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ABSTRACT 
 Ionizable residues can release and take up protons and this has an influence on protein 
structure and function. The extent of protonation is linked to the overall pH of the solution and the 
local environments of ionizable residues. Binding or unbinding of a single proton generates a 
distinct charge microstate defined by a specific pattern of charges. Accordingly, the overall 
partition function is a sum over all charge microstates and Boltzmann weights of all conformations 
associated with each of the charge microstates. This ensemble-of-ensembles description recast as 
a q-canonical ensemble allows us to analyze and interpret potentiometric titrations that provide 
information regarding net charge as a function of pH. In the q-canonical ensemble, charge 
microstates are grouped into mesostates where each mesostate is a collection of microstates of the 
same net charge. Here, we show that leveraging the structure of the q-canonical ensemble allows 
us to decouple contributions of net proton binding and release from proton arrangement and 
conformational considerations. Through application of the q-canonical formalism to analyze 
potentiometric measurements of net charge in proteins with repetitive patterns of Lys and Glu 
residues, we are able to determine the underlying mesostate pKa values and, more importantly, we 
estimate relative mesostate populations as a function of pH. This is a strength of using the q-
canonical approach and cannot be obtained using purely site-specific analyses. Overall, our work 
shows how measurements of charge equilibria, decoupled from measurements of conformational 
equilibria, and analyzed using the framework of the q-canonical ensemble, provide protein-specific 
quantitative descriptions of pH-dependent populations of mesostates. This method is of direct 
relevance for measuring and understanding how different charge states contribute to 
conformational, binding, and phase equilibria of proteins.  

STATEMENT OF SIGNIFICANCE 
The net charge of a protein in solution is governed by the overall pH as well as context and 

conformational contexts. Measurements of net charge are accessible via techniques such as 
potentiometry that quantify the buffering capacity of a protein solution. Here, we use the formal 
structure of the q-canonical ensemble to identify charge states that are compatible with a measured 
net charge profile as a function of pH. Our approach highlights how measurements of charge, 
decoupled from measurements of conformation, can be used to identify the ensembles of charge 
states that contribute to the overall population for given solution conditions. The methods 
introduced will be useful for measuring charge states and interpreting these measurements in 
different contexts.  

INTRODUCTION 
 Ionizable residues make key contributions to protein structure and function (1-6). They 
influence protein stability, solubility, and interactions mediated by the surfaces of the folded states 
of proteins (7-15), specifically in active sites of enzymes (16-18). Ionizable residues also feature 
prominently in intrinsically disordered proteins (IDPs) (19, 20). Several studies have documented 
the important contributions made by ionizable residues to conformational (21-26), binding (27-
33), and phase equilibria of IDPs (34-42).  

 The charge states of ionizable residues can be regulated or altered through a variety of 
mechanisms that are collectively known as charge regulation (43-45). Active processes enable 
charge regulation through enzyme catalyzed reactions that enable post-translational modifications 
(46) such as lysine acetylation (47), arginine citrullination (48), serine / threonine / tyrosine 
phosphorylation (49-51), and deamidation of asparagine / glutamine (52). In addition to enzyme 
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catalyzed charge regulation, the charge states of ionizable residues can also be altered by 
spontaneous processes such as binding or release of protons (2, 3, 7, 53-59), and the preferential 
accumulation or exclusion of solution ions around regions of high charge density (60-67).  

 Charge regulation via proton uptake or release is influenced by a combination of 
sequence contexts, solution conditions, and the linked effects of conformational equilibria (68, 
69). Importantly, multiple charge states are accessible depending on solution conditions. As a 
result, each protein sequence is an ensemble of charge microstates, with each microstate being a 
distinct sequence defined by the charge states of ionizable residues. We recently introduced the q-
canonical ensemble to describe ensembles of charge microstates and conformations associated 
with each of the microstates (70). The structure of the q-canonical ensemble, see Figure 1, is as 
follows: We consider a protein sequence comprising nq ionizable residues, Nfixed atoms that do not 

change with protonation / deprotonation, and a net charge of q when  protons are bound to the 

protein sequence. If there are  ways in which  protons can be bound, then there 

are gq distinct charge microstates for a net charge of q. At temperature T, in a solution volume V, 
each charge microstate i with net charge q will access a canonical ensemble of conformations. For 
this ensemble, the partition function is written as: 

 ; (1) 

Summing over the gq ways in which when protons can be bound leads to a sum over canonical 

partition functions written as:  

 ; (2) 

The partition function, written as the sum over the different numbers of protons can be bound 

becomes: 

 ; (3) 

The states summed over in equation (3) are the set of conformations accessible for each charge 
microstate, with the outer two summations running over all possible microstates. The partition 
function X describes the q-canonical ensemble. Next, we rewrite X to account for the chemical 
potential of the proton, which is defined by the pH of the solution. Accounting for pH, X becomes: 

 ; (4) 

The conformational ensemble for each charge microstate contributes to , and the sum 
over all microstates with a charge q, which we refer to as a charge mesostate, contributes to wq. A 
mesostate is made up of all charge microstates that have the same net charge, and the sum over q 
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is a sum over all mesostates. Accordingly, we rewrite the sum over q as a sum over mesostates 
such that the probability that the protein of interest will have a charge q at a given pH can be 
written as pq, and this is computed as: 

 ; (5) 

Given this formalism, the net charge as a function of pH can be written as: 

 ; (6) 

Note that  is the probability associated with mesostate i that has charge qi. Potentiometric 

measurements provide a direct readout of net charge as a function of pH. Here, we present a new 
approach to analyzing potentiometric data that is based on using equation (6) to describe these 
data. Our approach relies on the structure of the q-canonical ensemble, which allows for a formal 
decoupling of measurements of charge from measurements of structure. This is achieved by 

estimating the mesostate weights  from potentiometric measurements using a Monte 

Carlo based fitting procedure. This information can be subsequently combined with simulations 
as well as measurements of conformational averages or populations, performed as a function of 
pH, to identify the microstates that contribute most significantly to a mesostate. The key point is 
that subsequent computations of microstate probabilities and conformational distributions can be 

constrained by the values for  that we obtain using potentiometric measurements.   

