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Abstract 12 

16S rRNA gene copy number (16S GCN) varies among bacterial species and this variation 13 

introduces potential biases to microbial diversity analyses using 16S rRNA read counts. To 14 

correct the biases, methods have been developed to predict 16S GCN. A recent study suggests 15 

that the prediction uncertainty can be so great that copy number correction is not justified in 16 

practice. Here we develop RasperGade16S, a novel method and software to better model and 17 

capture the inherent uncertainty in 16S GCN prediction. RasperGade16S implements a 18 

maximum likelihood framework of pulsed evolution model and explicitly accounts for 19 

intraspecific GCN variation and heterogeneous GCN evolution rates among species. Using cross 20 

validation, we show that our method provides robust confidence estimates for the GCN 21 

predictions and outperforms other methods in both precision and recall. We have predicted GCN 22 

for 592605 OTUs in the SILVA database and tested 113842 bacterial communities that represent 23 

an exhaustive and diverse list of engineered and natural environments. We found that the 24 

prediction uncertainty is small enough for 99% of the communities that 16S GCN correction 25 

should improve their compositional and functional profiles estimated using 16S rRNA reads. On 26 

the other hand, we found that GCN variation has limited impacts on beta-diversity analyses such 27 

as PCoA, PERMANOVA and random forest test. 28 

 29 

Introduction 30 

The 16S ribosomal RNA (16S rRNA) gene is the gold standard for bacterial and archaeal 31 

diversity study and has been commonly used to estimate the composition of bacterial and 32 

archaeal communities through amplicon sequencing. Sequence reads are usually matched to 33 

reference databases like SILVA [1] and GreenGenes [2] to determine the presence of taxa and 34 
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their relative cell abundances. However, the 16S rRNA gene copy number (16S GCN) can vary 35 

from 1 to more than 15 [3, 4] and this large copy number variation introduces bias in the relative 36 

cell abundance estimated using the gene read counts (thereafter referred to as gene abundance) 37 

[5], and consequently it can skew the community profiles, diversity measures and lead to 38 

qualitatively incorrect interpretations [5–8]. As a result, it has been argued that 16S GCN 39 

variations should be taken into account in 16S rRNA gene-based analyses [5]. 40 

 41 

The majority of bacteria species have not been cultured or sequenced and their 16S GCNs are 42 

unknown. Studies have shown that 16S GCN exhibits a strong phylogenetic signal [5, 7], and 43 

therefore 16S GCN can be inferred from closely related reference bacteria. Based on this 44 

principle, software has been developed to predict the 16S GCN [5, 7, 9, 10] in a process often 45 

referred to as hidden state prediction [11]. However, a recent study correctly points out that the 46 

accuracy of 16S GCN prediction deteriorates as the minimum phylogenetic distance between the 47 

query sequence and the reference sequences increases, and the prediction of 16S GCN is still an 48 

open question [12].  49 

 50 

The increasing error of 16S GCN prediction with increasing phylogenetic distance roots from the 51 

stochastic nature of trait evolution, which leads to inherent uncertainty in the predicted trait 52 

values. One way of reducing the inherent uncertainty is to improve taxon sampling in the 53 

reference phylogeny to reduce the query’s phylogenetic distance to the reference [13]. Another 54 

way of addressing the inherent uncertainty is to model the uncertainty directly and have a 55 

confidence estimate. By doing so, we will be able to determine how confident we should be 56 

about a GCN prediction and make meaningful interpretations. Unfortunately, few 16S GCN 57 
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prediction tools provide a confidence estimation for the predicted 16S GCN, and uncertainty is 58 

mostly ignored when interpreting the results of downstream analyses [5, 7, 10]. For example, 59 

PICRUST2 predicts functional profiles of bacterial and archaeal communities from 16S rRNA 60 

sequence data. It predicts 16S GCN for each operational taxonomic unit (OTU) in the 61 

community and uses the predicted values (point estimates) to estimate “corrected” relative cell 62 

abundances and metagenomes, without accounting for the uncertainty of the predictions. As a 63 

result, the impact of uncertainty in 16S GCN prediction on bacterial diversity analyses remains 64 

unknown and needs to be investigated. 65 

 66 

Several points need to be considered to properly model the prediction uncertainty. First, because 67 

the uncertainty roots from the stochastic nature of trait evolution, we need to develop a good 68 

model for 16S GCN evolution. Previously the evolution of the 16S GCN trait has been modeled 69 

