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Abstract 10 

16S rRNA gene copy number (16S GCN) varies among bacterial species and this variation 11 

introduces potential biases to microbial diversity analyses using 16S rRNA read counts. To 12 

correct the biases, methods have been developed to predict 16S GCN. A recent study suggests 13 

that the prediction uncertainty can be so great that copy number correction is not justified in 14 

practice. Here we develop RasperGade16S, a novel method and software to better model and 15 

capture the inherent uncertainty in 16S rRNA GCN prediction. RasperGade16S implements a 16 

maximum likelihood framework of pulsed evolution model and explicitly accounts for 17 

intraspecific GCN variation and heterogeneous GCN evolution rates among species. Using cross 18 

validation, we show that our method provides robust confidence estimates for the GCN 19 

predictions and outperforms other methods in both precision and recall. We have predicted GCN 20 

for 592605 OTUs in the SILVA database and tested 113842 bacterial communities that represent 21 

an exhaustive and diverse list of engineered and natural environments. We found that the 22 

prediction uncertainty is small enough for 99% of the communities that 16S GCN correction 23 

should improve their compositional and functional profiles estimated using 16S rRNA reads. On 24 

the other hand, we found that GCN variation has limited impacts on beta-diversity analyses such 25 

as PCoA, PERMANOVA and random forest test. 26 

 27 

Introduction 28 

The 16S ribosomal RNA (16S rRNA) gene is the gold standard for bacterial and archaeal 29 

diversity study and has been commonly used to estimate the composition of bacterial and 30 

archaeal communities through amplicon sequencing. Sequence reads are usually matched to 31 

reference databases like SILVA [1] and GreenGenes [2] to determine the presence of taxa and 32 
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their relative cell abundances. However, the 16S rRNA gene copy number (GCN) can vary from 33 

1 to more than 15 [3,4] and this large copy number variation introduces bias in the relative cell 34 

abundance estimated using the gene read counts (thereafter referred to as gene abundance) [5], 35 

and consequently it can skew the community profiles, diversity measures and lead to 36 

qualitatively incorrect interpretations [5–8]. As a result, it has been argued that 16S rRNA GCN 37 

variations should be taken into account in 16S rRNA gene-based analyses [5]. 38 

 39 

The majority of bacteria species have not been cultured or sequenced and their 16S rRNA GCNs 40 

are unknown. Studies have shown that 16S rRNA GCN exhibits a strong phylogenetic signal 41 

[5,7], and therefore 16S rRNA GCN can be inferred from closely related reference bacteria. 42 

Based on this principle, software has been developed to predict the 16S rRNA GCN [5,7,9,10] in 43 

a process often referred to as hidden state prediction [11]. However, a recent study correctly 44 

points out that the accuracy of 16S rRNA GCN prediction deteriorates as the minimum 45 

phylogenetic distance between the query sequence and the reference sequences increases, and the 46 

prediction of 16S rRNA GCN is still an open question [12].  47 

 48 

The increasing error of 16S rRNA GCN prediction with increasing phylogenetic distance roots 49 

from the stochastic nature of trait evolution, which leads to inherent uncertainty in the predicted 50 

trait values. One way of reducing the inherent uncertainty is to improve taxon sampling in the 51 

reference phylogeny to reduce the query’s phylogenetic distance to the reference [13]. Another 52 

way of addressing the inherent uncertainty is to model the uncertainty directly and have a 53 

confidence estimate. By doing so, we will be able to determine how confident we should be 54 

about a GCN prediction and make meaningful interpretations. Unfortunately, few 16S rRNA 55 
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GCN prediction tools provide a confidence estimation for the predicted 16S rRNA GCN, and 56 

uncertainty is mostly ignored when interpreting the results of downstream analyses [5,7,10]. For 57 

example, PICRUST2 predicts functional profiles of bacterial and archaeal communities from 16S 58 

rRNA sequence data. It predicts 16S rRNA GCN for each operational taxonomic unit (OTU) in 59 

the community and uses the predicted values (point estimates) to estimate “corrected” relative 60 

cell abundances and metagenomes, without accounting for the uncertainty of the predictions. As 61 

a result, the impact of uncertainty in 16S rRNA GCN prediction on bacterial diversity analyses 62 

remains unknown and needs to be investigated. 63 

 64 

Several points need to be considered to properly model the prediction uncertainty. First, because 65 

the uncertainty roots from the stochastic nature of trait evolution, we need to develop a good 66 

model for 16S rRNA GCN evolution. Previously the evolution of the 16S rRNA GCN trait has 67 

been modeled as gradual evolution using the Brownian motion (BM) model [5,7,10]. However, 68 

alternative models exist and need to be considered [14–16]. For example, the Ornstein-69 

Uhlenbeck model assumes a centralizing trend towards an optimum [14,15]. As 16S rRNA GCN 70 

has been linked to the ecological strategy of bacterial species [17,18] and bacteria diversify 71 

across all types of environments, a consistent trend in the evolution of 16S rRNA GCN is 72 

unlikely. Thus, a model without any trend like the BM model is preferred. Pulsed evolution (PE) 73 

is another model that assumes no trend in evolution. Unlike the BM model, where small trait 74 

changes accumulate over time, the PE model postulates that traits evolve by jumps, followed by 75 

periods of stasis [14,19]. Previous studies have showed that pulsed evolution is prevalent in the 76 

evolution of mammalian body size [14,20]. It has been shown that 16S rRNA GCN of Bacillus 77 

subtilis can jump from 1 to 6 in a matter of days by gene amplification [21]. On the other hand, it 78 
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is well known that the 16S rRNA GCN of some bacterial clades such as the Rickettsiales order, a 79 

diverse group of obligate intracellular bacteria, has only one copy of 16S rRNA in their genomes, 80 

demonstrating stasis [22,23]. To develop a proper model for 16S rRNA GCN evolution, the 81 

tempo and mode of evolution need to be examined. 82 

 83 

Secondly, 16S rRNA GCN can vary within the same species [24–27], which introduces 84 

uncertainty to GCN prediction that needs to be accounted for. It has been shown that modeling 85 

the intraspecific variation is essential for the analysis of comparative trait data and failing to 86 

account for this variation can result in model misspecification [14]. Because conspecific strains 87 

are usually separated by zero branch length in the phylogeny of the 16S rRNA gene, the 88 

intraspecific variation can be modelled as time-independent variation, which can also account for 89 

measurement errors [20]. 90 

 91 

Thirdly, there is notable rate heterogeneity in 16S rRNA GCN evolution. For example, the 92 

obligately intracellular bacteria and free-living bacteria with streamlined genomes (e.g., 93 

Rickettsia and Pelagibacter) have elevated molecular evolutionary rates [28,29] and therefore 94 

relatively long branches in the 16S rRNA gene phylogeny [30]. Nevertheless, they have only one 95 

copy of 16S rRNA in their genomes and the GCNs rarely change [23]. It is expected that the 16S 96 

rRNA GCN prediction for this group of bacteria should be accurate despite their large 97 

phylogenetic distances to the reference genomes. Such examples suggest that the rate 98 

heterogeneity of 16S rRNA GCN evolution should be systematically evaluated and modelled 99 

properly. However, no previous methods have evaluated and modeled such evolution rate 100 

heterogeneity, leading to potential model misspecification in 16S rRNA GCN predictions. 101 
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 102 

Here, we develop a novel tool RasperGade16S that employs a heterogeneous pulsed evolution 103 

model for 16S rRNA GCN prediction. Using simulation and cross-validation, we show that 104 

