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Abstract

Purpose: Root system architectures are complex, multidimensional, and
challenging to characterize effectively for agronomic and ecological dis-
covery.
Methods: We propose a new method, Spatial and Texture Analysis of
Root System architEcture with Earth mover’s Distance (STARSEED),
for comparing root architectures that incorporate spatial information
through a novel application of the Earth Mover’s Distance (EMD).
Results: We illustrate that the approach captures the response of sesame
root systems for different genotypes and soil moisture levels. STARSEED
provides quantitative and visual insights into changes that occur in root
architectures across experimental treatments.
Conclusion: STARSEED can be easily generalized to other plants
and provides insight into root system architecture development and
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response to varying growth conditions not captured by existing root
architecture metrics and models. The code and data for our experiments
are publicly available: https://github.com/GatorSense/STARSEED.

Keywords: Root architecture, Earth Mover’s Distance, Image Analysis,
Sesamum indicum, Artificial Intelligence

1 Introduction

Studying plant roots, a key to achieving the second Green Revolution (Lynch,
2007), requires effective characterization and comparisons of root growth and
architecture. This includes understanding how genetic and environmental fac-
tors impact early root development, not only in terms of biomass and root
length but also in terms of architecture and spatial exploration. Current
methods, such as WinRhizo, use 2D images of roots to measure individual
parameters related to morphology and topology. Several open-source software
packages have also been developed to further make accessible the analysis of
individual root traits (Pierret et al, 2013; Armengaud et al, 2009). These tools
capture information relevant to root system architecture (RSA) characteriza-
tion. However, they typically provide different parameters each only capturing
one specific aspect of RSA such as total root length, surface area, branch-
ing angle, link magnitude, among others. (Regent Instruments Inc., Quebec,
Canada). These packages are lacking methods for holistic architectural analysis
of root systems.

There is a need to develop new techniques that are able to provide in-
depth spatially explicit RSA characterization from 2D images using a limited
number of parameters. In the literature, deep learning has been investigated
as methods to study root architectures (Chung et al, 2020; Pound et al, 2017;
Yasrab et al, 2019; Yu et al, 2020; Xu et al, 2020). Deep learning approaches
have provided mechanisms for automating root detection and segmentation
in imagery (Chung et al, 2020; Yasrab et al, 2019; Yu et al, 2020; Xu et al,
2020) as well as localizing and identifying unique features for root phenotyping
(Pound et al, 2017). Despite the success of deep learning models, there are
several issues including computational costs, the need for very large amounts of
labeled data, and a lack of explainability (Gunning, 2017; Adadi and Berrada,
2018).

As an alternative to help in addressing these shortcomings, we propose the
Spatial and Texture Analysis of Root System architEcture with Earth mover’s
Distance (STARSEED) approach, to better characterize RSA (e.g., root archi-
tecture and soil exploration). Our approach uses the Earth Mover’s Distance
(EMD) (Rubner et al, 1998) to quantify the differences among root structures.
EMD is intuitive and explainable by providing spatially explicit information
on changes in root architecture. The proposed STARSEED approach allows
for us to etablish meaningful biological connections between the treatments

https://github.com/GatorSense/STARSEED
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such as cultivar and moisture level, and the observed RSA as well as provide
detailed qualitative and quantitative analysis. STARSEED jointly 1) considers
the spatial arrangements of roots in local (i.e., smaller regions of the image)
and global (i.e., whole image) contexts, 2) extracts informative features from
the root architectures, and 3) gives precise insight for biological and agronomic
interpretation.

1.1 Related Work

Texture Features for RSA

Texture (i.e., spatial arrangement of the pixel values in a raster grid) is a
powerful cue that can be used to identify patterns tied to RSA characterization.
A straightforward approach to compute texture from an image are counts (i.e.,
histograms) of local pixel intensities (Cula and Dana, 2001). In addition to
this baseline approach, one can compute more complex texture features such
as fractal dimension and lacunarity. Fractal dimension is used to quantify the
“roughness” in an image (Sarkar and Chaudhuri, 1992) and has been used for
root analysis to capture the way roots develop to fill space (Li et al, 2020;
Wang et al, 2009; TATSUMI et al, 1989). Fractal dimension is inspired by the
concept of self-similarity (i.e., idea that objects are comprised of smaller copies
of the same structure) for which roots may develop in a consistent pattern
invariant to the environment (Mandelbrot, 1967).

A related feature to fractal dimension is lacunarity, which captures the
“gaps” or spatial arrangement in images (Mandelbrot and Mandelbrot, 1982;
Plotnick et al, 1993). Since some visually distinct images can have the same
fractal dimension, lacunarity provides a features that can aid in discriminating
between these distinct textures (Keller et al, 1989; Voss, 1991; Mandelbrot and
Van Ness, 1968). Lacunarity will have small values when root architectures
are dense and larger values with gaps and coarse arrangement of roots (Keller
et al, 1989; Mandelbrot and Mandelbrot, 1982).