 In the following sections, we summarize the challenges posed by acid-base equilibria of 
proteins with multiple ionizable residues. Such systems are referred to as polyacids (54, 71-74). 
We then describe how the q-canonical formalism can be interfaced with potentiometric 
measurements (75-77). This is followed by a presentation of our results from application of the q-
canonical formalism to analyze potentiometry data for three model systems that are repeats of Lys 
and Glu. We conclude with a discussion of the broader implications of our findings, the general 
use of our approach, and the insights that should be forthcoming through joint use of the q-
canonical ensemble, conformational sampling, and separate measurements of proton binding and 
conformational equilibria.  

THEORY 
 Acid-base equilibria for polyacids: For a sequence with n ionizable residues, there are, 
in theory, 2n distinct charge microstates to consider. However, for sequences that are mixtures of 
acids and bases, the number of thermodynamically relevant charge microstates can be significantly 
reduced by eliminating forbidden states (70). Any microstate that involves the coexistence of 
neutral versions of acidic and basic residues can, to first approximation, be ignored as forbidden 
microstates. This is because the intrinsic pKa values are such that the protonation of acids and 
deprotonation of bases are unlikely to occur simultaneously. Classification of microstates as being 
forbidden and ignoring these in subsequent calculations does not materially alter the estimated 
partition function (70). Following the pruning of forbidden microstates, the number of 
thermodynamically relevant charge microstates is designated as Ωmicro. Even with pruning to 
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eliminate forbidden microstates, Ωmicro will increase exponentially with the number of ionizable 
residues n (Figure S1). Comparative descriptions of acid-base equilibria for simple systems vs. 
polyacids shows how the large number of charge microstates must be accounted for when 
assessing pH-dependent titrations for polyacids.  

 For a monoacid such as a single glutamic acid, the pKa is defined for the reaction 

. Here, e and E, respectively denote the protonated and deprotonated versions of 
Glu, and H+ refers to the proton that is released upon deprotonation. The standard state ionization 

free energy is: . The picture becomes more complicated 

for polyacids because of the increase in the number of reactions that involve the loss of a proton 
(78). To illustrate this point, we consider the case of ac-(Glu)2-nme, where ac and nme, 
respectively refer to N-acetyl and N´-methylamide. There are four separate reactions that involve 
the loss of a single proton. These are:  

  ; (7) 

Each of the reactions shown in Equation (7) can be assigned a pKa. We refer to these as primary 
pKa values, as they involve the loss of exactly one mole of protons from a single site for each mole 
of advancement of the reaction. For a system with n ionizable residues, there will be a set of n2n-1 
primary pKa values. These cannot be measured, although they can be approximated (79-81).  

A mesostate is made up of all charge microstates that have the same net charge – see 
Equations (4) and (5). Each mesostate is assigned a label qk where q denotes the net charge 
associated with each microstate within the mesostate and k denotes the total number of microstates 
within the mesostate. For example, the designation of +13 implies that there are three microstates 
in the mesostate, and all these microstates have a net charge of +1. The total number of mesostates, 
denoted as Nmeso, scales linearly with the number of ionizable residues (Figure S2). We can rewrite 
the acid-base equilibria in Equation (7) using the notation for mesostates (Figure 2) and rewrite 
the relevant reactions for the release of one mole of protons as follows: 

 ; (8) 

Here, (01,–12) and (–12,–21) are two pairs of adjacent mesostates. Adjacency refers to mesostates 
whose net charge differs by ±1e. Each reaction in Equation (8) can also be assigned a pKa value. 
These mesostate pKa values are different from the set of primary pKa values. For Nmeso mesostates, 
there will be Nmeso – 1 mesostate pKa values corresponding to transitions between pairs of adjacent 
mesostates. While the set of primary pKa values cannot be measured, the set of mesostate pKa 
values can be inferred from measurements of net charge as a function of pH, providing we are able 
to extract the pH-dependent populations of mesostates – a problem we solve here by leveraging 
the structure of the q-canonical ensemble. 
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For the case of the ac-(Glu)2-nme system, there are at least two distinct scenarios that could 
correspond to a seemingly reasonable definition of unshifted pKa values. According to one 
assumption, the pKa for a transition between two mesostates would be identical to the intrinsic 
pKa. This would imply that  . However, this assumption ignores the number 

of reactions within a single mesostate, each involving a distinct microstate, that can contribute to 
the loss of a proton. The second model for unshifted pKa values corresponds to the assumption 
that: . This model assumes that the primary pKa values can only be assigned to 
reactions involving individual microstates rather than collections of microstates. Here, the 
unshifted pKa associated with transitions between mesostates can be derived through proper 
accounting of the diversity of charge microstates per mesostate. We illustrate these points using 
reactions for the ac-(Glu)2-nme system. The mesostate –12 includes the microstates Ee and eE. 
Therefore, the concentration of mesostate –12, denoted as [–12] is written as: [–12] = [Ee] + [eE]. 
Accordingly, the equilibrium constant for dissociation of a mole of protons from mesostate –12 is 
written as: 

 ; (9) 

The free energy of ionization of a single mesostate, for the specific example considered 
here, may be written as:  

 ; (10) 