as gradual evolution using the Brownian motion (BM) model [5, 7, 10]. However, alternative 70 

models exist and need to be considered [14–16]. For example, pulsed evolution (PE) model 71 

postulates that traits evolve by jumps, followed by periods of stasis [14, 17]. It has been shown 72 

that pulsed evolution is prevalent in microbial genome trait evolution [18]. 16S GCN of Bacillus 73 

subtilis can jump from 1 to 6 in a matter of days by gene amplification [19]. On the other hand, it 74 

is well known that the 16S GCN of some bacterial clades such as the Rickettsiales order, a 75 

diverse group of obligate intracellular bacteria, has only one copy of 16S rRNA in their genomes, 76 

demonstrating stasis [20, 21]. To develop a proper model for 16S GCN evolution, the tempo and 77 

mode of evolution need to be examined. 78 

 79 
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Secondly, 16S GCN can vary within the same species [22–25], which introduces uncertainty to 80 

GCN prediction that needs to be accounted for. It has been shown that modeling the intraspecific 81 

variation is essential for the analysis of comparative trait data and failing to account for this 82 

variation can result in model misspecification [14]. Because conspecific strains are usually 83 

separated by zero branch length in the phylogeny of the 16S rRNA gene, the intraspecific 84 

variation can be modelled as time-independent variation, which can also account for 85 

measurement errors [26]. 86 

 87 

Thirdly, there is notable rate heterogeneity in 16S GCN evolution. For example, the obligately 88 

intracellular bacteria and free-living bacteria with streamlined genomes (e.g., Rickettsia and 89 

Pelagibacter) have elevated molecular evolutionary rates [27, 28] and therefore relatively long 90 

branches in the 16S rRNA gene phylogeny [29]. Nevertheless, they have only one copy of 16S 91 

rRNA in their genomes and the GCNs rarely change [21]. It is expected that the 16S GCN 92 

prediction for this group of bacteria should be accurate despite their large phylogenetic distances 93 

to the reference genomes. Such examples suggest that the rate heterogeneity of 16S GCN 94 

evolution should be systematically evaluated and modelled properly. However, no previous 95 

methods have evaluated and modeled such evolution rate heterogeneity, leading to potential 96 

model misspecification in 16S GCN predictions. 97 

 98 

Here, we develop a novel tool RasperGade16S that employs a heterogeneous pulsed evolution 99 

model for 16S rRNA GCN prediction. Through simulation and cross-validation, we show that 100 

RasperGade16S outperforms other methods in terms of providing significantly improved 101 

confidence estimates. We demonstrate that correcting 16S rRNA GCN improves the relative cell 102 
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abundance estimates of the bacterial communities and is expected to be beneficial for more than 103 

99% of 113842 environmental samples we analyzed. However, our findings suggest that GCN 104 

correction may not be necessary for beta-diversity analyses, as it has limited impact on the 105 

results. 106 

 107 

Methods 108 

Compiling 16S GCN data and inferring 16S rRNA reference phylogeny 109 

We downloaded annotated RNA gene sequences from 21245 complete bacterial genomes in the 110 

NCBI RefSeq database (Release 205) on April 9, 2021. For each genome, we counted the 111 

number of annotated 16S rRNA genes. Genomes with questionable 16S GCNs were removed 112 

and one representative 16S rRNA sequence from each remaining genome was selected. A 16S 113 

rRNA phylogeny (referred to as reference phylogeny hereafter) was inferred from the 114 

representative sequences of 6408 genomes. See Supplementary Methods for details. 115 

 116 

Evaluating time-independent variation in 16S GCN 117 

To evaluate the extent of 16S GCN time-independent or intraspecific variation, we compared 118 

GCN between 5437 pairs of genomes with identical 16S rRNA gene alignments. To formally test 119 

whether accounting for time-independent variation is necessary, we modeled time-independent 120 

variation as a normal white noise, and fitted the Brownian motion (BM) model to the evolution 121 

of 16S GCN in the 6408 reference genomes, with and without time-independent variation. We 122 

then calculated the likelihood and chose the best model using the Akaike Information Criterion 123 

(AIC). 124 
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 125 

Evaluating the rate heterogeneity of 16S GCN evolution 126 

We calculated the local average rate of evolution for each genus that contains at least 10 127 

genomes in the reference phylogeny and examined the distribution of the average rates among 128 

genera. The average rate of a genus is calculated as the variance of phylogenetically independent 129 

contrasts (PICs) [30] of GCN within the genus. 130 

 131 

Predicting 16S GCN  132 

We developed a heterogeneous pulsed evolution model to model 16S GCN evolution (see 133 