Earth Mover’s Distance (EMD)

EMD, also known as the Wasserstein-1 distance (Gulrajani et al, 2017), is used
to determine quantitative differences between two distributions (Rubner et al,
1998). In STARSEED, we use EMD to measure distances between the spa-
tial distribution of root textures, thus, quantifying root architecture. EMD has
several advantages such as allowing for partial matching (i.e., comparisons can
be made between representations of different length such as comparing smaller
and larger root architectures) and matches our human perception when the
chosen ground distances (i.e., distance between feature vectors) is meaningful
(Rubner et al, 1998). The computation for EMD is based on the solution to
the engineering problem for transportation corridors (Hitchcock, 1941). Essen-
tially, we want to find the minimal amount of “work” to transform one root
architecture to another.

EMD can be used to not only compare 1-dimensional distributions, but
EMD can also be extended to multi-dimensional distributions such as images.
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Images are comprised of pixels and these pixels can be “clustered” or assigned
to meaningful groups based on shared characteristics such as spatial location.
The set of these clusters are used to form a “signature” or a more compact
representation of the image to increase computational efficiency (Rubner et al,
1998). Given an image with C clusters, the signature representation, P , is given
by Equation 1 where pi is the cluster representative and wpi

is the weight of
the cluster:

P = {(p1, wp1
), ..., (pC , wpC

)}. (1)

Typically, the cluster representative is a feature vector and the weight is
the percentage of pixels in a cluster expressing that feature (Rubner et al,
1998). The selection of the cluster representative is application dependent,
but by defining the cluster representative as the information/descriptors (i.e.,
features) and importance (i.e., weight) of a part of an image provides a clear
interpretation for EMD. Once the signature representations are constructed,
one can compute EMD. After the transportation problem is solved to find the
minimal flow, F, between two clusters (please refer to (Rubner et al, 1998) for
more details), EMD can be computed. Given two image signatures, P and Q,
with S and T representatives respectively, EMD is formulated in Equation 2
where dij is the ground distance between the centroid of regions pi and qj and
fij is the optimal flow between pi and qj :

EMD(P,Q) =

∑S
i=1

∑T
j=1 dijfij∑S

i=1

∑T
j=1 fij

(2)

EMD captures dissimilarity between distributions (i.e., larger values indicate
more dissimilarity or ’work’ to move the defined ’earth’ feature to the cluster
representative). EMD allows one to measure the global change between two
distributions (i.e., distance measure) as well as local changes between the two
sources of information through the flow matrix, F .

2 Materials and Methods

2.1 Greenhouse Setup and Data Collection

The data and images collected from a root development experiment in a
controlled setting was used to develop the STARSEED approach. Exam-
ple images collected from the experiment are shown in Figure 1. For the
experiment, custom-made rhizoboxes were constructed with dimensions of
35.6 × 20.3 × 5.1cm, and each had one side made of clear plastic to allow for
observation of root development over time. Each of 64 rhizoboxes were filled
with 1550g of inert calcine clay (Turface Athletics, Buffalo Grove, IL, USA),
henceforth referred to as soil. A single seed from one of four non-dehiscent
sesame cultivars, all provided by Sesaco Inc. (Sesaco32, Sesaco35, Sesaco38
and Sesaco40), was planted per box. In addition, four different soil water con-
tent treatments were implemented: 60%, 80%, 100% and 120% of the soil
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(a) Run 1 (b) Run 2 (c) Run 3 (d) Run 4

Fig. 1: Example images collected from each experimental run.

water holding capacity, corresponding to 688, 918, 1147 and 1376mL of water
per rhizobox, respectively. The soil and water were mixed thoroughly together
before filling the rhizoboxes to promote homogeneity of the soil water content
throughout the rhizobox. The top of each rhizobox was covered with Press’N
Seal Cling Wrap to reduce water evaporation. A small hole was pierced in
the plastic wrap upon seedling emergence to allow for leaf and stem growth.
These four cultivars and water treatments were arranged in a complete ran-
domized design with 4 repetitions and were set up in a temperature-controlled
greenhouse between 25-35 degrees Celsius.

Four runs of the 64 rhizobozes were completed to complete the experiment.
Run 1 and 2 were prepared with soil and water only, while run 3 and 4 were
fertilized with 1.51mg of 15-5-15 + Ca + Mg Peters Excel mix fertilizer (ICL
Specialty Fertilizers, Summerville SC) and 0.29g of ammonium sulfate were
dissolved in the water of each rhizobox prior to mixing with the soil. Baking
soda was added as needed to neutralize the fertilizer solution to a pH of 6.
The rhizoboxes were set up on benches with a 30-degree incline from vertical
to promote root growth along the clear plastic side of the box. Plants were
grown for a duration of 21 days after planting (DAP) for the runs without
fertilizer and 16 DAP for the runs with fertilizer. This duration corresponded
to the time it took the first 5 plants in Run 1 without fertilizer and Run 3
with fertilizer to reach the bottom of the rhizobox.