RasperGade16S outperforms other methods in terms of providing significantly improved 105 

confidence estimates. We show that even if we cannot eliminate the inherent uncertainty of 16S 106 

rRNA GCN prediction, having an accurate confidence estimate allows us to incorporate it in 107 

downstream analyses and therefore to make better inferences from the results with confidence 108 

intervals. We show that correcting 16S rRNA GCN improves the relative cell abundance 109 

estimates of the bacterial communities and is expected to be beneficial for more than 99% of 110 

113842 environmental samples we have analyzed. We also show that GCN correction is 111 

unnecessary for beta-diversity analyses because it has limited impact on the results. 112 

 113 

Methods 114 

Preparing reference genomes and the 16S rRNA reference phylogeny 115 

We downloaded annotated RNA gene sequences from 21245 complete bacterial genomes in the 116 

NCBI RefSeq database (Release 205) on April 9, 2021. For each genome, we counted the 117 

number of genes whose products are annotated as 16S rRNA genes. For genomes with multiple 118 

copies of 16S rRNA gene, we aligned the 16S rRNA sequences using MAFFT [31] (with 119 

parameters: --maxiterate 1000 --globalpair) and picked the 16S rRNA gene sequence that has the 120 

highest average similarity (calculated as the proportion of identical bases in the alignment) to 121 

other 16S rRNA gene sequences in the genome as the representative sequence. To remove 122 

potential errors introduced by mis-assembled genomes [32], we removed genomes whose 16S 123 

rRNA GCN differs from their 5S rRNA GCN (counted using the same strategy as 16S rRNA 124 
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GCN) by greater than 2 copies, genomes whose 16S rRNA sequence contains ambiguous bases, 125 

or genomes on the list of withheld genomes in the curated ribosomal RNA operon copy number 126 

database rrnDB [3]. The 17 genomes in the rrnDB withheld list are rejected from rrnDB because 127 

their 16S rRNA genes are missing, the 16S rRNA GCNs are too high, or the genomes have 128 

inconsistent meta data (https://rrndb.umms.med.umich.edu/withheld/). We aligned the remaining 129 

representative 16S rRNA gene sequences using HMMER version 3.2 [33] (hmmalign with 130 

parameters: --trim --dna –mapali) with the hidden Markov model (HMM) built from the 131 

GreenGenes 13.8 16S rRNA gene alignment (hmmbuild with default parameters), and trimmed 132 

the alignment with a mask from the GreenGenes database [2]. The HMM, profile alignment and 133 

the alignment mask are included in the R package RasperGade16S.  After collapsing identical 134 

16S rRNA alignments, 6408 representative sequences remained. They serve as the reference 135 

sequences and their taxonomies of are summarized in Table S1. We built a reference tree from 136 

the trimmed alignment using RAxML version 8.2 [34] with options -f d -m GTRGAMMA. We 137 

used the Deinococcus-Thermus group to root this reference phylogeny. To examine the effect of 138 

sequence alignment on model fitting, we also used the 16S rRNA HMM profile from the 139 

software Barrnap [35] to align the 16S rRNA genes (hmmalign with default parameters). We 140 

trimmed the alignment using a consensus posterior probability threshold of 0.95 (esl-alimask 141 

with parameters: -p --ppcons 0.95) and made a 16S rRNA phylogeny as described above. 142 

 143 

Evaluating time-independent variation in 16S rRNA GCN 144 

To evaluate the extent of 16S rRNA GCN intraspecific variation, we compared GCN between 145 

5437 pairs of genomes with identical 16S rRNA gene alignments. To formally test whether 146 

accounting for time-independent variation is necessary, we modeled time-independent variation 147 
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as a normal white noise, and fitted the Brownian motion (BM) model to the evolution of 16S 148 

rRNA GCN in the 6408 reference genomes, with and without time-independent variation. We 149 

then calculated the likelihood and chose the best model using the Akaike Information Criterion 150 

(AIC). 151 

 152 

Evaluating the rate heterogeneity of 16S rRNA GCN evolution 153 

To estimate the degree of rate heterogeneity in 16S rRNA GCN evolution, we calculated the 154 

local average rate of evolution for each genus that contains at least 10 genomes in the reference 155 

phylogeny and examined the distribution of the average rates among genera. The average rate of 156 

a genus is calculated as the variance of phylogenetically independent contrasts (PICs) [36] of 157 

GCN within the genus. 158 

 159 

Modeling 16S rRNA GCN evolution with homogeneous and heterogeneous pulsed evolution 160 

models 161 

Using the R package RasperGade [37], we fitted one PE model to the entire reference phylogeny 162 

and calculated the likelihood of this homogeneous PE model. An analysis of the variance of the 163 

PICs associated with each genus indicated that there is a slowly-evolving group and a regularly-164 

evolving group, with the average rate of the slowly-evolving group estimated to be at least 100-165 

fold lower than that of the regularly-evolving group (Figure S1). To model the rate heterogeneity, 166 

we created two PE models: PEregular for the regularly-evolving group and PEslow for the slowly-167 

evolving group. We then use a two-step iterative binning procedure to estimate the parameters of 168 

PEregular and PEslow (i.e., jump size and frequency). The PEregular model was initiated to take the 169 

parameter values of the homogeneous PE model. PEslow was initiated to have a jump size equal 170 
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to that of PEregular but a jump frequency100-fold lower. In our first round of binning, from the 171 

root to the tip of the reference phylogeny, we classified each node into the regularly- or slowly-172 

evolving group by testing which model (PEregular or PEslow) provided a better fit. We merged 173 

neighboring nodes belonging to the same group into one neighborhood and flipped neighborhood 174 

assignment if the flip resulted in an improved overall AIC value. After the first round of binning, 175 

we updated PEregular and PEslow by fitting PEregular to nodes that were classified as regularly-176 

evolving and PEslow to slowly-evolving nodes. We used the updated models to perform a second 177 

round of binning to assign each node in the phylogeny to a group. Finally, we calculated r, the 178 

rate of evolution in each group, as the process variance per unit branch length defined in a 179 

previous study [14]. We then rescaled the reference tree by multiplying the branches in the 180 

slowly-evolving group by the ratio rslow/rregular. To accommodate time-independent variation in 181 

the tip trait values, we calculated a branch length over which the process variance of the fitted 182 

pulsed evolution model is equal to the model’s time-independent variation, and added this branch 183 

length to each tip branch. We compared the homogeneous and heterogeneous PE models by AIC. 184 

 185 

Predicting 16S rRNA GCN  186 

We used the R package RasperGade16S to predict 16S rRNA GCN using the heterogeneous 187 

pulsed evolution model. RasperGade16S first assigns the query sequence to either the regularly-188 

evolving or the slowly-evolving group based on where it is inserted in the reference phylogeny. 189 

For a query sequence inserted into the slowly-evolving group, its insertion branch length is 190 

scaled by the ratio rslow/rregular. For a query sequence inserted into the regularly-evolving group, a 191 

small branch length is added to the insertion branch to represent the estimated time-independent 192 

variation. RasperGade16S then predicts the GCN of the query using the rescaled reference 193 
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phylogeny. Because 16S rRNA GCN is an integer trait, the continuous prediction from hidden 194 

state prediction is rounded and a confidence (probability) that the prediction is equal to the truth 195 

is estimated by integrating the predicted uncertainty distribution. We marked the 16S rRNA 196 

GCN prediction with a confidence smaller than 95% as unreliable, and otherwise as reliable. As 197 

a comparison, we also predicted GCN using PICRUST2, which employs multiple hidden state 198 

prediction methods in the R package castor [38] for 16S rRNA GCN predictions. We selected 199 

three methods by which confidence can be estimated: the phylogenetically independent contrast 200 