Supplementary Methods for details) and a likelihood based R package RasperGade16S to predict 134 

16S GCN. RasperGade16S first assigns the query sequence to either the regularly-evolving or 135 

the slowly-evolving group based on where it is inserted in the reference phylogeny. For a query 136 

sequence inserted into the slowly-evolving group, its insertion branch length is scaled by the 137 

ratio rslow/rregular, where r is the rate of evolution in each group. For a query sequence inserted 138 

into the regularly-evolving group, a small branch length is added to the insertion branch to 139 

represent the estimated time-independent variation. RasperGade16S then predicts the GCN of 140 

the query using the rescaled reference phylogeny. Because 16S GCN is an integer trait, the 141 

continuous prediction from hidden state prediction is rounded and a confidence (probability) that 142 

the prediction is equal to the truth is estimated by integrating the predicted uncertainty 143 

distribution. We marked the 16S GCN prediction with a confidence smaller than 95% as 144 

unreliable, and otherwise as reliable. As a comparison, we also predicted GCN using PICRUST2, 145 

which employs multiple hidden state prediction methods in the R package castor [31] for 16S 146 

GCN predictions. We selected three methods by which confidence can be estimated: the 147 
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phylogenetically independent contrast (pic) method, the maximum parsimony (mp) method, and 148 

the empirical probability (emp) method. Otherwise, we run PICRUST2 using default options and 149 

the unscaled reference phylogeny. 150 

 151 

We did not test the tools CopyRighter [7] and PAPRICA [9] in this study because 1) neither 152 

provides the option of using a user-supplied reference data, and 2) neither provides uncertainty 153 

estimates (i.e., confidence intervals) of its predictions, which is the primary focus of this study. 154 

 155 

Adjust NSTD and NSTI with rate heterogeneity 156 

The adjusted nearest-sequenced-taxon-distances (NSTDs) [12] is calculated using the rescaled 157 

reference tree. The adjusted nearest-sequenced-taxon-index (NSTI) [10] is calculated as the 158 

weighted average of adjusted NSTDs of the community members. 159 

 160 

Validating the quality of predicted 16S GCN and its confidence estimate 161 

We used cross-validations to evaluate the quality of 16S GCN prediction and its confidence 162 

estimate, and how they vary with NSTD. We randomly selected 2% of the tips in the reference 163 

phylogeny as the test set and filtered the remaining reference set by removing tips with a NSTD 164 

to any test sequence smaller than a threshold. We then predicted the 16S GCN for each tip in the 165 

test set using the filtered reference set. We conducted cross-validation within 9 bins delineated 166 

by 10 NSTD thresholds: 0, 0.002, 0.005, 0.010, 0.022, 0.046, 0.100, 0.215, 0.464 and 1.000 167 

substitutions/site, and for each bin we repeated the cross-validation 50 times with non-168 

overlapping test sets. We evaluated the quality of the 16S GCN prediction by the coefficient of 169 

determination (R2), the fraction of variance in the true copy numbers explained by the prediction. 170 
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We evaluated the quality of confidence estimate by precision and recall. Precision is defined as 171 

the proportion of accurately predicted 16S GCN in predictions considered as reliable (with ≥ 95% 172 

confidence), and recall is defined as the proportion of reliable predictions in the accurately 173 

predicted 16S GCNs. We averaged the R2, precision and recall for the 50 cross-validations in 174 

each bin. 175 

 176 

Evaluating the effect of 16S GCN correction on relative cell abundance estimation 177 

We simulated bacterial communities with 16S GCN variation (SC1 dataset, see Supplementary 178 

Methods). To estimate the confidence interval (CI) of the corrected relative cell abundance of 179 

each OTU in a community, we randomly drew 1000 sets of 16S GCNs from their predicted 180 

uncertainty distribution. For each set of 16S GCNs, we divided the gene read count of OTUs by 181 

their corresponding 16S GCNs to get the corrected cell counts. The median of the corrected cell 182 

count for each OTU in the 1000 sets is used as the point estimate of the corrected cell count, and 183 

the OTU’s relative cell abundance is calculated by normalizing the corrected cell count with the 184 

sum of corrected cell counts of all OTUs in the community. The 95% CI for each OTU’s relative 185 

cell abundance is determined using the 2.5% and 97.5% quantiles of the 1000 sets of corrected 186 

relative cell abundances. The support value for the most abundant OTU is calculated as the 187 

empirical probability that the OTU has the highest cell abundance in the 1000 sets of corrected 188 

cell abundances. We calculated the coverage probability of the CI as the empirical frequency that 189 

the relative gene abundance or true relative cell abundance is covered by the estimated CI. We 190 

evaluated the effect of 16S GCN correction on relative cell abundance estimation at different 191 