If we assume that primary pKa values correspond to those of model compounds, we can use 
Equation (10) for polyacids by accounting for the number of microstates per each mesostate. The 
free energy of ionization that transforms mesostate qk to (q–1)l of a polyacid, through the release 
of one mole of protons, may be written as:  

;

 (11) 

Here, and refer to the number of charge microstates within mesostates qk and 

(q–1)l, respectively; and are the context dependent free energies of ionization; 

nq-1,i and nq,j are the numbers of ionizable residues within microstates i and j that are in their basic 
forms. For example, nq = 1 for microstates eE, eEe, kK, KKk, etc. Likewise, nq = 2 for microstates 
eEE, kkK, etc. Here, k is the deprotonated version of lysine (K). For the transformation of 
mesostate 01 to mesostate –12, nq-1,i = 1 for each of the microstates Ee and eE, whereas nq,j = 0 for 
the microstate ee.  
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Equation (11) reduces to Equation (10) if we set and 

. If all microstates within a mesostate are equiprobable, implying that the 

ionization free energy is independent of sequence context, then Equation (11) reduces to:  

; (12) 

Upon further rearrangement, Equation (12) becomes:  

 ; (13) 

Equation (13) highlights the importance of microstate entropy that features in two terms: 
and . These are the microstate entropies of 

mesostates qk and (q–1)l, respectively. The implication is that even for the simple scenario of 
context-independent pKa values, the free energy difference between a pair of adjacent mesostates, 
which is a measure of the pKa associated with the transition between a pair of adjacent mesostates, 
must account for the contributions of different microstate entropies for each mesostate. In general, 
the microstate weights will be non-identical. In this scenario, the pH-independent standard state 
free energy change associated with transformation from mesostate qk to (q–1)l is written as:  

 ; (14) 

Here, is the standard state free energy of microstate i. In the following sections we show how 
potentiometry, which measures the buffering capacity of a solute as a function of pH, can be used 
in conjunction with Equation (14), to derive mesostate populations as a function of pH.  

Extracting mesostate populations from potentiometry measurements: We use 
potentiometry to estimate the net charge of a protein as a function of pH. This is achieved by 
titrating the solution pH using a strong acid or a strong base. The buffering capacity of a protein 
solution, referenced to the buffering capacity of the protein-free solution, is used to estimate the 
profile of net charge vs. pH. Given the ensemble-averaged net charge vs. pH as an input, we can 
fit the measured profile to extract the pH-dependent population of mesostates. This information 
allows us to extract the contributions made by distinct mesostates to the pH-dependent net charge 
profile. The measured net charge qnet as a function of pH is given in Equation (6), where qi is the 
charge associated with mesostate i and pi(pH) is the probability of populating mesostate i for a 
given pH. Given knowledge of qnet(pH), and the charge associated with each mesostate, we can 
estimate the pH-dependent mesostate probabilities by fitting the measured profiles to Equation (9). 
The fitting procedure is based on a Metropolis Monte Carlo method (82) that minimizes the 
deviation between the measured and estimated charge profile by minimizing a cost function 
defined as: 

 ; (15) 

∆Gee→Ee
0 = ∆Ge→E

0( )
i

∆Gee→eE
0 = ∆Ge→E

0( )
j

∆Gqk  → q−1( )l
0 = −RT ln Ω

micro, q−1( )l
exp −

nq−1∆Ge → E
0

RT

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ RT ln Ωmicro,qk

exp −
nq ∆Ge → E

0

RT

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∆Gqk  → q−1( )l
0 = ∆Ge → E

0 − RT lnΩ
micro, q−1( )l

+ RT lnΩmicro,qk

= ∆Ge → E
0 −TS

micro, q−1( )l
+TSmicro,qk

Smicro,qk = R lnΩmicro,qk
S
micro, q−1( )l

= R lnΩ
micro, q−1( )l

∆Gqk  → q−1( )l
0 = −RT ln exp

i=1

Ωmicro, q−1( )l

∑ −
∆Gi

0

RT
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ RT ln exp

j=1

Ωmicro,qk

∑ −
∆Gj

0

RT

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∆Gi
0

Efit = qest pH( )− qnet pH( ) dpH∫

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.08.31.458420doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.31.458420


 8 

We choose absolute values rather than signed values to keep the cost function bounded 
between 0 and a positive number. In Equation (15), qest and qnet are the estimated and measured 
net charge values for a given pH. The fitting procedure, summarized in Figure 3, can be seeded 
by assigning mesostate probabilities using intrinsic pKa values, although as discussed in the 
Supporting Material, this is not essential. We use 10.7 and 4.34 for intrinsic pKa values of Lys and 
Glu, respectively (83). The parameter ∆max (see Figure 3) is set so that the maximal change in 
relative free energies of states i and j that are being perturbed will be no more than 0.01 kcal / mol. 
The Metropolis criterion for accepting or rejecting a proposed change in mesostate probabilities is 

of the form: . Here, ∆Efit quantifies how the cost function Efit has changed 

with the newly proposed mesostate probabilities. The parameter Tfit is a scalar parameter, which is 
a fictitious and unitless temperature that is chosen to enable efficient convergence of the Monte 
Carlo based fitting procedure. The optimal temperature will be system-specific, and is chosen by 
inspecting the acceptance ratio and making sure it is not close to one or below a numerical 
tolerance. Data from potentiometry measurements (see below) converted into profiles of net charge 
vs. pH are used to quantify how the mesostate probabilities evolve as a function of pH.  