(pic) method, the maximum parsimony (mp) method, and the empirical probability (emp) 201 

method. Otherwise, we run PICRUST2 using default options and the unscaled reference 202 

phylogeny. For the pic method, the confidence measure is not provided by the hidden state 203 

prediction function of the castor package, and thus we used a customized R script to reroot the 204 

tree at the query sequence and estimated the confidence of the prediction.  205 

 206 

We did not test the tools CopyRighter [7] and PAPRICA [9] directly in this study because 1) 207 

neither provides the option of using a user-supplied reference data, and 2) neither provides 208 

uncertainty estimates (i.e., confidence intervals) of its predictions, which is the primary focus of 209 

this study. However, CopyRighter employs the pic method and we expect its performance to be 210 

highly similar to PICRUST2 running the pic method. As PAPRICA [9]employs the subtree 211 

average method, a continuous analogue to the emp method, we expect that its performance will 212 

be highly similar to that of PICRUST2 running the emp method. 213 

 214 
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Adjust NSTD and NSTI with rate heterogeneity 215 

The adjusted nearest-sequenced-taxon-distances (NSTDs) [12] is calculated using the rescaled 216 

reference tree. The adjusted nearest-sequenced-taxon-index (NSTI) [10] is calculated as the 217 

weighted average of adjusted NSTDs of the community members. 218 

 219 

Validating the quality of predicted 16S rRNA GCN and its confidence estimate 220 

We used cross-validations to evaluate the quality of 16S rRNA GCN prediction and its 221 

confidence estimate, and how they vary with NSTD. We randomly selected 2% of the tips in the 222 

reference phylogeny as the test set and filtered the remaining reference set by removing tips with 223 

a NSTD to any test sequence smaller than a threshold. We then predicted the 16S rRNA GCN for 224 

each tip in the test set using the filtered reference set. We conducted cross-validation within 9 225 

bins delineated by 10 NSTD thresholds: 0, 0.002, 0.005, 0.010, 0.022, 0.046, 0.100, 0.215, 0.464 226 

and 1.000 substitutions/site, and for each bin we repeated the cross-validation 50 times with non-227 

overlapping test sets. We evaluated the quality of the 16S rRNA GCN prediction by the 228 

coefficient of determination (R2), the fraction of variance in the true copy numbers explained by 229 

the prediction. We evaluated the quality of confidence estimate by precision and recall. Precision 230 

is defined as the proportion of accurately predicted 16S rRNA GCN in predictions considered as 231 

reliable (with ≥ 95% confidence), and recall is defined as the proportion of reliable predictions in 232 

the accurately predicted 16S rRNA GCNs. We averaged the R2, precision and recall for the 50 233 

cross-validations in each bin. 234 

 235 

Simulating 16S rRNA GCN variation under pulsed evolution model 236 
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To evaluate the performance of different prediction methods when the trait evolves under the 237 

pulsed evolution model, we simulated the evolution of 16S rRNA GCN using the fitted 238 

heterogeneous pulsed evolution model. Specifically, we first simulated the number of jump 239 

events for each branch in the reference phylogeny based on the rate group that branch belongs to. 240 

Then we simulated the continuous trait change for each branch using the corresponding number 241 

of jump events. We added up the continuous trait change from the root to the tips to get the tip 242 

trait values and rounded them to the nearest integers. This set of simulated 16S rRNA GCN is 243 

referred to as ST1. 244 

 245 

Simulating bacterial communities with 16S rRNA GCN variation 246 

To evaluate the effect of 16S rRNA GCN correction on bacterial diversity analyses, we 247 

simulated two sets of bacterial communities using the reference genomes: one set for relative cell 248 

abundance analyses (SC1) and the other set for beta-diversity analyses (SC2). We treated each 249 

reference genome as one OTU. For SC1, we simulated a total of 100 communities. For each 250 

simulated community, we randomly selected 2000 OTUs from the reference genomes, and 251 

assigned each OTU a cell abundance randomly drawn from a log-series species abundance 252 

distribution.  253 

 254 

In SC2, we simulated communities in two environments to evaluate the effect of 16S rRNA 255 

GCN correction on beta diversity analyses. We simulated 10 communities per environmental 256 

type and 2000 OTUs per community. We controlled the community turnover rate by controlling 257 

the number of unique OTUs in each community. For example, at a turnover rate of 10%, a 258 

community would have 200 unique OTUs and 1800 core OTUs that are shared among all 259 
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communities. We varied the turnover rate from 10% to 90% at 10% intervals. To control for the 260 

effect size of environmental type, we assigned 5 (0.25%), 20 (1%) or 100 (5%) signature OTUs 261 

to each environmental type. These signature OTUs were shared between the two environmental 262 

types but were twice more likely to be placed in top ranks of the log-series distribution (i.e., to be 263 

more abundant) than the non-signature OTUs in their corresponding environment. The 16S 264 

rRNA GCN of each OTU was assigned randomly from the reference genomes’ GCN. We 265 

simulated 50 batches of communities for each combination of turnover rate and signature OTU 266 

number, resulting in 27000 simulated communities in SC2. 267 

 268 

Evaluating the effect of 16S rRNA GCN correction on relative cell abundance estimation 269 

We evaluated the effect of 16S rRNA GCN correction on the simulated bacterial communities 270 

(SC1). To estimate the confidence interval (CI) of the corrected relative cell abundance of each 271 

OTU in a community, we randomly drew 1000 sets of 16S rRNA GCNs from their predicted 272 

uncertainty distribution. For each set of 16S rRNA GCNs, we divided the gene read count of 273 

OTUs by their corresponding 16S rRNA GCNs to get the corrected cell counts. The median of 274 

the corrected cell count for each OTU in the 1000 sets is used as the point estimate of the 275 

corrected cell count, and the OTU’s relative cell abundance is calculated by normalizing the 276 

corrected cell count with the sum of corrected cell counts of all OTUs in the community. The 95% 277 

CI for each OTU’s relative cell abundance is determined using the 2.5% and 97.5% quantiles of 278 

the 1000 sets of corrected relative cell abundances. The OTU with the highest corrected relative 279 

cell abundance is considered the most abundant taxon. The support value for the most abundant 280 

OTU is calculated as the empirical probability that the OTU has the highest cell abundance in the 281 

1000 sets of corrected cell abundances. We calculated the coverage probability of the CI as the 282 
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empirical frequency that the relative gene abundance or true relative cell abundance is covered 283 

by the estimated CI. We evaluated the effect of 16S rRNA GCN correction on relative cell 284 

abundance estimation at different NSTD thresholds. 285 

 286 

Evaluating the effect of 16S rRNA GCN correction on beta-diversity analyses 287 

We used the Bray-Curtis dissimilarity and Aitchison distance for any beta-diversity analysis that 288 

requires a dissimilarity or distance matrix and evaluated the effect of 16S rRNA GCN correction 289 

on the simulated bacterial communities (SC2). To correct for 16S rRNA GCN variation in beta-290 

diversity analyses, we divided the gene abundance of each OTU by its predicted 16S rRNA GCN 291 

and calculated the corrected relative cell abundance table and the corresponding 292 

dissimilarity/distance matrix. We used the corrected cell abundance table to generate the 293 

principal coordinates analysis (PCoA) plot and to conduct the permutational multivariate 294 

analysis of variance (PERMANOVA) and the random forest test with the R package vegan and 295 

randomForest, respectively. 296 

 297 

Predicting 16S rRNA GCN for SILVA OTUs 298 

We downloaded 592605 full-length representative bacterial 16S rRNA sequences of non-299 

redundant OTUs at 99% similarity (OTU99) in the SILVA release 132 [1]. We aligned and 300 

trimmed the sequences using the method described above. We then inserted the OTUs into the 301 

reference phylogeny using the evolutionary placement algorithm (EPA-ng) [39] with the model 302 

parameters estimated by RAxML when building the reference phylogeny. We limited the 303 

maximum number of placements per SILVA representative sequence to 1. We predicted the 16S 304 
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rRNA GCN for each SILVA OTU99 as described above using the heterogeneous pulsed 305 

evolution model and calculated adjusted NSTDs. 306 

 307 

Evaluating the effect of GCN correction in HMP1 and EMP dataset 308 

To check the effect of 16S rRNA GCN correction in empirical data, we analyzed the 16S rRNA 309 