NSTD thresholds. 192 

 193 
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Evaluating the effect of 16S GCN correction on beta-diversity analyses 194 

We used the Bray-Curtis dissimilarity and Aitchison distance for beta-diversity analysis that 195 

requires a dissimilarity or distance matrix and evaluated the effect of 16S GCN correction on the 196 

simulated bacterial communities (SC2 dataset, see Supplementary Methods). To correct for 16S 197 

GCN variation in beta-diversity analyses, we divided the gene abundance of each OTU by its 198 

predicted 16S GCN and calculated the corrected relative cell abundance table and the 199 

corresponding dissimilarity/distance matrix. We used the corrected cell abundance table to 200 

generate the principal coordinates analysis (PCoA) plot and to conduct the permutational 201 

multivariate analysis of variance (PERMANOVA) and the random forest test with the R package 202 

vegan and randomForest, respectively. 203 

 204 

Examining the adjusted NSTI of empirical bacterial communities 205 

To check the predictability of 16S GCN in empirical data, we examined bacterial communities 206 

surveyed by 16S rRNA amplicon sequencing in the MGnify resource platform [32] that were 207 

processed with the latest two pipelines (4.1 and 5.0). The MGnify resource platform uses the 208 

SILVA database release 132 [1] for OTU-picking in their latest pipelines, and therefore we 209 

predicted GCNs for SILVA OTUs (Supplementary Methods). We filtered the surveyed 210 

communities from the MGnify platform so that only communities with greater than 80% of their 211 

gene reads mapped to the SILVA reference at a similarity of 97% or greater were included. This 212 

filtering yielded 113842 bacterial communities representing a broad range of environment types. 213 

We calculated the adjusted NSTI for each community and examined the adjusted NSTI 214 

distribution in various environmental types.  215 

 216 
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Results 217 

Time-independent variation is present in 16S GCN evolution 218 

To evaluate the extent of time-independent or intraspecific variation in 16S GCN, we examined 219 

5437 pairs of genomes with identical 16S rRNA gene alignments. The 16S GCN differs in 607 220 

(11%) of them, suggesting the presence of significant time-independent variation. For the 6408-221 

genomes in the reference phylogeny, we found that incorporating time-independent variation 222 

with the BM model greatly improves the model fit (Table 1), indicating the necessity to take 223 

time-independent variation into account in 16S GCN prediction. In addition, we observed that 224 

the rate of evolution in the fitted BM model is inflated by 1670 folds when time-independent 225 

variation is not included in the model, which will lead to overestimation of uncertainty in BM 226 

model-based 16S GCN prediction. 227 

 228 

Pulsed evolution model explains the 16S GCN evolution better than the Brownian motion model 229 

When predicting traits using phylogenetic methods, the BM model is commonly assumed to be 230 

the model of evolution. We have shown that PE model is a better model for explaining the 231 

evolution of bacterial genome size [33], prompting us to test whether pulsed evolution can be 232 

applied to explain 16S GCN evolution as well. Using the R package RasperGade that 233 

implements the maximum likelihood framework of pulsed evolution [14], we fitted the PE model 234 

with time-independent variation to the same dataset. Table 1 shows that the PE model provides a 235 

significantly better fit than the BM model, indicating that 16S GCN prediction should assume the 236 

PE model instead of the BM model. Fitted model parameters are not sensitive to the HMM 237 

profiles used for aligning the 16S rRNA sequences (Table S2). 238 

 239 
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Substantial rate heterogeneity exists in 16S GCN evolution 240 