Smoothing of the raw data was performed using a Savitzky-Golay algorithm (84) as 
implemented in the SciPy python package (https://scipy.github.io). The prescribed output 
resolution was set to 100 points per pH unit, with a window size of 101, and a second-order 
polynomial. Results of the smoothing procedure are shown in Figure S3. To enhance sampling 
efficiency, especially in the first steps of the fit, we introduce a drift correction, which returns the 
fitting parameters to the parameters of the best fit found to that point, if the current fit has a cost 
function of more than 125% of the best fit cost function. The best fit as a function of step number 
is depicted for two different priors in Movie S1 (all pKa values set to 7) and Movie S2 (pKa values 
set to their intrinsic pKa values). Each Monte Carlo fitting procedure comprises 150000 steps. For 
each construct, we performed a total of 10 independent runs. The best fits obtained in each run are 
depicted as the blue curves of Figure S5. These fits show clear convergence, especially for the 
neutral pH region 

It is worth emphasizing that the fitting procedure generates estimates for mesostate 
populations as a function of pH. Further parsing of these mesostate specific weights to unearth the 
contributions of mesostate-specific microstates will require additional information in the form of 
the full q-canonical Monte Carlo simulation that assesses the contributions of microstates and their 
conformations. These simulations can be constrained by the mesostate populations we derive using 
the procedures summarized in Figure 3.  

MATERIALS AND METHODS 
Reagents and peptides: Potassium chloride (KCl), hydrochloric acid (HCl), potassium 

hydroxide (KOH), and potassium hydrogen phthalate (KHP) were purchased from Sigma. We 
assessed the purity of KOH using pH measurements, which confirm that contaminants, if present 
are miniscule and do not affect the potentiometric titrations. Peptides were purchased from 
GenScript at >95% purity as HCl salts with acetylated N-termini and amidated C-termini. Salt 
content was determined by mass spectrometry. The identities of the peptides were confirmed using 
mass spectrograms provided by the vendor. Peptides were stored in lyophilized form at –20 ̊C in 
sealed containers in the presence of desiccant until they were used for experiments. We performed 
measurements for three peptides, excised from proteins with single alpha helical domains. The 
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amino acid sequences of the three peptides were as follows: Ac-G-(E4K4)n-GW-NH2, where n = 1, 
2, or 3. The peptides were capped at the N- and C-termini using N-acetyl (ace) and an amide, 
respectively. This avoids confounding effects from charged termini. Trp was used to enable precise 
measurements of concentration.  

Sample preparation: A sealed flask of ultrapure water was depleted of CO2 using a 
custom-built Schlenk line to apply alternating cycles of nitrogen gas and vacuum. The resulting 
CO2 depleted water and all solutions and samples prepared from this water were kept in sealed 
flasks or vials and stored in a glove bag (AtmosBag, Millipore-Sigma Z530204) filled with 
nitrogen gas. To further decrease the concentration of dissolved CO2, solutions prepared with the 
CO2-purged water were allowed to equilibrate with the nitrogen-filled (CO2-depleted) atmosphere 
in the glove bag prior to sealing the flask or vial. All transfers of these liquids between flasks or 
vials were carried out within the nitrogen-filled glove bag or using gas-tight Hamilton syringes to 
access sealed vials without exposing the contents to air. A stock solution of background solvent 
was prepared by dissolving KCl in CO2-depleted ultrapure water to which HCl had been added. 
The final solution contained 10 mM KCl and 5 mM HCl. This solution was further depleted of 
CO2 using the Schlenk line, after which it was sealed and stored in a nitrogen-filled glove bag until 
further use. 

A 50 mM KOH solution was used as the titrant for all potentiometry experiments. A 200 
mM KOH stock solution was prepared in the glove bag using CO2-depleted ultrapure water. This 
stock was further diluted to 50 mM KOH with CO2-depleted ultrapure water and sealed in a glass 
vial with a Teflon-coated rubber septum while in the nitrogen-filled glove bag. Peptides were 
dissolved in the CO2-depleted background solution at a concentration of ~200 µM. The final 
peptide concentrations used were 215 µM for E4K4, 95 µM for (E4K4)2, and 180 µM for (E4K4)3. 
Immediately prior to each potentiometry experiment, the peptide concentration was measured by 
UV/visible spectroscopy using Trp absorbance at 280 nm and an extinction coefficient of 5500 M-
1 cm-1. A KHP solution at a concentration of 1 mM was prepared by massing a quantity of KHP 
powder into a glass vial using a precision mass balance, transferring the vial to the nitrogen-filled 
glove bag, and then adding CO2-depleted ultrapure water directly to the vial to dissolve the 
material. The sample was stored in a sealed vial in the nitrogen-filled glove bag until further use.  

Potentiometry: All measurements were carried out in a custom sample vial consisting of 
a glass screw-cap vial sealed with Teflon-coated rubber septum with a 5 mm hole (created with a 
biopsy punch) that accommodated the pH probe while still forming a seal. Titrant was delivered 
to the sealed vial through the rubber septum using a precision gas-tight µL syringe fitted with a 
repeating dispenser (Hamilton). Potentiometric measurements were carried out on an Orion Star 
A215 potentiometer (Thermo Scientific) using a pHT-micro combination probe with a platinum / 
Silamid double junction (YSI). A 2 mL sample was titrated with 50 mM KOH in 2 µL increments 
in all cases. 

The concentration of the KOH solution was verified by titrating a known concentration of 
potassium hydrogen phthalate (KHP) having a well-documented pKa of 5.4, as follows: a 2 mL 
volume of KHP solution was titrated with ~50 mM KOH solution in 2 µL increments, and the pH 
of the solution was measured after each addition. A titration of 2 mL of background solution was 
carried out in the same manner. The resulting potentiometry curves (KHP and background) were 
analyzed by Gran analysis (85, 86) as well as by first and second derivative analyses to determine 
the precise KOH concentration (87, 88).  
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For each peptide, a 2 mL volume of peptide solution was titrated with ~50 mM KOH 
solution in 2 µL increments, and the pH of the solution was measured after each addition. A 
titration of 2 mL of background solution was carried out in the same manner. For each peptide 
titration, the KOH solution used as titrant was prepared fresh and calibrated with a KHP titration 
as described above. 