V1-V3 amplicon sequence data of the first phase of Human Microbiome Project (HMP1) [40] 310 

and the sequence data processed by Deblur [41] in the first release of the Earth Microbiome 311 

Project (EMP) [42]. The 16S rRNA GCN for each OTU in the HMP1 and EMP datasets was 312 

predicted using RasperGade16S. We picked 2560 samples in the HMP1 dataset with complete 313 

metadata and used the 2000-sample subset of EMP, and determined the adjusted NSTI and 314 

relative cell abundance in each community as described above. For beta-diversity, we randomly 315 

picked 100 representative samples from each of the 5 body sites in the HMP1 dataset and 316 

analyzed their beta-diversity as described above. For the EMP dataset, we analyzed the beta-317 

diversity within each level-2 EMP ontology (EMPO) category (around 400 to 600 samples per 318 

category). 319 

 320 

Examining the adjusted NSTI of empirical bacterial communities 321 

To check the predictability of 16S rRNA GCN in empirical data, we examined bacterial 322 

communities surveyed by 16S rRNA amplicon sequencing in the MGnify resource platform [43] 323 

that were processed with the latest two pipelines (4.1 and 5.0). The MGnify resource platform 324 

uses the SILVA database release 132 [1] for OTU-picking in their latest pipelines, and therefore 325 

predicted GCNs for SILVA OTUs can be used directly. We filtered the surveyed communities 326 

from the MGnify platform so that only communities with greater than 80% of their gene reads 327 
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mapped to the SILVA reference at a similarity of 97% or greater were included. This filtering 328 

yielded 113842 bacterial communities representing a broad range of environment types. We 329 

calculated the adjusted NSTI for each community and examined the adjusted NSTI distribution 330 

in various environmental types.  331 

 332 

Results 333 

Time-independent variation is present in 16S rRNA GCN evolution 334 

To evaluate the extent of intraspecific variation in 16S rRNA GCN, we examined 5437 pairs of 335 

genomes with identical 16S rRNA gene alignments. The 16S rRNA GCN differs in 607 (11%) of 336 

them, suggesting the presence of significant intraspecific variation or time-independent variation. 337 

Using AIC, we found that incorporating time-independent variation with the BM model greatly 338 

improves the model fit (Table 1), indicating the necessity to take time-independent variation into 339 

account in 16S rRNA GCN prediction. In addition, we observed that the rate of evolution in the 340 

fitted BM model is inflated by 1670 folds when time-independent variation is not included in the 341 

model. Such inflation in the estimated rate of evolution will lead to overestimation of uncertainty 342 

in the 16S rRNA GCN prediction. 343 

 344 

Table 1. The AICs of Brownian motion model and pulsed evolution model. 345 

Model BM 
BM (with time-
independent variation) 

PE (with time-independent 
variation) 

Homogenous 
model 

34338 18028 -7925 

Heterogeneous 
model 

NA NA -15395 

 346 
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Pulsed evolution model explains the 16S rRNA GCN evolution better than the Brownian motion 347 

model 348 

When predicting traits using phylogenetic methods, the BM model is commonly assumed to be 349 

the model of evolution. We have shown that PE model is a better model for explaining the 350 

evolution of [14,20] bacterial genome size [37], prompting us to test whether pulsed evolution 351 

can be applied to explain 16S rRNA GCN evolution as well. Using the R package RasperGade 352 

that implements the maximum likelihood framework of pulsed evolution described by Landis 353 

and Schraiber [14], we fitted the PE model with time-independent variation to the same dataset. 354 

Table 1 shows that the PE model provides a significantly better fit than the BM model, indicating 355 

that 16S rRNA GCN prediction should assume the PE model instead of the BM model. Fitted 356 

model parameters are not sensitive to the HMM profiles used for aligning the 16S rRNA 357 

sequences (Table S2). 358 

 359 

Substantial rate heterogeneity exists in 16S rRNA GCN evolution 360 

To systematically examine the rate heterogeneity of 16S rRNA GCN evolution in the reference 361 

genomes, we first used the variance of PICs as an approximate estimate of the local evolution 362 

rate of 16S rRNA GCN. We found that the rate of evolution varies greatly among genera (Figure 363 

S1), but can be roughly divided into two groups with high and low rates of evolution. Therefore, 364 

we developed a heterogeneous pulsed evolution model where all jumps are the same size but the 365 

frequency of jumps varies between two groups to accommodate the heterogeneity among 366 

different bacterial lineages. Using a likelihood framework and AIC, we classified 3049 and 3358 367 

nodes and their descending branches into slowly-evolving and regularly-evolving groups 368 

respectively (Figure S2). The frequency of jumps in the regularly-evolving group is 145 folds of 369 
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the frequency in the slowly-evolving group (Table S3). The heterogeneous PE model provides 370 

the best fit among all models tested (Table 1), indicating that a heterogeneous PE model should 371 

be assumed in predicting 16S rRNA GCN. 372 

 373 

Apart from the rate of pulsed evolution, we also observed heterogeneity in time-independent 374 

variation: for the slowly-evolving group, the fitted model parameters indicate no time-375 

independent variation, while for the regularly-evolving group, the magnitude of time-376 

independent variation is approximately 40% of a jump in pulsed evolution (Table S3). The 377 

presence of time-independent variation caps the confidence of prediction in the regularly-378 

evolving group at 85%, which can only be achieved when the query has identical 16S rRNA 379 

gene alignment to one of the reference genomes. 380 

 381 

The effect of NSTD on accuracy and uncertainty of 16S rRNA GCN predictions 382 

Because of the stochastic nature of evolution, the inherent uncertainty in hidden state prediction 383 

accumulates over time, and consequently the accuracy of the prediction decreases as the 384 

phylogenetic distance to the reference increases [12]. To get a better understanding of the 385 

relationships between NSTD and metrics that measure the accuracy and uncertainty of the 386 

prediction, we performed a cross-validation experiment using simulated datasets. We simulated 387 

the evolution of 16S rRNA GCN under the fitted heterogeneous pulsed evolution model along 388 

the reference phylogeny (ST1), and predicted the simulated GCN of the tips using different 389 

methods: the pulsed evolution model (PE), the BM model (pic), maximum parsimony (mp) and 390 

empirical probability (emp). As expected, we found that the true uncertainty of the prediction, as 391 

predicted by the pulsed evolution model under which the simulated GCN evolves, increases with 392 
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the NSTD. The true confidence of the prediction, calculated as 1 - uncertainty, decreases with the 393 