To systematically examine the rate heterogeneity of 16S GCN evolution in the reference 241 

genomes, we first used the variance of PICs as an approximate estimate of the local evolution 242 

rate of 16S GCN. We found that the rate of evolution varies greatly among genera (Figure S1), 243 

but can be roughly divided into two groups with high and low rates of evolution. Therefore, we 244 

developed a heterogeneous pulsed evolution model where all jumps are the same size but the 245 

frequency of jumps varies between two groups to accommodate the heterogeneity among 246 

different bacterial lineages. Using a likelihood framework and AIC, we classified 3049 and 3358 247 

nodes and their descending branches into slowly-evolving and regularly-evolving groups 248 

respectively (Figure S2). The frequency of jumps in the regularly-evolving group is 145 folds of 249 

the frequency in the slowly-evolving group (Table S3). The heterogeneous PE model provides 250 

the best fit among all models tested (Table 1), indicating that a heterogeneous PE model should 251 

be assumed in predicting 16S GCN. 252 

 253 

Apart from the rate of pulsed evolution, we also observed heterogeneity in time-independent 254 

variation: for the slowly-evolving group, the fitted model parameters indicate no time-255 

independent variation, while for the regularly-evolving group, the magnitude of time-256 

independent variation is approximately 40% of a jump in pulsed evolution (Table S3). The 257 

presence of time-independent variation caps the confidence of prediction in the regularly-258 

evolving group at 85%, which can only be achieved when the query has identical 16S rRNA 259 

gene alignment to one of the reference genomes. 260 

 261 
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RasperGade16S improves confidence estimate for 16S GCN prediction in empirical data 262 

Using 16S GCN from the 6408 complete genomes in the reference phylogeny for cross-263 

validation, we compared the performance of various methods in accuracy and confidence 264 

estimates. The pic and mp methods produce very large and zero uncertainty respectively (Figure 265 

1A), leading to both poor precision and recall rates (Figure 1C and 1D). The emp method 266 

performs the worst in terms of accuracy. The PE method produces the best overall precision 267 

(Figure 1D), achieving an average precision rate of 0.96, one of the best accuracies (Figure 1B), 268 

and the best confidence estimate for 16S GCN prediction (Figure 1C) over the full spectrum of 269 

NSTD, and should be preferred when predicting 16S GCN. 270 

 271 

Copy number correction improves relative cell abundance estimation 272 

From theoretical calculations, in general, community members with lower relative cell 273 

abundances suffer from greater impacts by 16S GCN variation (Figure 2A). If a species has a 274 

higher GCN compared to the average GCN of the community, its relative abundance will be 275 

overestimated. Otherwise, its presence will be underestimated (Figure 2A). In simulated dataset 276 

(SC1), we found that 16S GCN variation has a large detrimental effect on the estimated relative 277 

cell abundance (Figure 2B). On average, the relative cell abundance estimated using the gene 278 

abundance increased or decreased by 1.8-fold compared to the true relative cell abundance, and 279 

the empirical probability of correctly identifying the most abundant OTU based on the gene 280 

abundance is only around 13% (Figure 2C). Correcting for 16S GCN improves the estimated 281 

relative cell abundance (Figure 2B). As expected, the improvement is greatest when the adjusted 282 

NSTI is small (i.e., when there are closely related reference genomes), and it gradually 283 

diminishes when the adjusted NSTI increases. At the smallest adjusted NSTI, the average fold 284 
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change of the estimated relative cell abundance decreases to 1.1-fold after 16S GCN correction 285 

and the empirical probability of correctly identifying the most abundant OTU increases to around 286 

65% (Figure 2C).  287 

 288 

Because we predict each OTU’s 16S GCN with a confidence estimate, we can provide 95% 289 

confidence intervals (95% CIs) for their relative cell abundance as well. Ideally, 95% of the true 290 

relative cell abundances should be covered by the 95% CIs. Figure 2D shows that the average 291 

coverage probability of the true relative cell abundance is about 98% across NSTD cutoffs, 292 

indicating that our 95% CIs are slightly over-conservative. Similarly, we can also calculate the 293 

coverage probability of our 95% CI to the relative gene abundance. As expected, when the 294 

coverage probability to the relative gene abundance increases, the improvement by GCN 295 

correction (quantified by the relative reduction in the difference between the estimated and true 296 

cell abundances) decreases (Figure 2E), and that when this coverage probability is below 95%, 297 

GCN correction always results in strong improvement in relative cell abundance estimates. In 298 

empirical studies when the true abundance is unknown, we can use the coverage probability to 299 

the relative gene abundance as a conservative statistic to decide if GCN correction for a 300 

community will likely improve the relative abundance estimation or not. For the most abundant 301 

