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Abstract 17 

1. Inference of spatial patterns of genetic structure often relies on parameter estimation 18 

and model evaluation using a set of summary statistics (SS) that summarise the 19 

information present in the data. An important subset of these SS is best described as 20 

diversity indices, which are based on information theory principles that can be 21 

classified as belonging to three different ‘families’ encompassing a spectrum of 22 

information measures, qH. These include the richness family of order q = 0, ArSS; the 23 

Shannon family of order q = 1, HSS; and the heterozygosity family of order q = 2, 24 

HeSS. Although commonly used by ecologists, the Shannon family has been rather 25 

neglected by population geneticists and evolutionary biologists. However, recent 26 

population genetic studies have advocated their use, yet the power of these SS for 27 

spatial structure discrimination has not been systematically assessed.  28 

2. In this study, we performed a comprehensive assessment of the three families of SS, 29 

as well as a fourth family consisting of SS belonging to the Shannon family but 30 

expressed in terms of Hill numbers ( 𝑆𝑆
𝐷1

), for spatial structure inference using 31 

simulated microsatellites data under typical spatial scenarios. To give an unbiased 32 

evaluation, we used three machine learning methods, Kernel Local Fisher 33 

discriminant analysis (KLFDA), random forest classification (RFC), and deep neural 34 

network (DL), to test the performance of different SS to discriminate between spatial 35 

scenarios, and then identified the most informative metrics for discriminatory power. 36 

3. Results showed that the SS family of order q = 1 expressed in terms of Hill numbers, 37 

𝑆𝑆
𝐷1

, outperformed the other two families (Ar SS, He SS) as well as the untransformed 38 

Shannon entropy (H SS) family. Jaccard dissimilarity (J) and its Mantel’s r showed the 39 
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highest discriminatory power to discriminate all spatial scenarios, followed by 40 

Shannon differentiation ΔD and its Mantel’s r.  41 

4. Information-based summary statistics, especially the diversity of order q = 1 and 42 

Shannon differentiation measures, can increase the power of spatial structure 43 

inference. In addition, different sets of SS provide complementary power for 44 

discriminating between spatial scenarios. 45 

Keywords: spatial structure, information-based statistics, population genetics. 46 
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Introduction 59 

Spatial biodiversity patterns generated by different evolutionary and demographic processes 60 

can be observed at the ecological or species level and, at the genetic or molecular level (Van 61 

Tienderen 1991; Novembre & Stephens 2008; Fortuna et al. 2009; Wang et al. 2011; Stotz, 62 

Gianoli & Cahill 2016). However, metrics and approaches to describe these spatial patterns 63 

and to infer the underlying processes differ greatly between these two biodiversity levels. The 64 

metrics used to study ecological variation (species) and genetic variation (alleles) are mainly 65 

dominated by the traditional indices in their own domains, such as species richness, Shannon 66 

index in ecology, and allelic richness, heterozygosity in population genetics. These indices 67 

comprise a spectrum of information measures (q profile, qH; (Hill 1973; Jost 2006)), 68 

including richness (q=0, S), Shannon entropy (q=1, H), and heterozygosity (or Gini-Simpson 69 

index, q=2, He). Each index of order q provides a different type of information, with the 70 

index of order q=0 emphasising rare elements, the index of order q = 2 emphasising common 71 

elements, while the index of order q=1 measuring uncertainty in proportion to their 72 

frequency, neither preferring rare elements nor common elements (Sherwin et al. 2017). 73 

However, q =1 family only received sporadic attention in population genetics.  74 

The use of summary statistics has facilitated our understanding of ecology and evolution in 75 

terms of describing spatial biodiversity patterns (e.g., Distance-Decay (Nekola & White 76 

1999)), and examining likely processes underlying them. Typically, this is done by 77 

decomposing total diversity (γ-diversity) into within-aggregate (α-diversity) and between 78 

aggregates (β-diversity) based on species’ or community spatial aggregation (Lande 1996; 79 