NSTD (Figure 1A, purple line). The pic method predicts greatly inflated uncertainty (Figure 1A, 394 

red line), while the mp method predicts no uncertainty at all (Figure 1A, blue line). The emp 395 

method predicts intermediate uncertainty that is greater than the true uncertainty at small NSTDs, 396 

but smaller than the truth at large NSTDs (Figure 1A, green line). We used the coefficient of 397 

determination (R2) of the predicted trait values to the truth to evaluate the accuracy of the 398 

prediction. Figure 1B shows the PE method performs the best. It is followed by the mp and the 399 

pic method. The emp method performs the worst. As observed in previous research [12], the 400 

accuracy decreases as the NSTD increases (Figure 1B).  401 

 402 

Because we will use the uncertainty measure to evaluate the reliability of the prediction, we 403 

tested whether the uncertainty predicted by the various methods we compared here captures the 404 

true reliability of the prediction. Specifically, we calculated the precision and recall of 405 

predictions with a confidence of 95% or greater to examine the recovery of highly reliable 406 

predictions. We define precision as the proportion of accurately predicted 16S rRNA GCN in 407 

predictions with ≥ 95% confidence, and recall as the proportion of predictions with ≥ 95% 408 

confidence in the accurately predicted 16S rRNA GCNs. Ideally, the precision should be greater 409 

than 95% throughout the NSTD spectrum, while the recall should gradually drop as the NSTD 410 

and the uncertainty of prediction increase. We found that the PE method yields high recall at 411 

small NSTDs and it decreases as NSTD and uncertainty in the prediction increase (Figure 1C, 412 

purple line). In terms of precision, the PE method yields high precision throughout the spectrum 413 

of NSTD (Figure 1D, purple line). The pic method has the lowest recall rate at the smallest 414 

NSTD and no recovery beyond as it overestimates the uncertainty (Figure 1C and D, red lines). 415 
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On the contrary, the mp method yields the highest recall regardless of NSTD as it predicts no 416 

uncertainty at all (Figure 1C, blue line), but it suffers from lower precision than the PE method 417 

and the precision drops quickly as NSTD increases (Figure 1D, blue line). In essence, the 418 

uncertainty estimated using the pic method is so great that few predictions can be trusted. On the 419 

other hand, according to the mp method, there is no uncertainty in a prediction and every 420 

prediction is reliable. The emp method shows a similar trend in recall compared to the PE 421 

method, but suffers from lower precision than the PE method.  422 

 423 

In summary, the uncertainty of 16S rRNA GCN prediction increases with the increase of NSTD, 424 

and as a result, the accuracy of prediction drops as the NSTD increases for all methods. The 425 

recall rate of highly reliable predictions also drops with the increasing NSTD and uncertainty, 426 

while the precision can remain high throughout the NSTD spectrum.  427 

 428 

RasperGade16S improves confidence estimate for 16S rRNA GCN prediction in empirical data 429 

Using 16S rRNA GCN from the 6408 complete genomes in the reference phylogeny for cross-430 

validation, we compared the performance of various methods in accuracy and confidence 431 

estimates. In general, the trends of uncertainty, accuracy, precision and recall plotted against the 432 

NSTD (Figure 2) are very similar to those observed in the simulation study (Figure 1), indicating 433 

that RasperGade16S models the 16S rRNA GCN evolution reasonably well. As observed in the 434 

simulation, the pic and mp methods produce very large and zero uncertainty respectively (Figure 435 

2A), leading to both poor precision and recall rates (Figure 2C and 2D). The emp method 436 

performs the worst in terms of accuracy. The PE method produces the best overall precision, 437 

achieving an average precision rate of 0.96 throughout the NSTD spectrum. Overall, the PE 438 
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method provides one of the best accuracies and the best confidence estimate for 16S rRNA GCN 439 

prediction over the full spectrum of NSTD, and should be preferred when predicting 16S rRNA 440 

GCN. 441 

 442 

As NSTD of the 16S rRNA gene also depends on the sequence alignment and how it is trimmed, 443 

it can vary from study to study using the same set of reference sequences. Therefore, to put 444 

NSTD values of this study in a taxonomic context, we calculated the NSTDs between taxa at 445 

different taxonomical levels. For example, at the species level, we calculated the NSTD of a 446 

species to another species within the same genus. We found that the median NSTD between 447 

congeneric species is around 0.01 substitutions/site and the maximum NSTD threshold (0.464 448 

substitutions/site) in our cross-validation experiment roughly correspond to a taxonomic distance 449 

somewhere between class and order (Figure S3).  450 

 451 

Copy number correction improves relative cell abundance estimation 452 

Because 16S rRNA GCN variation biases gene abundances disproportionately among the 453 

community members, it distorts the relative cell abundance estimated from the gene abundance 454 

[5]. From theoretical calculations, in general, community members with lower relative cell 455 

abundances suffer from greater impacts by 16S rRNA GCN variation, while those with higher 456 

relative cell abundances appear to be less affected by it (Figure 3A). The impact of 16S rRNA 457 

GCN variation also depends on the deviation of a member’s GCN from the average GCN of the 458 

community members, with larger deviations resulting in larger impacts (Figure 3A). When a 459 

member’s 16S rRNA GCN is greater than the average GCN of the community, its relative 460 

abundance will be overestimated. On the other hand, when a member’s 16S rRNA GCN is 461 
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smaller than the average GCN, its relative abundance will be underestimated. In simulated 462 

dataset SC1, we found that 16S rRNA GCN variation has a large detrimental effect on the 463 

estimated relative cell abundance (Figure 3B). On average, the relative cell abundance estimated 464 

using the gene abundance increased or decreased by 1.8-fold compared to the true relative cell 465 

abundance, and the empirical probability of correctly identifying the most abundant OTU based 466 

on the gene abundance is only around 13% (Figure 3C). Correcting for 16S rRNA GCN 467 

improves the estimated relative cell abundance (Figure 3B). As expected, the improvement is 468 

greatest when the adjusted NSTI is small (i.e., when there are closely related reference genomes), 469 

and it gradually diminishes when the adjusted NSTI increases. At the smallest adjusted NSTI, the 470 

average fold change of the estimated relative cell abundance decreases to 1.1-fold after 16S 471 

rRNA GCN correction and the empirical probability of correctly identifying the most abundant 472 

OTU increases to around 65% (Figure 3C).  473 

 474 

Because we predict each OTU’s 16S rRNA GCN with a confidence estimate, we can provide 95% 475 

confidence intervals (95% CIs) for their relative cell abundance as well. Ideally, 95% of the true 476 

relative cell abundances should be covered by the 95% CIs. Figure 3D shows that the average 477 

coverage probability of the true relative cell abundance is about 98% across NSTD cutoffs, 478 

indicating that our 95% CIs are slightly over-conservative. Similarly, we can also calculate the 479 

coverage probability of our 95% CI to the relative gene abundance. As expected, when the 480 

coverage probability to the relative gene abundance increases, the improvement by GCN 481 

correction (quantified by the relative reduction in the difference between the estimated and true 482 

cell abundances) decreases (Figure 3E), and that when this coverage probability is below 95%, 483 

GCN correction always results in strong improvement in relative cell abundance estimates. In 484 
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empirical studies when the true abundance is unknown, we can use the coverage probability to 485 

the relative gene abundance as a conservative statistic to decide if GCN correction for a 486 

community will likely improve the relative abundance estimation or not. For the most abundant 487 

OTU in the community, we can calculate its support value from the 16S rRNA GCN’s 488 

confidence estimates. We found that the calculated support value matches the empirical 489 

probability that the most abundant OTU is correctly identified (Figure 3C). 490 

 491 

To demonstrate the effect of 16S rRNA GCN correction in empirical data, we analyzed the data 492 

from the first phase of the Human Microbiome Project (HMP1) and the 2000-sample subset of 493 

Earth Microbiome Project (EMP). We found that on average the relative cell abundance with and 494 

without 16S rRNA GCN correction changes around 1.3-fold in HMP1 and 1.6-fold in EMP. 495 