OTU in the community, we can calculate its support value from the 16S GCN’s confidence 302 

estimates. We found that the calculated support value matches the empirical probability that the 303 

most abundant OTU is correctly identified (Figure 2C). 304 

 305 

To demonstrate the effect of 16S GCN correction in empirical data, we analyzed the data from 306 

the first phase of the Human Microbiome Project (HMP1) and the 2000-sample subset of Earth 307 
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Microbiome Project (EMP). We found that on average the relative cell abundance with and 308 

without 16S GCN correction changes around 1.3-fold in HMP1 and 1.6-fold in EMP. Since the 309 

true abundance of OTUs is unknown, we use the coverage probability of 95% CIs to the relative 310 

gene abundance described above to evaluate the effect of GCN correction. Our results indicate 311 

that a majority of HMP1 (over 82%) and EMP (over 90%) samples have a coverage probability 312 

below 95% (as shown in Figure 2F). Since our simulations demonstrate that GCN correction 313 

improves the accuracy of relative cell abundance estimation in samples with coverage probability 314 

less than 95% (as demonstrated in Figure 2E), this suggests that GCN correction will likely 315 

improve relative cell abundance estimates in these HMP1 and EMP samples. In terms of the 316 

most abundant OTU, we found that the identity of the most abundant OTU changes after copy 317 

number correction in around 20% and 31% of the communities in HMP1 and EMP respectively. 318 

The support values for the most abundant OTUs are around 0.85 on average in both datasets, 319 

indicating high confidence in the identification of the most abundant OTUs. 320 

 321 

Copy number correction provides limited improvements on beta-diversity analyses 322 

To examine the effect of 16S GCN variation on beta-diversity analyses, we simulated 323 

communities at different turnover rates in two types of environments where 0.25%, 1% or 5% of 324 

the OTUs are enriched in one environment compared to the other (the SC2 dataset). We found 325 

that when the relative gene abundance is used to calculate the Bray-Curtis dissimilarity or the 326 

Aitchison distance, the positions of the samples in the PCoA plot shift from their positions based 327 

on the true relative cell abundance (solid lines in Figure 3A and B), although this shift is much 328 

smaller if the Aitchison distance is used. Correcting for 16S GCN reduces about 56% and 85% 329 

of the shifts in the Bray-Curtis dissimilarity (P<0.001, paired t-test, Figure 3A) and Aitchison 330 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2023. ; https://doi.org/10.1101/2021.08.31.458422doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.31.458422
http://creativecommons.org/licenses/by-nc/4.0/


 16

distance spaces (P<0.001, paired t-test, Figure 3B) respectively. Despite the shift in the PCoA 331 

plot, we found that the clustering of communities does not seem to be affected by the 16S GCN 332 

variation.  333 

 334 

We observed a limited effect of 16S GCN variation on PERMANOVA. Depending on the metric 335 

used, the signature OTU numbers and turnover rates, the proportion of variance explained (PVE) 336 

by the environmental type using the true cell abundances ranges from 5.27% to 17.20% on 337 

average. Using gene abundance, the average PVE ranges from 5.27% to 17.22% and the change 338 

in PVE is not statistically significant regardless the metric used, the signature OTU numbers, or 339 

the turnover rates (P>0.002, paired t-test with Bonferroni correction, α=9.26×10-4, Table S4), 340 

indicating that PERMANOVA is not very sensitive to 16S GCN variation.  341 

 342 

It is a common practice to compare the relative cell abundance of OTUs of interest between 343 

environments. We found that such comparison is also not sensitive to 16S GCN variation (Table 344 

S4), with the fold-change of relative cell abundance estimated using the gene abundance and the 345 

truth highly concordant (R2 > 0.99). Random forest identified from 20.0% to 89.0% of the 346 

signature OTUs when the true cell abundances were used (Table S4). When the gene abundances 347 

were used, this recovery rate changes to from 18.0% to 89.32% (Table S4), and the change is not 348 

statistically significant (P > 0.032, paired t-test with Bonferroni correction, α=1.85×10-3). 349 

Correcting for 16S GCN changes the recovery rate to from 17.8% to 89.2% (Table S4), and the 350 

change is not significant either (P>0.041, paired t-test with Bonferroni correction, α=1.85×10-3). 351 

Similar results were found when we examined the effect of 16S GCN variation correction on 352 

beta-diversity in empirical data (Supplementary Results). 353 
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 354 

Vast majorities of bacterial community studies should benefit from copy number correction 355 

To examine if analysis of real communities would benefit from 16S GCN correction, we 356 

calculated the adjusted NSTI for 113842 communities in the microbiome resource platform 357 

MGnify (formerly known as EBI Metagenomics) [32] that passed our quality control. These 358 

microbiomes were sampled from various environments and include host-associated microbiomes 359 

in animals and plants and free-living microbiomes in soil and aquatic environments (Table S5). 360 