Ricotta 2005). The derived β-diversity is then used to examine the dissimilarity or 80 

differentiation between aggregates. Two main decomposition methods have been used to do 81 

this, multiplicative (SSγ =SSβ *SSα) and additive (SSγ=SSβ + SSα) decomposition (Ricotta 82 

2005). The desirable β-diversity should be additive when pooling or partitioning the 83 
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aggregates and should represent the actual proportion of non-shared elements (true 84 

dissimilarity or differentiation) due to divergence or differentiation between aggregates 85 

(Chao, Chiu & Jost 2014). β-measures additively decomposed from q=0 (e.g., Jaccard 86 

dissimilarity) don’t measure true dissimilarity, because they only count presence and absence 87 

ignoring the abundance or frequency of elements. β-measures of order q = 2, the well-known 88 

fixation index, FST family (including FST, GST etc.) derived from the multiplicative 89 

decomposition of heterozygosity (He), don’t measure true differentiation (true dissimilarity) 90 

and are not independent of α- diversity or γ-diversity (Jost 2008; Ma, Ji & Zhang 2015). On 91 

the other hand, β-measures based on Shannon entropy (order q = 1, the Shannon 92 

differentiation, ΔD), measure true differentiation and satisfy monotonicity without 93 

dependence problem (Gaggiotti et al. 2018), which are desirable metrics for measuring 94 

differentiation.  95 

A common difficulty faced when measuring biodiversity with standard metrics is that, with 96 

the exception of richness, they do not have an intuitive interpretation in terms of the number 97 

of effective elements in the system (Jost 2006). However, this problem is easily overcome by 98 

using Hill numbers (Hill 1973), and this is the approach we use in the present study. Thus, 99 

allelic richness is represented by 0D while the effective number of alleles based on Shannon 100 

entropy and heterozygosity are given by 1D and 2D respectively.   101 

Diversity at one level of biological organization (community, species) may sustain the 102 

diversity at the other (Lankau & Strauss 2007). Thus, in addition to describing diversity 103 

patterns, researchers have made substantial efforts to unify the two levels of biodiversity 104 

(species diversity of ecological communities and genetic diversity of populations) and to 105 

reveal ecological and evolutionary processes underpinning their spatial patterns (Vellend 106 

2005). However, these so-called Species-Genetic-Diversity-Correlation (SGDC) studies have 107 

rarely measured the two types of diversity consistently (Gaggiotti et al. 2018). Integrative 108 
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studies of species and genetic diversity, and the ecological factors underlying their 109 

association or lack thereof using the same type of index would contribute to a better 110 

understanding of eco-evolutionary dynamics.  111 

The use of informative diversity metrics is crucial, not only for detecting changes in 112 

biodiversity patterns but also for understanding the demographic and evolutionary history of 113 

species (Csilléry et al. 2010). The performance of population genetics summary statistics has 114 

been thoroughly evaluated in the context of spatial demographic inference (Alvarado‐Serrano 115 

& Hickerson 2016) and similar studies are needed for equivalent statistics based on Shannon 116 

entropy. The present study represents the first step in this direction by evaluating the power 117 

of the information-based diversity measures (represented by 1D and Shannon differentiation, 118 

ΔD) and comparing it with that of traditional measures (represented by allelic richness, 119 

heterozygosity, and their β-diversity measures) to discriminate between spatial scenarios 120 

using recent state-of-the-art machine learning approaches.  121 

We simulated microsatellite data under five spatial scenarios that include panmixia, finite 122 

island model, hierarchical island model, stepping-stone model and hierarchical stepping-stone 123 

model, which are the typical spatial demographic models that have been used to describe the 124 

spatial structure of natural populations in fragmented landscapes. We employed three state-125 

of-the-art machine learning approaches, kernel local discriminant analysis (KLFDA), 126 

conditional random forest classification, and deep neural networks (DNN) to characterize the 127 

behaviour of these diversity metrics for discriminating different spatial scenarios. Our results 128 

showed that information-based summary statistics can provide more power than traditional 129 