Since the true abundance of OTUs is unknown, we use the coverage probability of 95% CIs to 496 

the relative gene abundance described above to evaluate the effect of GCN correction. Our 497 

results indicate that a majority of HMP1 (over 82%) and EMP (over 90%) samples have a 498 

coverage probability below 95% (as shown in Figure 3F). Our simulations demonstrate that GCN 499 

correction improves the accuracy of relative cell abundance estimation in samples with coverage 500 

probability less than 95% (as demonstrated in Figure 3E), suggesting that GCN correction will 501 

likely improve relative cell abundance estimates in these HMP1 and EMP samples. In terms of 502 

the most abundant OTU, we found that the identity of the most abundant OTU changes after 503 

copy number correction in around 20% and 31% of the communities in HMP1 and EMP 504 

respectively. The support values for the most abundant OTUs are around 0.85 on average in both 505 

datasets, indicating high confidence in the identification of the most abundant OTUs. 506 

 507 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2023. ; https://doi.org/10.1101/2021.08.31.458422doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.31.458422
http://creativecommons.org/licenses/by-nc/4.0/


 24

Copy number correction provides limited improvements on beta-diversity analyses 508 

Because 16S rRNA GCN variation affects the estimated relative cell abundances, it may also 509 

affect the beta-diversity analyses such as PCoA, PERMANOVA, and the random forest test that 510 

use the relative cell abundance information. To examine the effect of 16S rRNA GCN variation 511 

on these analyses, we simulated communities at different turnover rates in two types of 512 

environments where 0.25%, 1% or 5% of the OTUs are enriched in one environment compared 513 

to the other (the SC2 dataset). We performed beta-diversity analyses on the simulated data and 514 

generated the PCoA plots (an example with 0.25% enriched signature OTU is given in Figure 4). 515 

We found that when the relative gene abundance is used to calculate the Bray-Curtis 516 

dissimilarity or the Aitchison distance, the positions of the samples in the PCoA plot shift from 517 

their positions based on the true relative cell abundance (solid lines in Figure 4A and B), 518 

although this shift is much smaller if the Aitchison distance is used. Correcting for 16S rRNA 519 

GCN reduces about 56% of the shift in the Bray-Curtis dissimilarity space (P<0.001, paired t-test, 520 

Figure 4A) while it reduces about 85% of the shift in the Aitchison distance space (P<0.001, 521 

paired t-test, Figure 4B). Despite the shift in the PCoA plot, we found that the clustering of 522 

communities does not seem to be affected by the 16S rRNA GCN variation. The results with 1% 523 

and 5% enriched signature OTUs are similar to the examples shown in Figure 4. 524 

 525 

In addition to the PCoA plot, we observed a limited effect of 16S rRNA GCN variation on other 526 

beta-diversity analyses. In PERMANOVA, depending on the metric used, the signature OTU 527 

numbers and turnover rates, the proportion of variance explained (PVE) by the environmental 528 

type using the true cell abundances ranges from 5.27 to 17.20% on average. Using gene 529 

abundance, the average PVE ranges from 5.27 to 17.22% and the change in PVE is not 530 
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statistically significant regardless the metric used, the signature OTU numbers, or the turnover 531 

rates (P>0.002, paired t-test with Bonferroni correction, α=9.26×10-4, Table S4), indicating that 532 

PERMANOVA is not very sensitive to 16S rRNA GCN variation.  533 

 534 

It is a common practice to compare the relative cell abundance of OTUs of interest between 535 

environments. We found that such comparison is also not sensitive to 16S rRNA GCN variation 536 

(Table S4), with the fold-change of relative cell abundance estimated using the gene abundance 537 

and the truth highly concordant (R2 > 0.99). For the top OTUs with the highest fold-change in 538 

true cell abundance (i.e., signature OTUs), on average more than 98% of them are also the top 539 

OTUs with highest fold-change in gene abundance, indicating that abundance difference across 540 

environments is not sensitive to 16S rRNA GCN variation. Alternatively, we can use the random 541 

forest test to identify OTUs that are differentially abundant between environments by their 542 

importance scores (defined as the mean decrease in classification accuracy if removed from the 543 

data). We found that the top OTUs ranked by the importance score recovers from 20.0% to 89.0% 544 

of the signature OTUs when the true cell abundances were used (Table S4). When the gene 545 

abundances were used, this recovery rate changes to from 18.0% to 89.32% (Table S4), and the 546 

change is not statistically significant (P > 0.032, paired t-test with Bonferroni correction, 547 

α=1.85×10-3). Correcting for 16S rRNA GCN changes the recovery rate to from 17.8% to 89.2% 548 

(Table S4), and the change is not significant either (P>0.041, paired t-test with Bonferroni 549 

correction, α=1.85×10-3). 550 

 551 

To examine the effect of 16S rRNA GCN variation correction on beta-diversity in empirical data, 552 

we analyzed the beta-diversity using the HMP1 and EMP datasets. Because we observed that the 553 
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effect of GCN correction is independent of the metric used in beta-diversity analyses, we only 554 

used Bray-Curtis dissimilarity in HMP1 and EMP datasets. We found that correction of 16S 555 

rRNA GCN does not seem to affect the clustering of communities by body sites in the HMP1 556 

PCoA plot. Pairwise PERMANOVA shows that the mean PVE by the body site in HMP1 is 14.9% 557 

before 16S rRNA GCN correction and decreases marginally to 14.6% after correction, and the 558 

PVEs using the gene abundance and the corrected cell abundance are also highly concordant 559 

(R2>0.98). In EMP, within each level-2 environment (EMPO2), the average PVE by level-3 560 

environment (EMPO3) remains at 7.7% before and after 16S GCN correction and the PVEs 561 

using the gene abundance and the corrected cell abundance are highly concordant (R2>0.99) as 562 

well. On the other hand, pairwise random forest tests yield similar results before and after 16S 563 

rRNA GCN correction, with around 9 out of the top 10 features identified by the random forest 564 

test remaining unchanged before and after correction in HMP1 and around 8 out of the top 10 565 

unchanged in EMP. In terms of the fold-change of relative cell abundances between body sites, 566 

we found that copy number correction has little impact as the estimated fold-change before and 567 

after correction are highly similar (R2>0.95) in both datasets. 568 

 569 

Predicting 16S rRNA GCNs for SILVA OTUs 570 

Using RasperGade16S, we predicted the 16S rRNA GCN for 592605 bacterial OTUs (99% 571 

identity) in the release 132 of the SILVA database. Overall, the median adjusted NSTD for all 572 

bacterial OTUs is 0.070 substitutions/site, and 34.7% of the predictions have a high confidence 573 

of 95% or greater, and 74.9% of the predictions have a moderate confidence of 50% or greater 574 

(Table 2). This shows that for most OTUs in the SILVA database, the phylogenetic distance to a 575 

reference 16S rRNA is small enough that we can have reasonable confidence in the predictions. 576 
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In comparison, randomly guessing has a null confidence of around 6.7% (1 out of 15 possible 577 

GCNs). Among major phyla with more than 10000 OTUs, the proportion of highly confident 578 

predictions varies greatly (Table 2), with Cyanobacteria having the lowest proportion of 19.1% 579 

and Acidobacteria having the highest proportion of 50.4%. Similarly, the proportion of 580 

moderately confident predictions varies from 58.3% to 89.5% among these phyla. Interestingly, 581 

the proportions of highly confident predictions closely match the proportions of slowly-evolving 582 

OTUs in each phylum (Table 2), suggesting a causal relationship between them. 583 

