experimental data, where the sequential activation, although not identical, remained during the two behaviors (Fig. 5i-m). The
subspace overlap here was 0.34 (Fig. 5m). Similar trend was seen across trials, behaviors and data sets (Extended Data Fig.
7). Finally, we tested whether other distinct motor patterns could be evoked in the BSG-model. A plethora of patterns or "gaits"
could be induced via different gain profiles, with similar diversity to that of real motor patterns (Extended Data Fig. 8-9). This
suggests that activating a spinal network to generate a desired motor pattern in general translates to finding the appropriate
combination of neurons to modulate, e.g. by trial-and-error-based motor learning37.

Discussion
We have presented evidence that, rather than exhibiting alternating activity, the spinal network behind rhythmic movement
displays low-dimensional dynamics that can be described as a rotation in neural space. During motor programs, the spinal
population activity continuously cycles through all phases, while the resulting nerve activity is alternating (Fig. 1). Using
computational modeling, we have shown that the core function of a spinal CPG, i.e. to convert a constant input to a rhythmic
motor output, can be achieved by a simple balanced network that undergoes a transition to an oscillatory state. The alternating
nerve activity is then obtained by a read-out from certain phases of the rotational population activity (Fig. 2). This model stands
in contrast to conventional CPG theories that rely on cellular properties for rhythm generation and a modular hierarchy for
pattern generation4, 5.

It is important to note, however, that our theory does not exclude the role of specific cell types2, e.g. for left-right
coordination or speed control29, 30 and that cell-type specific connectivity could be included in the model to gain a theoretical
understanding of its effect on resulting neural dynamics38. The BSG-model has all phases represented evenly in the population,
which is a result of the simplified random connectivity (Fig. 2b). However, skewed phase representation could be achieved
by including more structured connectivity, such as variable degrees of convergence and divergence while keeping the E/I
balance. Experimental investigation of such architectures would require monitoring larger fractions of the network. Similarly,
the role of intrinsic cellular properties, e.g. non-linear adaptation, could be included to elucidate their role in shaping network
oscillations27.

This theory also offers an explanation of "deletions", during which nerve burst are missing while the overall rhythmic
pattern continues (Extended data fig. 10). A temporary disturbance of the rotational dynamics, which is large enough to bring
the neural trajectory below the threshold for eliciting a nerve response, is sufficient to constitute a deletion (Extended data
fig. 11-13). This suggests that a separation of spinal rhythm- and pattern-generating layers, as previously proposed5, is not
necessary to account for deletions.

The ability to generate multiple movement patterns has already been studied for cortical networks25, 28, 33, 34, but the issue
of multifunctionality in spinal motor networks has remained an open question. In our model, we explored a mechanism to
generate multiple rhythmic motor patterns in the same spinal network by gain modulation of a subset of neurons in the network.
Such subset modulation could be accomplished by cellular nodes that distribute sparse input to a larger population, as has been
observed for spinal motor synergy encoders39.

Our theory could also be extended to account for non-rhythmic sequences by using a brief and targeted input drive, hence
generating a single cycle of neural rotation, sculpted by selective gain modulation in the spinal network via descending
commands from the brain. This could provide an important bridge between the motor circuits for rhythmic movement with
those for non-rhythmic sequences, which is currently missing.
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Fig. 5. | Multifunctionalism in model and experiment. a, hindlimb movement is quantified using the hip and knee angles. b,
two distinct motor behaviors (pocket- and rostral scratching) are evoked in BSG-model by distinct gain profiles (left inset) of
neuronal subsets. c, the evoked motor patterns (top: pocket, bottom: rostral) translated to limb trajectory (left, brown) and joint
angles (right, hip and knee). d-e, associated ensemble activity are not identical, but have resemblance, although their motor
patterns are qualitatively distinct (’no shift’ vs. ’shift’ in shaded region). f, phase (φ ) of neurons in behavior 1 vs. behavior 2
with respect to hip flexor scatter around the unity line, shown ±45o. g, phase difference (∆φ ) in polar histogram. Orange line
indicates ±45o. h, Projection of behaviour 1 (black) and 2 (red) on the PCs of behaviour 1. Projection of behavior 2 (red) onto
the subspace of behavior 1 had an overlap of 0.49 compared to its native representation36 using 3 PCs. i-m, experimental
results in similar arrangement as (d-h) and similar motor behaviors. Projection of behavior 2 (red) onto the subspace of
behavior 1 had an overlap of 0.34 compared to its native representation. (a) modified from35 with permission.
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