The last day of the experiment, all rhizoboxes were scanned clear side down
with a Plustek OpticSlim 1180 A3 flatbed scanner (Plustek Inc., Santa Fe, CA,
USA). For each run, images from seeds that did not germinate or seedlings that
died during the experiment were taken out of the images set. Eleven images
were thus removed from Run 1, 10 from Run 2, 11 from Run 3 and 5 from
Run 4. In total, there were 107 images across run 1 and 2, and 113 images
for Run 3 and 4. The roots from all remaining images were hand-traced with
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WinRHIZO Tron (Regent Instruments Inc., Quebec, Canada) and total root
length (TRL) was obtained.

Fig. 2: Overview of STARSEED. The binary images are reconstructed accord-
ing to the hand-traced bounding boxes. The images are then downsampled by
eight and a spatial grid is overlaid on the image to create equally sized spatial
bins. Within each local region, a feature is computed to generate a texture sig-
nature of each image. We then compute the Earth Mover’s Distance (EMD)
between each pair of images to generate a distance matrix from the image cho-
sen as the reference. To visualize the distance matrix and access the selection
of scale (i.e., number of spatial regions) for our analysis, we project the roots
using multi-dimensional scaling (Kruskal, 1964) for qualitative and quantita-
tive assessment through the Calinski-Harabasz (Caliński and Harabasz, 1974)
index to validate our method. Each step in the process corresponds to the
same step in Algorithm 1.

2.2 Spatial and Texture Analysis of Root System
architEcture with Earth mover’s Distance
(STARSEED)

The overall pipeline of our proposed STARSEED method is illustrated in
Figure 2. We provide the details and rational behind our approach in the
following subsections. We also provide pseudocode for the overall process in
Algorithm 1.

Image Preprocessing

The initial step of the proposed approach is to perform preprocessing of the
data to isolate the root pixels in the image. We manually traced roots using
WinRHIZO Tron software. Using the WinRHIZO Tron tracings, binary masks
were extracted in which pixels that correspond to root were assigned a value
of 1 in the mask and the non-root pixels were assigned a value of 0. In addition
to root tracing, each image was downsampled by a factor of eight through
average pooling and smoothed by a Gaussian filter (σ = 1) to mitigate noise
before extracting texture features.
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Algorithm 1 STARSEED Overall Process

Require: N input images X ∈ RH×W , N corresponding treatment labels y ∈
R1, B number of spatial bins, gθ(·) preprocessing function, fθ(·) texture
feature extraction, d embedding dimension

1: Preprocess images, Xprocessed ← gθ(X)
2: Partition each image into B regions
3: Compute feature and centroid location, Xfeatures ← fθ(Xprocessed) for

each region to get a signature, P ∈ RB×3, for each image
4: Compute EMD score and flow matrix between each image signature

using Equation 2 to generate pairwise distance matrix, D ∈ RN×N

5: Project D using MDS (Kruskal, 1964) into d-dimensional feature space
to compute embedding, E ∈ RN×d

6: Compute Calinski-Harabasz (CH) score using E and y
7: return EMD Scores, CH Index, Flow Matrices

Novel Earth Mover’s Distance Application

In order to apply EMD to characterize and compare RSAs, we construct a
”signature” to represent each root image. The signatures used in STARSEED
are a composition of textures features computed spatially across each image.
Since texture is undefined at a single point (Tuceryan and Jain, 1993), a local
neighborhood needs to be identified to compute the texture features comprising
the signature. In our proposed approach, we simply divide each image into grid
of equally sized regions with each region serving as the local neighborhood.
Within each grid square, the collection of texture features being used to locally
characterize the RSA is computed. The size of the grid trades off between
computational efficiency and localization. A larger grid square corresponds to
less computation needed but each texture feature is computed over a larger
area, resulting in a loss of localization.

Each region of the image is represented through a cluster representative.
The cluster representative is comprised of spatial coordinates (i.e., horizontal
and vertical position of region) and a weight to create an R3 vector to represent
a local spatial region of the image. The weight given to each region is computed
by the texture feature extracted from the pixels in the region. The final repre-
sentation of the image will be a “signature” which is the set of clusters from
the image. By constructing our signature in this manner, we are incorporating
spatial and texture information to represent the root architectures.