measures to make inferences about spatial genetic structure.  130 

Methods 131 
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To evaluate the ability of the new SS and traditional SS in discriminating different spatial 132 

scenarios, we simulated five spatial scenarios that encompass hierarchical and non-133 

hierarchical population structures using coalescent simulations. More specifically, we 134 

considered populations without hierarchical structure and populations structured into three 135 

hierarchical levels, ecosystem, aggregate (e.g., region) and sub-aggregate (e.g., population) 136 

level.  137 

We calculated the traditional and new summary statistics from these scenarios and then used 138 

the state-of-the-art machine learning approaches to test their power to discriminate among 139 

spatial scenarios. 140 

Models and model parameters  141 

We considered five spatial scenarios, panmixia, island model, hierarchical island model, 142 

stepping-stone model, and hierarchical stepping-stone model. Instead of using fixed values 143 

for the parameters, we sampled them from probability distributions. Table 1 presents all 144 

scenarios and the respective parameter distributions used in the simulations. For the island 145 

model, stepping-stone model, hierarchical island model and hierarchical stepping-stone 146 

model, each scenario consisted of 16 populations with population size sampled from 147 

𝑈(100, 1000). For the panmixia model, we simulated one panmictic population, with 148 

population size drawn from 𝑈(1600, 16000). The hierarchical island models consist of four 149 

regions with each region comprising 4 populations. In terms of the hierarchical stepping-150 

stone models, we simulated two regions with each region comprising 8 populations. We 151 

assume a stepwise mutation model with a constant mutation rate of 5×10-4 for all scenarios. 152 

In the case of the non-hierarchical scenarios (island model and stepping-stone model), the 153 

migration rate, m, was drawn from a uniform distribution 𝑈(0.001, 0.1). In the case of the 154 

hierarchical scenarios, migration rates between pairs of populations within regions were 155 
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sampled from 𝑈(0.001, 0.1) and migration rates between populations from different regions 156 

were sampled from 𝑈(0.00005, 0.005). 157 

Simulations 158 

The coalescent-based simulator fastsimcoal2 (Excoffier & Foll 2011; Excoffier et al. 2013) 159 

was used to generate microsatellite synthetic data under the five scenarios described above. 160 

For each of these five spatial scenarios, we simulated 10 independent microsatellite loci 161 

sharing the same mutation rate. 100 sets of parameters (100 simulations) were randomly 162 

drawn from prior distributions, and each parameter set was used to generate 1000 replicate 163 

data sets. We sampled 20 individuals per population under each spatial model (standard and 164 

hierarchical versions of the island and stepping-stone models). In the case of the panmixia 165 

model, we sampled 320 individuals and then randomly partitioned them into 16 samples 166 

consisting of 20 individuals each to obtain a set of samples equivalent to those of the other 167 

four scenarios.  168 
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Table 1. Parameters used in the simulations. In the case of the panmixia scenario, we simulated a single population but generated 16 samples at 169 

random. In the case of the hierarchical models, we indicate the number of populations per region in parenthesis. 170 

Scenarios Regions 
Number of 

populations 
Population size Sample size Migration rate Mutation rate 

Number of 

loci 

Panmixia 1 1 (16) * U (1600,16000) 320  5×10-4 10 

Island model 1 16 U (100, 1000) 20 U (0.001, 0.1) 5×10-4 10 

Hierarchical island 

model 
4 (4,4,4,4) 16 U (100, 1000) 20 

mwithin: U (0.001, 0.1) 

mbetween: U (5E-5, 5E-3) 
5×10-4 10 

Stepping-stone 1 16 U (100, 1000) 20 U (0.001, 0.1) 5×10-4 10 

Hierarchical 

stepping-stone 
2 (8,8) 16 U (100, 1000) 20 

mwithin : U (0.001, 0.1)) 

mbetween: U (5E-5, 5E-3) 
5×10-4 10 

 171 

 172 
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 Summary Statistics 173 

We chose the commonly used genetic diversity indices, allelic richness (Ar, noted ArSS 174 

hereafter) and heterozygosity (He, noted HeSS hereafter) as well as their corresponding β- 175 

diversity measures, Jaccard dissimilarity (Jaccard 1912) and fixation index (Weir & 176 