A stable pH reading is essential for accurate potentiometric measurements, and this can be 
difficult to achieve under conditions of low solute concentration. For example, it is extremely 
difficult, if not impossible to obtain a stable pH reading in a sample of ultrapure water due to the 
lack of buffering capacity and the lack of salt ions in the sample. In our experiments, we found 
that 10 mM salt was sufficient to ensure signal stability, as evidenced by successful measurement 
of stable pH in background titrations of 10 mM KCl and 5 mM HCl with no peptide (Figures S8-
S10). In peptide-containing samples, the presence of buffering moieties at millimolar 
concentrations (1.72 mM for E4K4, 1.52 mM for (E4K4)2, and 4.32 mM for (E4K4)3) provided 
further stability to pH readings. Additional measurement stability was facilitated by the use of a 
pH probe with a platinum wire junction, which allows optimum electrolyte flow, and by allowing 
the signal to plateau and stabilize for a minimum of 50 seconds (longer near neutral pH) for each 
data point. 

Calculation of peptide net charge: Since KOH is a strong base, we can assume that for 
each mole of OH added, one mole of protons is consumed, resulting in water as the product. We 
use the known concentration of the KOH solution to calculate the number of moles of KOH from 
the volume of KOH added. The difference in KOH volume added between the titration curves for 
peptide and background represents a quantity that is proportional to the number of moles of protons 
introduced by the peptide. Since the peptide concentration is known, we can calculate the number 
of protons per peptide. The number of protons released over the course of the titration is equivalent 
to the change in net charge of the peptide. Therefore, the net charge of the peptide can be 
determined as a function of pH if the net charge is known at the starting point of the titration. Since 
the titration is started at a low pH (~2.0) that is below the pKa values of all ionizable groups present, 
we can assume that all ionizable groups are protonated, and the net charge on the peptide should 
be equal to the number of cationic residues, (Lys in the case of (E4K4)n peptides). 

Following the approach of Nozaki and Tanford (89), the data were transposed to facilitate 
comparison of the volume of KOH added in the background titration vs. the peptide titration at 
each pH value (2, 90). A linear interpolation between each data point within a given titration curve 
was carried out so that the background curve could be subtracted from the peptide curve at any pH 
value. The resulting quantities represent the difference in KOH volume added in the background 
titration vs. the peptide titration at a given pH value. Multiplying these values by the known 
concentration of KOH gives the difference in number of moles of KOH between the two curves, 
and this is equivalent to the number of protons introduced by the peptide. Dividing this value by 
the number of moles of peptide (calculated as peptide concentration multiplied by sample volume) 
quantifies the moles of protons per moles of peptide, which is equivalent to relative change in net 
charge (Figures S11-S13).  

As explained above, for (E4K4)n peptides, the number of Lys residues provides the offset 
value needed to shift the calculated moles of protons per peptide to the appropriate register for 
reporting the net charge of the peptide. In practice, there are a few sources of uncertainty that may 
require adjustments to both the scaling and the offset of the net charge curve. These include any 
uncertainties in measurements of concentration, and the presence of trace amounts of residual acid 
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in the peptide sample. To account for these errors, we scale the protein net charge curve such that 
the inflection point around neutral pH has a charge of 0. This is the most parsimonious rescaling, 
since any other rescaling would lead to mesostates with non-zero charge being dominant 
population around pH 7.0, implying that the 01 mesostate would never be dominant in the 
ensemble. The rescaling factor used for each construct is 0.92, 0.76 and 0.79 for (E4K4)1, (E4K4)2, 
and (E4K4)3, respectively. 
RESULTS 
 Sequences with a consensus repeat consisting of (E4X4)n or (E3X3)n where X is either an 
Arg or Lys have been shown to form alpha helical conformations (91-94). These single alpha helix 
forming sequences belong to larger proteins (93). Helicity is known to increase with the repeat 
length (91). The single alpha helices are thought to be useful in force transduction in myosin (92) 
and have been deployed as spectroscopic rulers for Förster resonance energy transfer 
measurements, in vitro and in cells (95). The overall helicity has been ascribed to a network of 
intra-helical salt bridges between residues i and i+4 (91, 94).  

 Here, we ask if a single mesostate viz., 01 dominates over the entire accessible pH range, 
irrespective of the number of repeats. This question is motivated by observations showing a 
remarkable stability of the alpha helical conformations across a wide range of pH values (94, 96). 
We reasoned that it is unlikely for networks of salt bridges to be operative under conditions where 
Glu is protonated, or Lys is deprotonated. A definitive assessment of the curious pH insensitivity 
requires knowledge of how the net charge varies with pH, and we measure this directly. We can 
then use these data, in conjunction with the q-canonical ensemble to infer the populations of each 
of the relevant mesostates as a function of pH. The measurements reveal a series of insights that 
are summarized next.  