We used EMD to compare the signature representations of each root archi-
tecture as described in step 4 of Algorithm 1. Only regions containing roots
were used for our calculations to mitigate the impact of background on our
results. Therefore, we are comparing root signatures of different sizes. In order
to not favor smaller signatures, the normalization factor is added to the EMD
calculation as shown in Equation 2. Any distance can be used to define the
ground distance, dij (Rubner et al, 1998). In order to consider the spatial
arrangement of the root architectures, we compared the center location of each
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spatial bin by selecting the Euclidean distance as our ground distance to com-
pute dij . We computed the EMD between each pair of images within Run 1-2
and Run 3-4 separately to generate a pairwise distance matrix, D, as shown
in Algorithm 1.

Assessment of Relationships for RSA

Once the distances between each image signature representation is computed,
we perform qualitative and quantitative analysis of the results using D and the
associated labels of the root structures. Given the pairwise distance matrix, we
can use different dimensionality reduction approaches (Oza and Tumer, 2001;
Becht et al, 2019; Maaten and Hinton, 2008) to project the matrix into two
dimension to visually identify trends in our data as differences among cultivars
and moisture treatments. We used multi-dimensional scaling (MDS) (Kruskal,
1964) because this method has been shown to work well with EMD to identify
patterns among images that share characteristics (Rubner et al, 1998, 1997).

In addition to visualizing trends, we want to access the inter- and intra-
relationships among the data. Ideally, we expect similar root structures (e.g.,
roots from the same cultivar) to have a lower EMD values and dissimilar
root structures to have larger EMD scores. One measure that can be used
to compute these relationships is the Calinksi-Harabasz (CH) index (Caliński
and Harabasz, 1974). The CH index is quick to compute and considers both
intra- and inter-relationships among the root structures. An analysis of vari-
ance (ANOVA) was performed on the CH scores within each treatment for
each pair of runs across features. Significantly different means (p < .05) were
separated using Tukey’s honestly significant difference (HSD) test.

3 Results

We performed quantitative and qualitative analysis for local and global RSA
supported by the STARSEED method. Our dataset was comprised of a total
of 220 images across four different runs (2 unfertilized, 2 fertilized, four treat-
ments for cultivar (Sesaco32, Sesaco35, Sesaco38 and Sesaco40) and four water
levels (60%, 80%, 100%, and 120%). To measure the intra-cluster dissimilarity
(i.e., RSA from the same cultivar or water level) and inter-cluster dissimilar-
ity (i.e., RSA from different cultivar or water level) across treatment levels in
each pair of runs, we calculated the CH index (Caliński and Harabasz, 1974)
for each level within a fertilizer condition. Ideally, samples that belong to the
same cluster should be “close” (i.e., smaller distances or intra-cluster vari-
ance) while samples from different clusters should be “well-separated” (i.e.,
larger distances or inter-cluster variance). When the clusters are dense and
well-separated, the CH index is larger. For our global analysis, we gener-
ated representative images for each treatment level by averaging the feature
representations of each individual image within the same level to carefully
explore the root architecture spatial differences across the different cultivars
and moisture contents.
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3.1 Local Analysis: Relationships to Treatment Level
Representatives

Table 1: Average CH Indices and their associated standard deviation for each
feature by cultivar and water level for Runs 1 and 2 across the number of spatial
bins. Error values are reported with ±1 standard deviation. Bolded uppercase
letters indicate significant differences between levels in each treatment across
all features (p < .05). Bolded lowercase letters indicate significant differences
between features across all treatments (p < .05).

Feature Cultivar Water Level

S32 A S35 C S38 D S40 B All 60% D 80% A 100% C 120% B All

% Root Pixels 11.07±0.43 0.64±0.08 0.62±0.07 2.79±0.16 3.41±0.08 b 1.08±0.16 3.70±0.27 0.95±0.17 0.65±0.15 1.88±0.08 a

Fractal 11.76±1.57 1.09±0.41 0.38±0.25 3.18±0.80 3.74±0.47 a 0.21±0.21 3.02±0.38 0.86±0.39 1.64±0.61 1.57±0.17 b

Lacunarity 11.37±1.58 1.04±0.35 0.31±0.23 3.30±0.82 3.67±0.47 ab 0.22±0.19 3.23±0.47 0.77±0.37 1.74±0.62 1.65±0.21 ab

Table 2: Average CH Indices and their associated standard deviation for each
feature by cultivar and water level for Runs 3 and 4. Error values are reported
with ±1 standard deviation. Error values are reported with ±1 standard devia-
tion. Bolded uppercase letters indicate significant differences between levels in
each treatment across all features (p < .05). Bolded lowercase letters indicate
significant differences between features across all treatments (p < .05).