The adjusted NSTI varies greatly among samples and the median across all samples is 0.01 361 

substitutions/site. In the simulated communities, we observed that GCN correction significantly 362 

improves the estimated relative cell abundances (P<0.001, paired t-test) even when the adjusted 363 

NSTI reaches 0.3 substitutions/site. We found that more than 99% of the communities from 364 

MGnify have an adjusted NSTI less than 0.3 substitutions/site, suggesting that they should 365 

benefit from 16S GCN correction when estimating the relative cell abundances. The distribution 366 

of adjusted NSTI varies among different environmental types (Figure 4), but the proportion of 367 

communities that will likely benefit from 16S GCN correction remains high, ranging from 98% 368 

to 100%. 369 

 370 

Discussion 371 

We address the inherent uncertainty problem in 16S GCN prediction by directly measuring it 372 

with confidence estimates. Using simulations and cross-validation, we show that the PE method 373 

implemented in RasperGade16S outperforms other methods in both the precision and recall rates. 374 

This method’s strength comes from three features of its modeling of the 16S GCN evolution: 375 

implementation of a pulsed evolution model and accounting for the rate heterogeneity and time-376 
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independent trait variation. Pulsed evolution model expects no trait changes to occur over a short 377 

branch as jumps are not likely to happen on that branch. This leads to a higher confidence to 16S 378 

GCN prediction with a short NSTD, and thus improves the recall of the accurate predictions. By 379 

incorporating rate heterogeneity, we can make predictions in the slowly-evolving groups with 380 

high confidence, even when their NSTDs are large, thereby further improving the overall 381 

precision and recall rates. In the reference phylogeny, 48% of branches were estimated to fall 382 

within this slowly-evolving group, whose evolution rate is 145 times slower compared to that of 383 

the regularly-evolving group. The third source of improvement for RasperGade16S comes from 384 

accounting for time-independent variation, which can result from measurement error and 385 

intraspecific variation. We show that failing to account for time-independent variation results in 386 

model misspecification (Table 1) and overestimated rate of evolution for the pic method. 387 

 388 

Having confidence estimates is critical in the presence of inherent uncertainty because they 389 

provide direct evaluation of the uncertainty associated with the predictions. Using cross-390 

validation, we show that RasperGade16S has high precision (around 0.96), which means for 391 

predictions with high confidence (≥95%), 96% of the predictions are accurate. Therefore, we can 392 

use the confidence score provided by RasperGade16S to select high-quality predictions if 393 

necessary, or we can draw firm conclusions from the 16S rRNA data when the confidence is 394 

high.  395 

 396 

The application of confidence estimation extends beyond the prediction of 16S GCN. Because 397 

the uncertainty in the prediction is inherited by statistics derived from the predicted 16S GCN, 398 

we can estimate the uncertainty and confidence intervals of important parameters in downstream 399 
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analyses, such as the relative cell abundance. With confidence intervals, we can draw more 400 

meaningful and sound conclusions, such as identifying the most abundant OTU in the 401 

community with a support value. Getting confidence estimates of the relative cell abundance is 402 

also important for predicting the functional profile of a community based on 16S rRNA 403 

sequences. Although PICRUST2 uses an extremely lenient NSTD cut-off to eliminate 404 

problematic sequences, it does not provide an accurate confidence measurement of its 405 

predictions. As shown in this study, the default maximum parsimony method used by 406 

PICRUST2 to predict 16S GCN essentially assumes there is no uncertainty in the predictions, 407 

which is unrealistic and leads to poor precision. Incorporation of a more meaningful confidence 408 

estimate of 16S GCN prediction in PICRUST2 should make its functional profile prediction 409 

more informative. 410 

 411 

Strikingly, 99% of 113842 bacterial communities we examined have an adjusted NSTI less than 412 

0.3 substitutions/site, a range where we show that GCN correction improves the accuracy of the 413 

relative cell abundance estimation (Figure 2B). Because these communities represent a 414 

comprehensive and diverse list of natural and engineered environments, we recommend applying 415 