 584 

Table 2. Summary of SILVA 16S rRNA GCN predictions.  585 

Taxonomic 
group 

Number 
of OTUs 

Median adjusted 
NSTD 
(substitutions/site) 

Proportion 
of OTUs in 
slowly-
evolving 
group 

Proportion of 
highly 
confident 
predictions 

Proportion of 
moderately 
confident 
predictions 

Bacteria 592605 0.070 34.9% 34.7% 74.9% 

Proteobacteria 238929 0.062 43.4% 43.1% 85.4% 

Firmicutes 149757 0.091 21.6% 21.5% 68.9% 

Actinobacteria 60510 0.061 45.2% 45.2% 89.5% 

Bacteroidetes 55663 0.117 29.9% 29.8% 58.3% 

Acidobacteria 14534 0.006 50.4% 50.4% 82.7% 

Cyanobacteria 13970 0.285 19.9% 19.1% 60.5% 

Highly confident predictions are defined as predictions with a confidence of 95% or greater. 586 
Moderately confident predictions are defined as predictions with a confidence of 50% or greater. 587 
 588 

Vast majorities of bacterial community studies should benefit from copy number correction 589 

To examine if analysis of real communities would benefit from 16S rRNA GCN correction, we 590 

calculated the adjusted NSTI for 113842 communities in the microbiome resource platform 591 

MGnify (formerly known as EBI Metagenomics) [43] that passed our quality control. These 592 
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microbiomes were sampled from various environments and include host-associated microbiomes 593 

in animals and plants and free-living microbiomes in soil and aquatic environments (Table S5). 594 

The adjusted NSTI varies greatly among samples and the median across all samples is 0.01 595 

substitutions/site. For example, the smallest adjusted NSTI (8.2✕10-7 substitutions/site) comes 596 

from a human vaginal clinical sample that is dominated by one OTU (relative cell 597 

abundance >0.98). This OTU is closely related to Lactobacillus iners in the slowly-evolving 598 

group, which results in the extremely small adjusted NSTI. On the other hand, the largest 599 

adjusted NSTI (0.6 substitutions/site) belongs to a sample from the rumen of dairy cows. The 600 

majority of OTUs in this sample has an adjusted NSTD greater than 0.1 substitutions/site and 601 

account for more than 90% of the total cell abundance. In the simulated communities, we 602 

observed that GCN correction significantly improves the estimated relative cell abundances 603 

(P<0.001, paired t-test) even when the adjusted NSTI reaches 0.3 substitutions/site. We found 604 

that more than 99% of the communities from MGnify have an adjusted NSTI less than 0.3 605 

substitutions/site, suggesting that they should benefit from 16S rRNA GCN correction when 606 

estimating the relative cell abundances. The distribution of adjusted NSTI varies among different 607 

environmental types (Figure 5), but the proportion of communities that will likely benefit from 608 

16S rRNA GCN correction remains high, ranging from 98% to 100%. 609 

 610 

Discussion 611 

16S rRNA GCN variation skews bacterial community composition estimated from the 16S 612 

rRNA read count. To correct for the bias introduced by the GCN variation, several methods have 613 

been developed to predict GCN from reference genomes. A recent study has pointed out that the 614 

GCN predictions come with inherent uncertainty, particularly for these taxa without closely 615 
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related genomes [12]. The concern is that inaccurate predictions can introduce noise to 616 

community compositions that can be worse than the original GCN-related biases, thereby raising 617 

doubt about the usefulness of the 16S rRNA GCN correction in bacterial diversity analyses 618 

[8,12]. 619 

 620 

We address the inherent uncertainty problem in 16S rRNA GCN prediction by directly 621 

measuring it with confidence estimates. Using simulations and cross-validation, we show that the 622 

PE method implemented in RasperGade16S outperforms other methods in both the precision and 623 

recall rates. This method’s strength comes from three features of its modeling of the 16S rRNA 624 

GCN evolution: implementation of a pulsed evolution model and accounting for the rate 625 

heterogeneity and time-independent trait variation. Pulsed evolution model expects no trait 626 

changes to occur over a short branch as jumps are not likely to happen on that branch. This leads 627 

to a higher confidence to 16S rRNA GCN prediction with a short NSTD, and thus improves the 628 

recall of the accurate predictions. By incorporating rate heterogeneity, we can make predictions 629 

in the slowly-evolving groups with high confidence, even when their NSTDs are large, thereby 630 

further improving the overall precision and recall rates. In the reference phylogeny, 48% of 631 

branches were estimated to fall within this slowly-evolving group, whose evolution rate is 145 632 

times slower compared to that of the regularly-evolving group. The third source of improvement 633 

for RasperGade16S comes from accounting for time-independent variation, which can result 634 

from measurement error and intraspecific variation. We show that failing to account for time-635 

independent variation results in model misspecification (Table 1) and overestimated rate of 636 

evolution for the pic method. 637 

 638 
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Having confidence estimates is critical in the presence of inherent uncertainty because they 639 

provide direct evaluation of the uncertainty associated with the predictions. Although such 640 

uncertainty is positively correlated with the NSTD (Figure 2), use of NSTD as a measure of 641 

uncertainty lacks a clear statistical meaning. Using cross-validation, we show that 642 

RasperGade16S has high precision (around 0.96), which means for predictions with high 643 

confidence (≥95%), 96% of the predictions are accurate. Therefore, we can use the confidence 644 

score provided by RasperGade16S to select high-quality predictions if necessary, or we can draw 645 

firm conclusions from the 16S rRNA data when the confidence is high. For example, 16S rRNA 646 

GCN has been linked to the ecological strategy of bacterial species, with oligotrophs generally 647 

having low GCNs and copiotrophs having higher GCNs [17,18]. To better understand the overall 648 

ecological strategy of a bacterial community, we can predict its members’ GCNs and classify the 649 

community into either an oligotroph-dominant, copiotroph-dominant or a mixed community, and 650 

we can do this with a measure of confidence. 651 

 652 

The application of confidence estimation extends beyond the prediction of 16S rRNA GCN. 653 

Because the uncertainty in the prediction is inherited by statistics derived from the predicted 16S 654 

rRNA GCN, we can estimate the uncertainty and confidence intervals of important parameters in 655 

downstream analyses, such as the relative cell abundance. With confidence intervals, we can 656 

draw more meaningful and sound conclusions, such as identifying the most abundant OTU in the 657 

community with a support value. Getting confidence estimates of the relative cell abundance is 658 

also important for predicting the functional profile of a community based on 16S rRNA 659 

sequences. Although PICRUST2 uses an extremely lenient NSTD cut-off to eliminate 660 

problematic sequences, it does not provide an accurate confidence measurement of its 661 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2023. ; https://doi.org/10.1101/2021.08.31.458422doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.31.458422
http://creativecommons.org/licenses/by-nc/4.0/


 31

predictions. As shown in this study, the default maximum parsimony method used by 662 

PICRUST2 to predict 16S rRNA GCN essentially assumes there is no uncertainty in the 663 

predictions, which is unrealistic and leads to poor precision. Incorporation of a more meaningful 664 

confidence estimate of 16S rRNA GCN prediction in PICRUST2 should make its functional 665 

profile prediction more informative. 666 

 667 

We predicted GCN for 592605 bacterial OTU99 in the SILVA database. Not surprisingly, we 668 

observed considerable uncertainty in the GCN predictions. This is because only a small fraction 669 

of bacterial diversity in the SILVA database has been captured by the fully sequenced genomes. 670 