Feature Cultivar Water Level

S32 B S35 A S38 C S40 A All 60% B 80% B 100% C 120% A All

% Root Pixels 1.46±0.07 2.57±0.16 1.40±0.03 1.98±0.11 1.79±0.06 a 8.62±0.15 9.66±0.20 0.19±0.04 54.72±0.58 15.40±0.09 a

Fractal 1.71±0.42 1.79±0.94 0.76±0.25 1.93±0.35 1.48±0.29 b 6.00±0.67 6.31±1.15 2.40±1.03 38.13±7.58 12.70±1.78 b

Lacunarity 1.61±0.49 1.77±0.8 0.66±0.29 1.80±0.36 1.38±0.31 b 5.72±1.05 5.82±1.37 2.39±1.37 36.40±8.62 12.07±2.24 b

For image processing and down-scaling, we investigated the impact of a
coarser (i.e., small number of spatial bins) and finer (i.e., large number of
spatial bins) scale. The number of spatial bins was varied from 100 to 2000
in steps of 100 (total of 20 values). We calculated three feature values in
each local region: percentage of root pixels, fractal dimension (Mandelbrot and
Mandelbrot, 1982), and lacunarity (Mandelbrot and Mandelbrot, 1982). To
calculate the percentage of root pixels, we simply computed the total number
of root pixels divided by the area of the spatial bin. The percentage of root
pixels texture provides insight into the distribution of roots in the image. If a
region has more dense roots, the percentage of root pixels will be larger.

The average and standard deviation of the CH indices across all number of
spatial bins for Runs 1 and 2 are shown in Table 1 while the scores for Runs
3 and 4 are shown in Table 2. The small standard deviations indicate that
scores are generally stable across the different scales. The results show that
our method is robust across the number of spatial bins (i.e., scale) used for our
analysis. The ANOVA on the CH scores showed that % root pixels tended to
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Table 3: Number of spatial bins that scored the maximum CH index for each
feature, cultivar, water level in each pair of runs.

Features Run 1 and 2 Run 3 and 4
Cultivar Water Level Cultivar Water Level

%Root Pixels 100 900 200 2000
Fractal 700 700 900 200

Lacunarity 700 1000 1300 600

be the feature with the most discriminating power (i.e., the highest CH score)
out of the three features considered, except for fractal dimension on cultivar in
Runs 1 and 2. For the rest of this study, we will thus display the EMD results
for the % root pixels feature, except when presenting results for the cultivar
differences in Runs 1 and 2 where we will use the fractal dimension feature.

In Runs 1 and 2, the CH indices scores for water levels (1.50 overall aver-
age) were not as high (p < .05) as for cultivars (3.96 overall average), indicating
more overall variability of root architecture without fertilizer between culti-
vars than between the moisture levels (Table 1). When looking specifically at
each treatment level’s score, both the S32 cultivar and the 80% water level
have the largest CH indices within cultivar and water level treatments respec-
tively, indicating these treatments as expressing the most distinctly similar
root architectures. For Runs 3 and 4 with added fertilizer, the trends were
inverse in that the average CH indices were significantly higher across all fea-
tures and spatial bins for water level (14.70 overall average) than for cultivar
(1.62 overall average). The highest average CH score was observed for 120%
water level, indicating an extremely distinct RSA for this treatment compared
to the roots grown in the three other water treatments (Table 2).

The present study goes one step further in exploring the EMD results
visually. To achieve this, we chose the number of spatial bins corresponding to
the largest CH index for each feature as shown in the Table 3. To better capture
the changes of RSA, we visualized the root images in a 2D space by projecting
the EMD matrix through MDS (Kruskal, 1964). Since the root architectures
have the most variance for water levels in Run 3 and 4, we showed a example
visualization as shown in Figure 3. Here, we used the percentage of root pixels
as the feature and 2000 spatial bins for the images. From the bottom left to
the top right, the water level of the root architectures changed from 120% to
60%. Our proposed STARSEED can clearly capture the trend that the main
roots (i.e., tap roots) are shorter and have less sub-roots as the moisture level
changed.

3.2 Global Analysis: EMD Between Treatments

In order to identify global trends in RSA for each treatment, we aggregated
the signature representations of each centered root image to create a repre-
sentative for each treatment. For each root image, we computed the feature
representation as shown in Figure 2 from the average feature values within



STARSEED 11

(a) Root Images

(b) Water Levels

Fig. 3: Example of qualitative results produced by projecting EMD matrix
through MDS. The result shown is from the percentage of root pixels as the
feature and 2000 spatial bins for images from Runs 3 and 4. The root archi-
tectures are arranged in a meaningful way in the 2D space (i.e., images that
are similar are near one another). By using MDS, we are able to qualitatively
assess if EMD is capturing the relationships between the various root architec-
tures. In Figure 3a, we can see that the MDS projection of the EMD distance
matrix groups the root architectures well based off shared characteristics. In
Figure 3b, we also observe that the root architectures are well clustered based
on moisture level. STARSEED computes the EMD distances between the root
architectures without considering the treatment value. Through the proposed
approach, we observe that there is some relationship between root architecture
differences and treatment levels.

each spatial bin for roots that belong to the same cultivar or water level.
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Fig. 4: Root architecture images, EMD score, and largest value changes
between S32 (Figure 4a) and S35, S38 and S40 (Figure 4b-d respectively) for
Run 1 and 2. The color scale for Figure 4a-d represents the fractal dimension
value of each spatial bin. Figure 4e shows the EMD score overall. Figure 4f,
Figure 4g, and Figure 4h represent the top 20% value changes between S32
and the three other cultivars; red spatial bins are unique to S32, green spatial
bins are unique to S35, S38 or S40, and yellow spatial bins are common to
both cultivars.