Cockerham 1984), as the traditional summary statistics. The allelic richness and expected 177 

heterozygosity were partitioned into three hierarchical levels, population level, regional level 178 

and ecosystem level, with the corresponding measures being, 𝐴𝑟
𝑃 (allelic richness at the 179 

population level), 𝐴𝑟
𝑅  (allelic richness at the regional level), 𝐴𝑟

𝑇 (total allelic richness in the 180 

ecosystem) and 𝐻𝑒
𝑃  (expected heterozygosity at the population level) , 𝐻𝑒

𝑅  (expected 181 

heterozygosity at the regional level), 𝐻𝑒
𝑇  (total heterozygosity in the ecosystem). 182 

Accordingly, the β- measures were partitioned into 𝐽𝑟
𝑃 (Jaccard dissimilarity among 183 

populations within a region) and 𝐽𝑟
𝑅 (Jaccard dissimilarity among regions within an 184 

ecosystem) for allelic richness, and 𝐹𝑆𝑇
𝑃  (𝐹𝑆𝑇 among populations within a region) and 𝐹𝑆𝑇

𝑅  (𝐹𝑆𝑇 185 

among regions within an ecosystem) for expected heterozygosity.   186 

We chose the diversity of order q=1, the transformed Shannon “effective number”- 1D, as 187 

well as Shannon differentiation (ΔD) as the new summary statistics ( 𝑆𝑆𝐷1
). 1D was also 188 

decomposed into population level, regional level and ecosystem level, which were Dγ, Dα
2, 189 

Dα
1, respectively. The equivalent number of regions and the equivalent number of 190 

populations thus were Dβ
2, Dβ

1, respectively. In the same way, the allelic differentiation ΔD 191 

was decomposed into differentiation among populations within a region (ΔD1), and 192 

differentiation among regions within an ecosystem (ΔD2).  The details about the equations for 193 

diversity decomposition can be found in Gaggiotti et al, (2018). 194 

As Shannon entropy avoids undue emphasis on either rare or common alleles (Sherwin et al. 195 

2017), it is increasingly used in evolutionary biology and molecular ecology as a measure of 196 
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genetic diversity and evolvability (Hampe, Schreiber & Krawczak 2003; Day 2015; Wagner 197 

2017). Therefore, we also use summary statistics based on Shannon entropy (1H, 𝑆𝑆𝐻   198 

hereafter) for comparison with diversity measures ( 𝑆𝑆𝐷1
). Shannon entropy per population 199 

(𝐻𝑃), per region (𝐻𝑅), and total Shannon entropy (𝐻𝑇) were calculated in line with the same 200 

hierarchies above. The additive decomposition of Shannon beta entropy (Hβ= Hγ - Hα), was 201 

estimated at the population level (𝐻𝛽
1) and regional level (𝐻𝛽

2) as well. Here, we also 202 

included Shannon differentiation (ΔD) to keep the number of statistics in 𝑆𝑆𝐻  the same with 203 

𝑆𝑆𝐷1
. 204 

In addition, we also calculated Mantel’s r, the correlation coefficient between genetic 205 

distance and geographical distance for β- measures (𝜌𝐽,𝑑,  𝜌Δ𝐷,𝑑,  𝜌𝐹𝑆𝑇,𝑑), with distance 206 

measured in terms of the number of steps (edges) separating any two populations (vertices).  207 

Each set of summary statistics includes the mean and standard deviation (SD). For each 208 

measure at the population level, we calculated the value for each population and the mean 209 

across populations. The total number of summary statistics for 𝑆𝑆𝐴𝑟  is 44, the same as for 210 

𝑆𝑆𝐻𝑒 . The total number of summary statistics for 𝑆𝑆𝐷1
 is 48 the same number as for 𝑆𝑆𝐻 . 211 

The description of summary statistics is shown in Table S1. 212 

Data analysis 213 

The pipelines (R functions) to calculate the summary statistics are wrapped in the R package 214 