 Fitting of potentiometric data: Figures 4A, 4B, and 4C show the quality of the fits 
obtained for each of the three peptides. Further, Movie S1 provides a direct visualization of how 
the fitting procedure evolves. In each panel of Figure 4, the gray circles denote the raw 
experimental data that are not used in the fitting procedure. The orange points are the raw data 
used for the fitting procedure. The fitting procedure was applied to the smoothed version of the 
data to have a uniform resolution across the pH range to ensure that evaluation of the cost function 
is uniformly distributed. The raw data and comparisons to the smoothed data are shown in Figure 
S3. Fits to the data are shown using two models, depicted using blue vs. red curves. The red curves 
are charge profiles calculated by assuming model compound pKa values for all the ionizable 
residues, although the microstate entropies per mesostate are different. In this model, the only 
parameters that distinguish different mesostates are net charge and the microstate entropy per 
mesostate. These fits, which do not describe the data well, clearly indicate that there are shifted 
pKa values in each of the three sequences. The blue curves show the quality of fit obtained through 
the Monte Carlo fitting procedure that uses Equation (16). The quality of the fits is shown in terms 
of residuals included at the bottom of each panel. The mesostate probabilities change with respect 
to the unshifted model, and these changes are reflected in the improved fits to the net charge vs. 
pH profiles. We further assessed the quality of the fits by calculating the pH-dependent derivatives 
of the net charge profiles, for the experimental data and for the numerical fits. These comparisons 
are shown in Figure S4. Figure 4D shows a comparison of the normalized net charge vs. pH for 
the three peptides. If the unshifted model were to be valid, then the three curves should collapse 
on one another. Clearly, this is not the case, and it points to a sequence- and context-dependent 
contribution from the increasing diversity of mesostates with peptide length.  
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 We also compared charge profiles calculated using a fixed charge model to the measured 
profiles from potentiometry. Here, we assume that Lys is always protonated below its intrinsic pKa 
and Glu is always deprotonated above its intrinsic pKa. The results are shown in the three panels 
of Figure 5. Again, each panel includes the gray circles, orange points, and blue curves that are 
identical to those in Figure 4. Clearly, the fixed charge model does not recapitulate how the 
measured charge varies with pH, at least for the (E4K4)n series of peptides.  

 Interpretations from the measured charge profiles: The profile for (E4K4) shows a 
plateau in the pH range between 7 and 9 (Figure 4a). This observation is confirmed by calculations 
of the derivative as a function of pH, which show that the derivative is essentially zero in the pH 
range between 7 and 9 (Figure S4a). The implication is that none of the acids or bases are titrating 
their charge states in this pH range. Therefore, a single mesostate must be dominant in this pH 
range for the E4K4 peptide. It is noteworthy, however, that the plateau region of the blue curve in 
Figure 4a is larger than that of the red curve. The latter corresponds to the model that uses 
unshifted, model compound pKa values while accounting for differences in microstate entropies 
of the different mesostates. Thus, the data indicate a downshift vs. an upshift in the pKa values for 
the acids and the bases, respectively. In contrast to the (E4K4) peptide, the two longer peptides 
(E4K4)2 and (E4K4)3 do not have a pH range where the charge profile plateaus (Figures 4b and 4c), 
and this is confirmed by the absence of a pH region where the derivative is zero (Figures S4b and 
S4c). This suggests that at every pH, there is at least more than one mesostate (and hence 
microstate) that contributes to the measured charge profiles, especially for (E4K4)2.  

 Insights from pH-dependent mesostate populations: Fitting of the data for net charge 
vs. pH using the q-canonical ensemble formalism yields the pH-dependence of mesostate 
populations. The results are shown in Figures 6-8 for E4K4, (E4K4)2, and (E4K4)3, respectively. The 
dashed vertical lines in Figure 6 help quantify mesostate pKa values. For E4K4, the +14 and 01 
mesostates have equal likelihoods of being populated at a pH of 4.99. This implies that the pKa 
associated with the transition between +14 and 01 mesostates is 4.99. Using a similar approach, we 
find that the pKa value associated with the transition between 01 and -18 mesostates is 11.32. 
Therefore, the 01 mesostate is dominant within the pH range between 4.99 and 11.32, with the gap 
between the two mesostate pKa values being 6.33 pH units. However, the dominance of the 01 
mesostate weakens with increasing numbers of E4K4 repeats, and the prominence of the mesostates 
with net charges of ±1 increases with the number of E4K4 repeats. 

 For (E4K4)2 the pKa values for the transitions +18 « 01 and 01 « -18 are 5.34 and 8.80, 
respectively (Figure 7) implying a gap of 3.46 pH units. This gap between the two pKa values, 
which corresponds to transitions between 01 and its adjacent mesostates, further narrows for 
(E4K4)3 (Figure 8). Here, the pKa values for the transitions +112 « 01 and 01 « -112 are 6.14 and 
9.01, respectively (gap of 2.87 pH units). The mesostate pKa for transitions between the mesostate 
with net charge +1 and the 01 mesostate shifts up with increasing numbers of repeats. In contrast, 
the pKa for transitions between the mesostate with net charge -1 and 01 shows non-monotonic 
variation with the number of repeats. This derives from the steeper variation of net charge with pH 
as the intrinsic pKa of Lys is approached. In contrast, the mesostate with charge +1 is accessible 
in a pH range where the net charge shows a weaker pH dependence.  

 The gap between pKa values for transitions between the 01 and adjacent mesostates that 
have a net charge of ±1 narrows from 6.33 to 3.46 and 2.87 pH units as the number of E4K4repeats 
increases from 1 to 2 to 3. It is likely that this gap further narrows as the numbers of repeats 
increase. One of the main takeaways is that for (E4K4)3, the mesostate +112 contributes 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 4, 2021. ; https://doi.org/10.1101/2021.08.31.458420doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.31.458420


 13 

significantly, in addition to the 01, mesostate at pH 7.0 (see pink line in Figure 8). This contribution 
weakens in favor of the -112 mesostate as the pH increases above 7.4. Therefore, even at pH 7.0, 
there are at least 13 distinct microstates whose contributions to the conformational ensemble must 
be considered.  