After we obtained these representatives, we computed EMD between each cul-
tivar or water level. By using the EMD approach, we not only get a score for
the differences between each treatment level, but we can also highlight a) the
magnitude and b) location of the RSA dissimilarities. The EMD calculations
were performed first between each pair of cultivars, then between each pair of
moisture levels, and separately between Run 1-2 and Run 3-4. This process
generated a large number of different results, thus we chose to display and
discuss only a sub-sample of these EMD figures. For each figure, only the top
20% value changes between the reference treatment level (Figures 4-8a) and
the other levels (Figures 4-8b, c, d) are displayed as white arrows. We also
show the EMD scores in Figures 4-8e between the reference treatment level
and the other levels.

Differences between cultivars

Figure 4 shows the processed RSA images for each cultivar and EMD results
with the reference to S32. The EMD score (Figure 4e) was smallest between S32
and S35, indicating that the two architectures were most similar. This is con-
firmed by comparing Figure 4f, Figure 4g and Figure 4h: Figure 4f comparing
S32 to S35 has the smallest arrows, showing that the changes in architecture
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Fig. 5: EMD score and largest value changes between S40 (Figure 5a) and S32,
S35 and S38 (Figure 5b-d respectively) for Run 1 and 2. The color scale for
Figure 5b-d represents the fractal dimension value of each spatial bin. Figure
5e shows the EMD score overall. Figure 5f, Figure 5g, and Figure 5h represent
the top 20% value changes between S40 and the three other cultivars; red
spatial bins are unique to S40, green spatial bins are unique to S32, S35 or
S38, and yellow spatial bins are common to both cultivars.

between these two cultivars are relatively small, and for the most part are con-
centrated in the deeper section of the root system. Specifically, S35 seemed to
have a more laterally spread out root distribution towards the deepest por-
tion of the image, and a more concentrated root mass along the tap root right
above that. Out of the three other cultivars, S32 was most different from S38,
and Figure 4g shows that the most variation in architecture between these two
cultivars was located in the middle part of the root system. Indeed, S38 tended
to spread out more laterally in the mid-section of the image compared to S32.

The differences between S32 and S40 were located in the upper part of
the root system, and Figure 4h shows that S32 tended to have more a more
spread out root distribution towards the top of the soil surface compared to
S40. According to the Table 1, the EMD results for S40 without fertilizer
(Figure 5 showed that the architecture for S40 was most different from S32,
and most similar to S35 (Figure 5e). STARSEED also highlighted the fact
that S40 tended to have a pronounced shallow lateral root growth, while the
other cultivars tended to be denser and less spread out in the very shallowest
depth. When fertilizer was added, S40 showed a tendency to produce more
shallow lateral roots than the three other cultivars (Figure 6). S40 was most
dissimilar from S32, and the differences consisted of S40 having a stronger
lateral growth than S32, which was more vertical. Similar observations can be
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Fig. 6: Root architecture images, EMD score and largest value changes
between S40 (Figure 6a) and S32, S35 and S38 (Figure 6b-d respectively) for
Run 3 and 4. The color scale for Figure 6b-d represents the percentage of root
pixels in each spatial bin. Figure 6e shows the EMD score overall. Figure 6f,
Figure 6g, and Figure 6h represent the top 20% value changes between S40
and the three other cultivars; red spatial bins are unique to S40, green spatial
bins are unique to S32, S35 or S38, and yellow spatial bins are common to
both cultivars.

made between S40 and S35, though S35 seemed to have more lateral growth
than S32. With S38 the differences between the two architectures were not
focused on one specific area and tended to be smaller overall, indicative of a
more similar architecture also evidenced by the low EMD score between S40
and S38 (Figure 6e).

Differences between moisture levels

For Runs 1 and 2, when considering water levels, the root architectures were
overall very similar as shown in Table 1. The architecture that was most dis-
tinguished from the others was that of the 80% moisture treatment (Figure
7). It was overall most different from 100%, and was closest to 120% and the
60% treatment architecture (Figure 7e). Specifically, the 80% treatment had
a visibly denser central region than the three other moisture levels (Figure 7a
through Figure 7d). This is reflected more clearly in Figure 7f through h: the
80% treatment showed a more concentrated root distribution closer to the top
of the root system compared to the other treatments, and so the arrows tend
to point toward the upper center of the root system. The fertilizer added in
Run 3 and 4 substantially changed the plant development curve from sigmoidal
to exponential. The architecture for the 120% moisture level was appeared
extremely different from the other moisture levels (Table 2, Figure 8). The
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Fig. 7: Root architecture images, EMD score and largest value changes
between 80% (Figure 7a) and 60%, 100% and 120% (Figure 7b-d respectively)
for Run 1 and 2. The color scale for Figure 7b-d represents the percentage of
root pixels in each spatial bin. Figure 7e shows the EMD score overall. Figure
7f, Figure 7g, and Figure 7h represent the top 20% value changes between
80% and the three other mositure levels; red spatial bins are unique to 80%,
green spatial bins are unique to 60%, 100% or 120%, and yellow spatial bins
are common to both water levels.