HierDpart (Qin 2019).  We built 9 subsets of summary statistics, Ar SS, H SS, He SS, 𝑆𝑆
𝐷1

,  215 

𝑆𝑆𝐴𝑟+𝐻𝑒 ,  𝑆𝑆
𝐻+ 𝐷1

, 𝑆𝑆𝐴𝑟+𝐻+𝐻𝑒 ,  𝑆𝑆
𝐴𝑟+𝐻𝑒+ 𝐷1

, 𝑆𝑆
𝐴𝑟+𝐻+𝐻𝑒+ 𝐷1

, for the discriminatory power 216 

test. 217 
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The power of summary statistics to discriminate among spatial scenarios  218 

The power assessed by various machine learning methods may differ. Thus, to ensure that our 219 

tests are as comprehensive as possible, we employed three current state-of-the-art approaches 220 

to evaluate the power of the different subsets of summary statistics to discriminate among 221 

spatial structure scenarios: Kernel Local Fisher discriminant analysis (KLFDA; (Sugiyama 222 

2007), conditional random forest classification (CRFC; (Strobl et al. 2007), and deep neural 223 

network (Ripley & Hjort 1996). 224 

Kernel Local Fisher Discriminant Analysis (KLFDA) 225 

KLFDA is a recently proposed method for supervised dimensionality reduction based on 226 

local Fisher discriminant analysis (LFDA, Sugiyama 2006). As opposed to the standard 227 

Fisher discriminant analysis (LDA), LFDA can separate different classes (e.g. genetic 228 

clusters) while preserving the within-class structure (Sugiyama 2007); in other words, it 229 

allows for genetic sub-structuring within clusters. KLFDA represents an extension of LFDA 230 

that considers non-linear boundaries between classes through a nonlinear mapping of data 231 

points onto a reproducing kernel Hilbert space.  232 

We carried out KLFDA on the 9 subsets of summary statistics. The Gaussian kernel was 233 

chosen for kernel transformation. Three key hyperparameters impact the accuracy of 234 

KLFDA, d, the number of reduced features for discriminant analysis, σ, the radius (the 235 

standard deviation) of the Gaussian kernel, and knn, the number of nearest neighbours. We 236 

first determined the appropriate number of reduced features ranging from 5 to 50 based on 237 

classification accuracy during training. We then did fine hyperparameter tuning on σ and knn 238 

via cross-validation with the best number of reduced features selected in the first step. σ value 239 

was tuned considering values between 0.001- 10 (0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10) 240 

and knn was tuned between 5- 50 (5, 10, 15, 20, 25, 30, 35, 40, 45, 50). Discriminatory power 241 
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was evaluated by the classification accuracy (proportion of the overall correct discrimination) 242 

via leave-one-out cross-validation (Schaffer 1993; Kohavi 1995). Analyses were 243 

implemented using R package lfda (Tang & Li 2016; Tang & Li 2017). 244 

Conditional Random Forest Classification (CRFC)          245 

We conducted the unbiased random forest classification based on conditional inference trees 246 

(cforest) that adopt the subsampling validation process with unbiased variable selection 247 

(bootstrap without replacement; (Strobl et al. 2007). To avoid overfitting in random forest 248 

classification, we optimized the key parameter (mtry) that governs the number of features that 249 

are randomly chosen to grow each tree from the bootstrapped data. We tuned the parameter 250 

mtry [mtry ϵ (1: n), n is the number of variables] via leave-one-out validation with 1000 trees 251 

for each subset of summary statistics. The parameter with the lowest average prediction error 252 

was chosen as the final model. 253 

The standardized conditional importance of each variable, measured by the mean decrease in 254 

accuracy (MDA), was estimated from the optimum model based on bootstrapping without 255 

replacement according to (Strobl et al. 2008). Analyses were implemented using the R 256 

package “caret ” (Kuhn 2015) calling cforest function from party package (Hothorn et al. 257 