 The importance of charge state heterogeneity increases as the pH increases or decreases 
from the value of 7.0. The pH dependent populations of mesostates can be used to quantify the 
numbers of mesostates that contribute to 95% vs. 99% of the overall population as a function of 
pH. The results are summarized in Figure 9. Figure 9A shows that a single mesostate, 01, and 
hence a single microstate, contributes to 99% of the population for the E4K4 peptide across a wide 
pH range. For the (E4K4)2, 2-3 mesostates are required to account for 90-99% of the preferred 
mesostates between the pH range of 7-9 (Figure 9B). We obtain similar results for the (E4K4)3 
system (Figure 9C).  

DISCUSSION 
Here, we have introduced a method for analyzing potentiometric data by leveraging the 

formal structure of q-canonical ensemble, which allows us to decouple analyses of measurements 
of charge from measurements of conformations. The q-canonical ensemble formally accounts for 
the contributions of charge state heterogeneity. Our methods are likely to be of particular use for 
uncovering the dual impacts of charge state and conformational heterogeneity for IDPs, as these 
systems tend to be rich in ionizable residues, with a large fraction featuring more than 30% of 
ionizable residues (19). This number increases when we include the contributions of neutral 
residues that become ionizable following post-translational modifications such as Ser / Thr 
phosphorylation.  

The prothymosin a system that has been studied extensively by the Schuler group (27, 97-
102) as well as acid-rich disordered proteins that function as transactivation domains of 
transcription factors (103), are examples of well-known IDPs that are among the closest mimics 
of homo polyacids, which are seldom fully deprotonated in solution (53, 54). Indeed, single 
molecule electrometry measurements performed by Ruggeri et al., (101) suggest that only 28.5 ± 
1.2 out of the 46 D/E residues in prothymosin a are, on average, deprotonated at pH 8.8. Given 
the growing interest in the conformational, binding (104), and phase equilibria of polyampholytic, 
polyzwitterionic (105, 106), and polyelectrolytic IDPs (107), it will be important to  measure net 
charge profiles and extract the contributions of charge state heterogeneity to these profiles. Here, 
we demonstrate the feasibility of such analyses by extracting mesostate populations using the q-
canonical ensemble formalism. In follow up work, we propose to adopt this approach for analysis 
of cross-sections of IDPs.  

 The apparent insensitivity of helicity of so-called single alpha helices to changes in pH 
(94, 96) might derive from the helicity associated with microstates that have a net charge. In this 
scenario, it cannot solely be the network of salt bridges that contribute to stabilizing helical 
conformations. Instead, the interplay among differences in free energies of solvation of charged 
and neutral forms of Glu and Lys (108) as well as the higher intrinsic helical propensity of neutral 
Glu vs. charged Glu (109-112) are likely contributors to the intriguing robustness of measured 
helicities to large-scale changes in pH. Accounting for the totality of these interactions requires a 
combination of charge measurements, presented here, and measurements of conformational 
equilibria, that are jointly used in a suitable molecular simulation framework for describing the 
total q-canonical ensemble. 
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Features of the q-canonical ensemble: The structure of the q-canonical ensemble allows 
us to decouple measurements of charge from measurements of conformation. By leveraging this 
decoupling, specifically the mesostate description of the net charge extracted from the q-canonical 
ensemble, we can analyze potentiometry-based charge profiles as a function of pH to quantify the 
number and types of mesostates that are thermodynamically relevant for a given set of solution 
conditions. We find that microstate entropy per mesostate makes significant contributions to the 
distribution of thermodynamically accessible mesostates. Importantly, the contributions of 
microstate entropy grow with the number of ionizable residues. Whether or not this heterogeneity 
can be overcome by dominant conformational preferences of specific microstates can only be 
decided by decoupling the measurements of charge from other readouts such as measurements of 
conformation and / or binding.  

It is worth emphasizing the intrinsic differences between a site-specific representation of 
ionizable groups, and a description in terms of mesostates afforded by the q-canonical ensemble. 
If one were to measure pKa values using site-specific titrations, aided by appropriate spectroscopic 
approaches such as nuclear magnetic resonance (NMR) (8, 81, 113) or infrared (IR) spectroscopy 
(111), the inferred variations in site-specific pKa values would be much lower than the variations 
that we can uncover using the mesostate representation and measurements of global charge 
profiles.  

Potentiometry: The simplicity of potentiometric titrations is key to its robustness (114). 
The buffering capacity can be measured to obtain net charge profiles as a function of pH by fixing 
solution conditions such as salt concentration, salt type, and the solution temperature. Therefore, 
with suitable automation, potentiometry can provide direct access to charge profiles as a function 
of pH for a range of systems and solution conditions. These data, when analyzed using the q-
canonical formalism, will be essential for understanding the extent of sequence- and composition-
specific effects of charge regulation via proton binding and release.  

Being one of the earliest methods to characterize acid-base equilibria in chemical species, 
several methods for the interpretation of potentiometric curves, especially for monoacids, have 
been developed (114). However, as noted by Ghasemi and Larson, the interpretation of 
potentiometric data has remained an unsolved problem for polyacids (54). We propose that our q-
canonical ensemble-based approach provides an alternative route to obtain more complete 
descriptions of the measured charge profiles.  

Historically, potentiometry measurements have been used to assess the presence of 
anomalous or shifted pKa values (2). This is typically achieved by using model compound pKa 
values, ignoring the microstate entropy, and querying whether the measured net charge profiles 
match or deviate from the calculated profiles. The qualitative assessments from analysis of 
potentiometry are typically used to set up detailed site-specific measurements of local pKa values 
using NMR spectroscopy or other types of spectroscopies that rely on isotopic labeling at specific 
sites.  