roots barely grew beyond the flooded layer of soil, and tended to spread out
laterally to a greater extent than in the other soil moisture conditions. The
roots for 120% also tended to be more dense right above the flooded layer of
soil, as evidenced by higher color scale value in Figure 8a.

4 Discussion

4.1 Avoidance vs Tolerance in waterlogged soil conditions

When looking at the EMD results, one interesting observation is that the three
features that were considered (i.e., % root pixels, fractal dimension and lacu-
narity) had very similar discriminating power between cultivars and between
moisture levels (Table 1, Table 2) though the ANOVA/Tukey HSD test showed
that % root pixels tended to be a better feature than fractal dimension and
lacunarity. Both fractal dimension and lacunarity have been used successfully
in RSA analysis (Li et al, 2020; Walk et al, 2004). However, the main differ-
ences between these previous studies and the current one is that in this study
these features were not calculated across the entire image but for each spatial
bin.
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Fig. 8: Root architecture images, EMD score and largest value changes
between 120% (Figures 8a) and 60%, 80% and 100% (Figures 8b-d respectively)
for Run 3 and 4. The color scale for Figures 8b-d represents the percentage of
root pixels in each spatial bin. Figures 8e shows the EMD score overall. Figures
8f, Figures 8g and Figures 8h represent the the top 20% value changes between
120% and the three other moisture levels; red spatial bins are unique to 120%,
green spatial bins are unique to 60%, 80% or 100%, and yellow spatial bins
are common to both water levels.

We also calculated the fractal dimension and lacunarity values for whole
images, but we observed limited differences among treatments for the CH index
(e.g., S32 = 0.06 and S38 = 0.03 for Runs 3 and 4 with fractal dimension).
By using these texture features to describe the individual regions of an image,
we improved the RSA characterization and comparisons for each treatment.
Results from Tables 1 and 2 indicate that for future similar work, % root
pixels, an easily calculated parameter, should be preferentially used rather
than fractal dimension and lacunarity.

More specifically, the results for Runs 1-2 and Runs 3-4 (Table 1 and 2)
indicate that without fertilizer, cultivar is the dominant driver of root architec-
ture, and that water only plays a minimal role. This can be seen in the highest
CH index score on average across all cultivars compared with the averages for
water level (Table 1). S32 was the cultivar with the most distinct architecture,
and through Figure 4, we are able to pinpoint what made this architecture
different from the others such as having most changes in the deeper section
of the root architecture through a less concentrated root mass along the right
of the tap root (S35), the most variation in the lateral spread in the middle
part of the root system (S38), and the most difference in the upper part of the
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root system by a more spread out root distribution towards the top of the soil
surface (S40).

The situation is reversed when fertilizer is added, and water level becomes
the factor with the biggest impact on root architecture, as evidenced by the
much higher CH index value for moisture level. This high score is actually
driven by a single treatment, 120% moisture level, which had a very different
architecture compared to the other soil moisture treatment (Figure 8). The
roots seemed to not be able to grow much into the flooded layer of soil, and
tended to grow laterally more so than in the other treatments. This very
distinct RSA in flooded conditions when fertility is adequate in Run 3 and 4
contrasts strongly with that of Run 1 and 2. Sesame is known to be highly
sensitive to waterlogged soil (Sarkar et al, 2016), and can activate a variety
of morpho-anatomical and physiological responses to cope with flooding stress
(Wei et al, 2013). Here, we can highlight two different morpho-anatomical
strategies employed by the crop depending on the soil fertility status. Without
adequate nutrient availability, the crop seems to opt for a tolerance strategy
to flooding, developing roots into the saturated soil (Figure 7). We can assume
that this apparent tolerance strategy is accompanied but other changes not
captured in this study such as the formation of aerenchyma and changes in the
enzymatic activities (Wei et al, 2013). When there are enough nutrients in the
soil however, the plants seemed to adopt an avoidance strategy, and did not
grow roots down into the waterlogged soil, but tended to proliferate laterally
(Figure 8). These observations being constant across cultivars, we can thus
conclude that fertility conditions the response of sesame early RSA to flooding
stress.