2010).   258 

Deep neural network 259 

We conducted neural network (Baum 1988; Guarnieri, Piazza & Uncini 1999) classification 260 

using a 3 hidden layers perceptron (MLP) feedforward network with a weight decay to test 261 

the performance of the above subsets of summary statistics for spatial structure inference. 262 

The deep neural network training was carried out through a backpropagation with weighted 263 

decay optimization (a procedure to repeatedly adjust the weights to minimize the difference 264 
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between true values and observed values) and a non-linear activation function (logistic) at the 265 

output layer. We first did a grid search on the parameter space via cross-validation to 266 

minimize the parameter range, then we tuned the parameters through dense parameter 267 

combinations via leave-one-out cross-validation. Finally, we tuned the number of neurons in 268 

each hidden layer using: layer1 = (1, 5, 10, 15); layer2= (0, 5, 10, 15); layer3= (0, 5, 10, 15), 269 

and the rate of decay using: decay = (0, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1). Final model 270 

performance was evaluated by the model accuracy and Cohen's Kappa coefficient (Cohen 271 

1960). Models with the highest accuracy were chosen as the optimal model. 272 

The (overall) importance of summary statistics is determined based on Garson’s algorithm 273 

(Garson 1991; Gevrey, Dimopoulos & Lek 2003), which uses combinations of the absolute 274 

values of the weights. We also used neural networks to assess the importance of summary 275 

statistics to identify a specific scenario. Deep neural network models were built using caret 276 

package (Kuhn 2008; Kuhn 2012).  277 

Evaluating discriminatory power of different sets of summary statistics  278 

In terms of KLFDA, random forest classification, and neural network, we calculated the 279 

confusion matrix as well as overall performance statistics for each set of summary statistics. 280 

These model metrics are presented in Supplementary Material. Overall performance statistics 281 

included model accuracy and Kappa. All the performance statistics were estimated using the 282 

best model after leave-one-out cross-validation. The detailed description of these statistics 283 

can be found in (Kuhn & Johnson 2013).  284 

We compared the performance of different sets of summary statistics in discriminating the 285 

five spatial scenarios using each of the above-mentioned methods separately to identify the 286 

best set of summary statistics.  287 
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Results 288 

KLFDA inference 289 

Table 2 presents the overall performance of different sets of summary statistics in 290 

discriminating five spatial scenarios using KLFDA. The best performing statistics set should 291 

have the highest accuracy and the largest Kappa value. Results indicated that 𝑆𝑆
𝐷1

 surpassed 292 

other sets of summary statistics at discriminating among scenarios and presented the highest 293 

discriminatory power. Though 𝑆𝑆𝐻  did slightly better than Ar SS and He SS, it underperformed 294 

𝑆𝑆
𝐷1

 (Table 2). On the other hand, the set of summary statistics with the lowest 295 

discriminatory power corresponded to the most commonly used HeSS in population genetics 296 

(Table 2). 297 

Table 2. The overall performance of different sets of summary statistics in discriminating 298 

five spatial scenarios using KLFDA 299 

Summary 

statistics 
ArSS HSS HeSS 

1
DSS 

Ar+HeSS H+
1

DSS 
Ar+H+HeSS Ar+He+

1
DSS Ar+H+He+

1
DSS 

Accuracy 

(Acc) 
0.934 0.936 0.908 0.946 0.926 0.944 0.93 0.944 0.942 

Acc 95% CI  
(0.9086, 

0.9541) 

(0.9108, 

0.9558) 

(0.8792, 

0.9319) 

(0.9224, 

0.9641) 

(0.8994, 

0.9474) 

(0.9201, 

0.9625) 
(0.904, 0.9508) 

(0.9201, 

0.9625) 

(0.9178, 

0.9608) 

Kappa 0.9175 0.92 0.885 0.9325 0.9075 0.93 0.9125 0.93 0.9275 

Acc: Accuracy; Acc 95% CI: the 95% interval of accuracy; Kappa: Cohen's kappa coefficient (κ). 300 

 301 

Figure 1 presents results for the five scenarios based on the first two reduced features from 302 