16S GCN correction to practically any microbial community regardless of the environmental 416 

type if accurate estimates of relative cell abundance are critical to the study. Our results therefore 417 

affirm the conclusion of the previous studies based on analyses of a much smaller number of 418 

communities [5, 7]. 419 

  420 

Few studies have investigated to what extent the bias introduced by 16S GCN variation will have 421 

on the microbiome beta diversity analyses. We show that the effect sizes of 16S rRNA bias on 422 
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beta-diversity analyses are small. Correcting 16S GCN provides limited improvement on the 423 

beta-diversity analyses such as random forest analysis and PERMANOVA test. One possible 424 

reason is that for an OTU, the fold change in the relative cell abundance between samples 425 

remains more or less the same with or without correcting for the copy number. For example, 426 

assuming the estimated relative cell abundances of an OTU in samples A and B are ra and rb 427 

respectively without copy number correction. When correcting for the copy number, its relative 428 

abundance is adjusted with the scaling factor ACN/GCN, where the GCN is the 16S rRNA copy 429 

number of the OTU and the ACN is the average copy number of the sample. Assuming the ACN 430 

does not vary much between samples, then the scaling factor for the OTU will be roughly the 431 

same in samples A and B. So even with copy number correction, the relative abundance change 432 

will still be close to ra/rb.  433 

 434 

It should be noted that having a confidence associated with the 16S GCN prediction helps to 435 

estimate the uncertainty of the prediction, but it does not improve the accuracy of the prediction. 436 

Accuracy of the prediction is constrained by the inherent uncertainty, which can only be 437 

improved by better sampling the reference genomes. However, as our current sampling is 438 

inadequate for accurate 16S GCN prediction of all environmental bacteria, we believe that 439 

incorporating confidence estimates is the best practice to control for the uncertainty in the 16S 440 

rRNA based bacterial diversity studies, as opposed to not correcting the GCN bias as previously 441 

suggested [8, 12].  442 
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  542 

Table 1. The AICs of Brownian motion model and pulsed evolution model. 543 

Model BM 
BM (with time-
independent variation) 

PE (with time-independent 
variation) 

Homogenous 
model 

34338 18028 -7925 

Heterogeneous 
model 

NA NA -15395 

 544 

Figure legends 545 

Figure 1. The performance of prediction on empirical 16S GCN. Using cross-validation of 546 

empirical data, the mean estimated uncertainty and confidence of predictions (A), the mean 547 

coefficient of determination R2 of the predictions (B), and the recall (C) and precision (D) of 548 

classification of predictions by their associated confidence estimate, plotted against the mean 549 

NSTD. The error bars represent the 95% CI of the mean. The empirical 16S GCN analyzed here 550 

are from the 6408 complete genomes in the reference phylogeny.  551 

 552 

Figure 2. The impact of 16S GCN variation on estimated relative cell abundances. (A) The 553 

impact of GCN variation on estimated relative cell abundance based on theoretical calculations. 554 

The color of the lines denotes the ratio of an OTU’s of GCN to the average GCN of the 555 
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community. (B) The average fold-change to the true relative cell abundance. (C) The empirical 556 

probability of correctly identifying the most abundant OTU in the community and the support 557 

value for the most abundant OTU. (D) The coverage probability of relative cell abundances’ 558 

estimated 95% CIs to the true relative cell abundance. Accurate confidence estimates (95% CIs) 559 

should produce a coverage probability of 95% regardless of the adjusted NSTI (dashed red line). 560 

(E) The correlation between the coverage probability to the relative gene abundance and the 561 

improvement by GCN correction. The horizontal red dashed line represents no improvement in 562 

relative cell abundance estimates; the vertical red dashed line represents 95% coverage 563 

probability to the relative gene abundance. The improvement is quantified by the relative 564 

reduction in the difference between the estimated and true cell abundances. (F) The empirical 565 

cumulative distribution of the coverage probability to the relative gene abundance in 2560 566 

samples from the HMP1 dataset and 1856 samples from the EMP dataset. All error bars 567 

represent 95% CI of the mean. 568 

 569 

Figure 3. The impact of 16S GCN variation on beta-diversity. Examples of shift in the Bray-570 

Curtis dissimilarity (A) and the Aitchison distance (B) matrices due to 16S GCN variation. The 571 

shift for each metric is visualized in a PCoA plot comparing 20 simulated samples from two 572 

hypothetical environments with 5 signature OTUs (0.25%) in each environment and a turnover 573 

rate of 20%. Solid lines represent the shift of a sample from its true location when using the gene 574 

abundance. The results with 1% and 5% enriched signature OTUs are similar to the examples 575 

shown in Figure 4. 576 

 577 
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Figure 4. The distribution of adjusted NSTI in empirical data. The distribution of adjusted 578 

NSTI of 113842 communities in the MGnify database representing various environmental types. 579 

The red dashed line marks the adjusted NSTI of 0.3 substitutions/site. 580 
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