4.2 Validity of the EMD Method

Although of interest in estimating early root vigor and biomass, it is clear here
that only considering TRL does not provide any insight on RSA. Increasing our
knowledge and understanding of root architectural development in response
to environmental stresses is of capital importance for global agricultural pro-
duction, and has been defined as the pillar of the Second Green Revolution
(Lynch, 2007). Many methods are now available to observe RSA, yet some
of the more advanced techniques such as CT imaging remain expensive and
impractical, underlining the need for improved trans-disciplinary phenotyping
approaches that can capture and quantify the complexity of RSA (Atkinson
et al, 2019; Wu et al, 2018; Zhu et al, 2011).

Our proposed STARSEED method could be the answer to some of these
issues. It provides a fast, reproducible, quantitative, and spatially explicit char-
acterization of RSA, also allowing for comparisons between root systems. A
valuable aspect of the analysis is the introduction of the EMD class score, which
summarizes all of the differences between two RSAs down to a single number
which can be compared between these RSAs. The EMD scores also provide
an interpretable measure that quantifies the visual observations between the
root structures. EMD, combined with the CH index, can thus be used to very
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quickly know which treatment lead to the most distinct RSA, and the degree
to which these RSAs relate to one another globally.

The actual spatial EMD result (i.e., Figures 4 through 8) can then be
looked at to further elucidate specific spatial differences between RSAs. To
the best of the authors’ knowledge, this is the first time EMD has been used
to characterize RSA. The method has been thoroughly validated and used
in varied fields of science, including fluid mechanics (Benamou and Brenier,
2000), linguistics (Kusner et al, 2015), or, more related to the present study,
image classification and comparison (Zhang et al, 2020). The CH index used
in STARSEED serves as evaluation step for the method to not only quantify
what we observe, but also to ensure the approach captures distinct features
to effectively group root architectures based on a shared characteristic (e.g.,
cultivar, moisture treatment).

One of the most critical strengths of STARSEED and the way it is per-
formed here is that it allows for the generation of an “average” root architecture
visual representation as shown in Figures 4 through 8a through d. Indeed, by
taking the overlap of all images within one treatment, partitioning the image
into local regions, and calculating a feature value for each spatial bin, we can
generate a meaningful and visually explicit “average” architecture that reflects
differences between genotypes or environmental conditions. Recent studies
have attempted to either develop new techniques to directly measure RSA
(Armengaud et al, 2009), find a way to accurately represent average RSAs
corresponding to specific growing conditions (Shahzad et al, 2018), and many
more studies have developed or refined root architecture development models
(Tron et al, 2015; Postma et al, 2017; Zhao et al, 2017; Pagès et al, 2020). One
study in particular created similar 2D heat maps of “root frequency” observed
on the four transparent surfaces of rhizoboxes but did not perform a spatially
explicit analysis to the level of STARSEED (Jørgensen et al, 2014).

4.3 Going beyond the 2D images of rhizoboxes

Given the rhizobox set up of this study and the use of flatbed scanners for
root images acquisition, the observations are confined in 2D when root sys-
tems always exist in 3D spaces. Imaging and characterizing a whole RSA in 3D
in situ or even in vitro is usually low throughput and expensive if not nearly
impossible. Most scientists thus resort to using models in lieu of direct obser-
vations, as previously mentioned. One of the main difficulty of using these 3D
RSA models is correct parameterization, which is crucial to the accuracy and
validity of a model’s prediction (Schnepf et al, 2018). Recent work has shown
that 2D measurements of root systems could be used to adequately inform the
parameters for 3D models (in wheat (Landl et al, 2018)). It is thus a reasonable
hypothesis to say that the current EMD results could be further refined and
subsequently used to generate and interpret such 3D models. There is poten-
tial to go even further and directly use EMD on 3D data (Salti et al, 2014),
although the issue of acquiring such data still remains.
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Combining the average EMD visual maps with new root architecture quan-
tification techniques (Wu and Guo, 2014) could really boost our understanding
of RSA plasticity. This would allow for both global (i.e., EMD scores) and local
(i.e., magnitude and direction of changes) comparisons between genotypes and
environmental conditions. Additionally, combining our understanding of RSA
plasticity derived from the EMD visual maps along with molecular and genetic
work would most probably be of critical importance to breeders.

5 Conclusion

In this paper, we presented STARSEED, an approach to characterize root
architecture from 2D images. Qualitative and quantitative analysis demon-
strate the effectiveness of the proposed method. STARSEED successfully
incorporated spatial and texture information to describe root architectures at
both global and local contexts. The method is explainable and provides clear
connections to biological aspects of each root image. STARSEED also allows
for aggregating individual architectures to assess and average response for each
environmental condition and genotype. Future work includes clustering based
on root architecture (i.e., using the pairwise EMD matrix for relational clus-
tering), applying our general framework over time to characterize how RSA
develops in various conditions, along with scaling up to 3D characterization.
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