KLFDA. Except 𝑆𝑆
𝐷1

, all other summary statistics, or the combination thereof, either failed 303 
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to clearly distinguish between panmixia and the island model or failed to clearly distinguish 304 

between the standard stepping-stone model and hierarchical stepping-stone model (Fig. 1A-305 

I). 𝑆𝑆
𝐷1

 did a better job at discriminating among all of them (Fig. 1D).  306 

The confusion matrix supported these results (Table S2). Specifically, 𝑆𝑆𝐴𝑟  can correctly 307 

identify the island model, panmixia, and stepping-stone model (100%). But it did worse in 308 

identifying the hierarchical stepping-stone model (Fig. 1B, Table S2). 𝑆𝑆𝐻  did better at 309 

identifying hierarchical scenarios but performed less well in the case of the stepping-stone 310 

model (Fig. 1C, Table S2). 𝑆𝑆
𝐷1

 exhibited impressive performance across all scenarios with 311 

the exception of the hierarchical stepping-stone (Fig. 1D, Table S2). 𝑆𝑆𝐻𝑒  performed poorly 312 

in most scenarios with the exception of panmixia and hierarchical island scenarios (Fig. 1E, 313 

Table S2). Combinations of 𝑆𝑆
𝐷1

 with other summary statistics showed similar results to 314 

those obtained with 𝑆𝑆
𝐷1

 alone except when including 𝑆𝑆𝐻𝑒 , in which case discriminatory 315 

power was decreased (Table 2 & S2). In fact, combining 𝑆𝑆𝐻𝑒  with other summary statistics 316 

decreased the discriminatory power. Overall, the hierarchical stepping-stone scenario was the 317 

most difficult to identify correctly. 𝑆𝑆
𝐷1

 and 𝑆𝑆𝐻  did better at discriminating hierarchical 318 

stepping-stone model from other scenarios (Fig. 1, Table S2).  319 
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 320 

Fig. 1. Projections of 5 spatial scenarios into two-dimensional subspaces using KLFDA based on 321 

different sets of summary statistics: (A) ArSS, (B) HSS, (C) HeSS, (D) 𝑆𝑆
𝐷1

, (E) Ar+He SS. (F) 𝑆𝑆
𝐻+ 𝐷1

. 322 

(G) Ar+H+He SS. (H) 𝑆𝑆
𝐴𝑟+𝐻𝑒+ 𝐷1

. (I) 𝑆𝑆
𝐴𝑟+𝐻+𝐻𝑒+ 𝐷1

. Each dot represents a simulated data set. 323 

Conditional Random Forest Classification 324 

As is the case for KLFDA, among all the sets of summary statistics, HeSS had the lowest 325 

classification accuracy (Table 3). Slightly different from KLFDA results, 
1DSS and HSS, 326 

having the same discriminatory power, outclassed ArSS and HeSS in discriminating the five 327 

ArS

S 

HSS HeSS 

𝑆𝑆
𝐷1

S 

Ar+He SS 𝑆𝑆
𝐻+ 𝐷1

 

Ar+H+He SS  𝑆𝑆
𝐴𝑟+𝐻𝑒+ 𝐷1

 𝑆𝑆
𝐴𝑟+𝐻+𝐻𝑒+ 𝐷1
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scenarios (Table 3). Note that conditional random forest didn’t show a power difference 328 

between 
1DSS and HSS, as well as between Ar+H+HeSS, Ar+He+1DSS, and Ar+H+He+1DSS (Table 3). 329 

Compared to KLFDA, the discriminatory power of all sets of summary statistics to 330 

discriminate spatial scenarios increased when using conditional random forest (Table 3). 331 

Moreover, as opposed to KLFDA results, combining different sets of summary statistics led 332 

to an increase in discriminatory power (Table 3). The most difficult scenario to identify is the 333 

stepping-stone model. However, consistent with KLFDA results, ArSS showed the worse 334 

performance to distinguish the stepping-stone scenario than HSS, 
1DSS and HeSS (Table S3). 335 