The net charge profiles extracted using potentiometry have also been analyzed by 
prescribing model conformations and the calculation of conformation-specific electrostatic 
potentials. The goal in these endeavors is to assess the extent to which local sequence contexts can 
be implicated as modifiers of local pKa values that cause deviations of measured charge profiles 
from expectations based on model compounds. While these efforts highlight the importance of 
charge regulation, they ignore the contributions of microstate entropy. Here, we leverage the 
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structure of the q-canonical ensemble and show how this can be deployed to extract insights 
regarding the pH-dependence of mesostate populations. 

Potentiometry vs. other methods to measure charge: Methods to measure charge are of 
considerable interest, especially for the study of IDPs. Several methods such as capillary 
electrophoresis (57, 115) and single molecule electrometry (101) have been introduced and 
deployed for measuring the net charges of IDPs and other flexible polymers. A limitation of these 
methods is the reliance on measurements of molecular mobility in the presence of a potential drop 
or a spatially patterned electric field. Analysis of data from mobility-based measurements requires 
the a priori assumption of a preferred conformational state. Further complications arise because 
electrophoretic mobility measurements require the use of ultra-low salt concentrations to avoid 
confounding effects that arise from the adsorption or release of solution ions. Accordingly, we 
propose that potentiometry, which is the most direct approach for measuring net charge, should be 
the preferred route for quantifying charge profiles of IDPs.  

 Summary and prognosis: We have developed and deployed a formalism, leveraging the 
recently introduced q-canonical ensemble, to analyze potentiometric titrations. We showcase the 
approach using measurements and analyses for three related systems. The formalism is applicable 
for analyzing multisite binding isotherms (116-118) for arbitrary ligands, not just protons. A large-
scale deployment of potentiometry, aided by the analysis introduced in this work, will be 
forthcoming for a cross-section of IDPs that include residues such as Asp, Glu, Lys, Arg, His, and 
other more complex features. This will allow us to dissect the contributions of different 
compositions and sequence contexts to charge state heterogeneity.  

The results presented here help highlight the importance of charge state heterogeneity and 
the fact that heterogeneity makes significant contributions with increasing numbers of ionizable 
residues. Potentiometric measurements, combined with separate measurements of the pH 
dependence of conformational properties, can be analyzed using the q-canonical ensemble to 
extract mesostate populations as well as microstate populations. The latter is being pursued for a 
series of systems, using sampling methods developed for the q-canonical ensemble (70). The 
results, which will be published elsewhere, will likely move us in the direction of quantifying the 
extent to which charge state and conformational heterogeneity either enhance or antagonize one 
another. These studies are likely to be important for understanding and modeling the 
conformational, binding, and phase equilibria of IDPs. Such studies take on additional significance 
given various observations of pH-responsive equilibria for IDPs (42), recent measurements 
highlighting the significant extent of charge regulation in polyelectrolytic IDPs, and the presence 
of compartments of highly variable pH environments within cells.  
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LIST OF FIGURES 
Figure 1: Structure of the q-canonical ensemble. Schematic depicting the structure of 

the q-canonical ensemble. The ensemble of mesostates (purple arrow) encompasses all mesostates 
(purple rectangles). Each mesostate encompasses an ensemble of charge microstates (orange 
arrows) corresponding to the different ways residue in their charged state (red circles) can be 
arranged with respect to those in their uncharged state (black circles). Finally, each microstate has 
a distinct conformational ensemble (green arrows). 

Figure 2: Schematic showing charge microstates and the grouping into mesostates for 
ac-(Glu)2-nme. Here ace and nme refer to N-acetyl and N´-methylamide, respectively. Protonated 
and deprotonated Glu residues are depicted as e and E, respectively. The charge microstates ee, 
eE, Ee, and EE can be grouped into mesostates, and the designation of mesostates, shown in qk 
format is shown in purple.  

Figure 3: Flowchart summarizing the workflow for fitting data from potentiometric 
titrations to Equation (9).  

Figure 4: Raw data and results obtained from fitting the model based on unshifted 
pKa values vs. the full model – Equation (9) – to the profile of net charge vs. pH obtained 
from potentiometric titrations. Panel (D) shows a comparison of the fitted profiles for the three 
peptides. To enable these comparisons, the ordinate is rescaled to be normalized by the magnitude 
of the maximal charge realizable for each system.  

Figure 5: Comparison of the raw data, fits obtained using the full model, and a model 
that uses fixed charges. The results are shown for each of the three peptides. In each panel, the 
black curve corresponds to the fixed charge model. This model does a poor job of recapitulating 
the titration curve.  

Figure 6: Mesostate probabilities, plotted against pH, for the E4K4 peptide. The dashed 
lines in each panel mark the pH values at which mesostates adjacent to the 01 mesostate have equal 
likelihoods of being populated. The pink line in each panel corresponds to a pH of 7.0. 

Figure 7: Mesostate probabilities, plotted against pH, for the (E4K4)2 peptide. The 
dashed lines in each panel mark the pH values at which mesostates adjacent to the 01 mesostate 
have equal likelihoods of being populated. The pink line in each panel corresponds to a pH of 7.0. 

Figure 8: Mesostate probabilities, plotted against pH, for the (E4K4)3 peptide. The 
dashed lines in each panel mark the pH values at which mesostates adjacent to the 01 mesostate 
have equal likelihoods of being populated. The pink line in each panel corresponds to a pH of 7.0. 

Figure 9: Minimum number of mesostates that are required to account for 95% and 
99% of the population, as a function of pH, for each of the three peptides.  
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