In addition, 65.1% of OTUs in SILVA database belong to the regularly-evolving group and the 671 

confidence of predictions for these OTUs is capped at 85% because of the time-independent 672 

variation. However, we would like to point out that natural communities are not a random 673 

subsampling of the SILVA OTUs and the median NSTI (NSTD weighted by community 674 

members’ relative abundance) of the 113842 bacterial communities we examined is 0.01 675 

substitutions/site, much lower than the median NSTD of SILVA OTUs. Strikingly, 99% of 676 

113842 bacterial communities we examined have an adjusted NSTI less than 0.3 677 

substitutions/site, a range where we show that GCN correction improves the accuracy of the 678 

relative cell abundance estimation (Figure 3B). Because these communities represent a 679 

comprehensive and diverse list of natural and engineered environments, we recommend applying 680 

16S rRNA GCN correction to practically any microbial community regardless of the 681 

environmental type if accurate estimates of relative cell abundance are critical to the study. Our 682 

results therefore affirm the conclusion of the previous studies based on analyses of a much 683 

smaller number of communities [5,7]. 684 
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  685 

McLaren et al. have shown that statistics that are functions of individual taxon’s relative 686 

abundance will be sensitive to the systematic biases introduced in the sequencing and data 687 

analysis pipeline (including bias introduced by 16S rRNA GCN variation) [44]. Contrary to 688 

some popular belief, these biases will not cancel out when analyzing the differences between 689 

samples that have been measured by the same protocol [44]. Nevertheless, few studies have 690 

investigated to what extent the bias introduced by 16S rRNA GCN variation will have on the 691 

microbiome beta diversity analyses. We show that the effect sizes of 16S rRNA bias on beta-692 

diversity analyses are small. Correcting 16S rRNA GCN provides limited improvement on the 693 

beta-diversity analyses such as random forest analysis and PERMANOVA test. One possible 694 

reason is that for an OTU, the fold change in the relative cell abundance between samples 695 

remains more or less the same with or without correcting for the copy number. For example, 696 

assuming the estimated relative cell abundances of an OTU in samples A and B are ra and rb 697 

respectively without copy number correction. When correcting for the copy number, its relative 698 

abundance is adjusted with the scaling factor ACN/GCN, where the GCN is the 16S rRNA copy 699 

number of the OTU and the ACN is the average copy number of the sample. Assuming the ACN 700 

does not vary much between samples, then the scaling factor for the OTU will be roughly the 701 

same in samples A and B. So even with copy number correction, the relative abundance change 702 

will still be close to ra/rb.  703 

 704 

It should be noted that having a confidence associated with the 16S rRNA GCN prediction helps 705 

to estimate the uncertainty of the prediction, but it does not improve the accuracy of the 706 

prediction. Accuracy of the prediction is constrained by the inherent uncertainty, which can only 707 
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be improved by better sampling the reference genomes. However, as our current sampling is 708 

inadequate for accurate 16S rRNA GCN prediction of all environmental bacteria, we believe that 709 

incorporating confidence estimates is the best practice to control for the uncertainty in the 16S 710 

rRNA based bacterial diversity studies, as opposed to not correcting the GCN bias as previously 711 

suggested [8,12]. Based on bootstrapping, we have demonstrated that confidence intervals or 712 

support values can be calculated for key statistics in downstream analyses such as relative cell 713 

abundance and beta diversity. With the uncertainty incorporated into the statistical tests, users 714 

may decide if correcting for GCN variation is worthwhile on a case-by-case basis. 715 

 716 

Conclusion 717 

We have developed a robust model to estimate the confidence of 16S rRNA GCN predictions. 718 

As a rule of thumb, we recommend that, regardless of the environmental type, 16S rRNA GCN 719 

correction be applied to virtually all 16S rRNA bacterial communities when estimating their 720 

compositional and functional profiles. However, for commonly used bacterial beta-diversity 721 

analyses, the GCN correction does not appear to be necessary. 722 

 723 

List of abbreviations 724 

16S rRNA: 16S ribosomal RNA. GCN: gene copy number. 16S GCN: 16S rRNA gene copy 725 

number. OTU: operational taxonomic unit. BM: Brownian motion. PE: pulsed evolution. PIC: 726 

phylogenetically independent contrast. AIC: Akaike information criterion. NSTI: nearest-727 

sequenced-taxon-index. NSTD: nearest-sequenced-taxon-distance. CI: confidence interval. 728 

PCoA: principal coordinates analysis. PERMANOVA: permutational multivariate analysis of 729 

variance 730 
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  858 
Figure legends 859 

Figure 1. The performance of prediction on simulated 16S rRNA GCN. Using cross-860 

validation of simulated data, the mean estimated uncertainty and confidence of predictions (A), 861 

the mean coefficient of determination R2 of the predictions (B), and the recall (C) and precision 862 

(D) of classification of predictions by their associated confidence estimate, plotted against the 863 

mean NSTD. The red line is missing in D because no predictions under the BM model have ≥ 95% 864 

confidence when the mean NSTD is greater than 0.002 substitutions/site. The error bars 865 

represent the 95% CI of the mean.  866 

 867 
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Figure 2. The performance of prediction on empirical 16S rRNA GCN. Using cross-868 

validation of empirical data, the mean estimated uncertainty and confidence of predictions (A), 869 

the mean coefficient of determination R2 of the predictions (B), and the recall (C) and precision 870 

(D) of classification of predictions by their associated confidence estimate, plotted against the 871 

mean NSTD. The error bars represent the 95% CI of the mean. The empirical 16S rRNA GCN 872 

analyzed here are from the 6408 complete genomes in the reference phylogeny.  873 

 874 

Figure 3. The impact of 16S rRNA GCN variation on estimated relative cell abundances. (A) 875 

The impact of GCN variation on estimated relative cell abundance based on theoretical 876 

calculations. The color of the lines denotes the ratio of an OTU’s of GCN to the average GCN of 877 

the community. (B) The average fold-change to the true relative cell abundance. (C) The 878 

empirical probability of correctly identifying the most abundant OTU in the community and the 879 

support value for the most abundant OTU. (D) The coverage probability of relative cell 880 

abundances’ estimated 95% CIs to the true relative cell abundance. Accurate confidence 881 

estimates (95% CIs) should produce a coverage probability of 95% regardless of the adjusted 882 

NSTI (dashed red line). (E) The correlation between the coverage probability to the relative gene 883 

abundance and the improvement by GCN correction. The horizontal red dashed line represents 884 

no improvement in relative cell abundance estimates; the vertical red dashed line represents 95% 885 

coverage probability to the relative gene abundance. The improvement is quantified by the 886 

relative reduction in the difference between the estimated and true cell abundances. (F) The 887 

empirical cumulative distribution of the coverage probability to the relative gene abundance in 888 

2560 samples from the HMP1 dataset and 1856 samples from the EMP dataset. All error bars 889 

represent 95% CI of the mean. 890 
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 891 

Figure 4. The impact of 16S rRNA GCN variation on beta-diversity. Examples of shift in the 892 

Bray-Curtis dissimilarity (A) and the Aitchison distance (B) matrices due to 16S rRNA GCN 893 

variation. The shift for each metric is visualized in a PCoA plot comparing 20 simulated samples 894 

from two hypothetical environments with 5 signature OTUs (0.25%) in each environment and a 895 

turnover rate of 20%. Solid lines represent the shift of a sample from its true location when using 896 

the gene abundance.  897 

 898 

Figure 5. The distribution of adjusted NSTI in empirical data. The distribution of adjusted 899 

NSTI of 113842 communities in the MGnify database representing various environmental types. 900 

The red dashed line marks the adjusted NSTI of 0.3 substitutions/site. 901 
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