HeSS did a worse job at identifying hierarchical stepping-stone model compared to ArSS, HSS, 336 

and 
1DSS (Table S3). 337 

Table 3. The performance of different sets of summary statistics in discriminating five spatial 338 

scenarios using conditional random forest classification 339 

Summary 

statistics 
ArSS HSS HeSS 

1
DSS 

Ar+HeSS H+
1

DSS 
Ar+H+HeSS Ar+He+

1
DSS 

Ar+H+He+
1
DS

S 

Accuracy 

(Acc) 
0.96 0.972 0.958 0.972 0.97 0.978 0.986 0.986 0.986 

Acc 95% 

CI  

(0.9389, 

0.9754) 

(0.953

5,0.98

46) 

(0.9365, 

0.9738) 

(0.9535, 

0.9846) 

(0.951, 

0.9831) 

(0.961, 

0.989) 

(0.9714, 

0.9944) 

(0.9714, 

0.9944) 

(0.9714, 

0.9944) 

Kappa  0.95 0.965 0.9475 0.965 0.9625 0.9725 0.9825 0.9825 0.9825 

Acc: Accuracy; Acc 95% CI: the 95% interval of accuracy; Kappa: Cohen's kappa coefficient (κ). 340 

 341 

 342 
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 343 

Fig. 2. Ranked conditional variable importance estimated by conditional random forest 344 

classification. Results are shown only for the top 30 most important summary statistics among the 178 345 

summary statistics. Statistics abbreviations are given in Table S1. 346 

 347 

A particular advantage of random forest classification is that it allows us to rank individual 348 

summary statistics in terms of their discriminating power. Figure 2 presents the top 30 ranked 349 

summary statistics among the total 178 summary statistics including 𝑆𝑆𝐴𝑟 , 𝑆𝑆𝐻 , 𝑆𝑆𝐻𝑒  , and 350 

𝑆𝑆
𝐷1

. The best performing statistics in discriminating the spatial scenarios were the β- 351 

measures and their Mantel statistics (ρ). Among all the summary statistics, 𝑆𝐷(𝜌𝐽,𝑑) 352 
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(belonging to Ar SS) and 𝜌𝛥𝐷,𝑑 (belonging to 𝑆𝑆
𝐷1

) were the two most important statistics 353 

contributing to the ability to discriminate among all spatial scenarios (Fig. 2). Four out of the 354 

top-ten ranked statistics, SD(𝜌𝐽,𝑑), 𝜌𝐽,𝑑, SD (𝐽𝑟
𝑅  

), and 𝐽𝑟
𝑅  

, accounting for first, third, fourth, 355 

and seventh best-performing statistics respectively, belong to Ar SS. Three out of the top-ten 356 

ranked statistics, 𝜌𝛥𝐷,𝑑, SD(𝜌𝛥𝐷,𝑑), and SD(ΔD2) from 𝑆𝑆
𝐷1

 and H SS, accounted for the 357 

second, fifth, and eighth most important statistics respectively. The last three statistics out of 358 

the top-ten, 𝜌𝐹𝑠𝑡,𝑑, 𝐹𝑆𝑇
𝑅 , and SD(𝐹𝑆𝑇

𝑅 ), which belong to HeSS, had relatively low importance 359 

when compared to Ar SS and 𝑆𝑆
𝐷1

 and ranked as the sixth, ninth, and tenth best-performing 360 

statistics respectively (Fig. 2). 361 

Deep neural network 362 

The deep neural network analysis produced results similar to those of the two previous 363 

methods. Generally, the summary statistics can be categorized into four discriminatory sets 364 

based on discriminatory power. Again, 𝑆𝑆
𝐷1

, the most powerful summary statistics, along 365 

with 𝑆𝑆
𝐴𝑟+𝐻𝑒+ 𝐷1

 , outclassed other sets of summary statistics (Table 4). 𝑆𝑆𝐴𝑟 , 𝑆𝑆𝐻  and 366 

𝑆𝑆𝐴𝑟+𝐻+𝐻𝑒 , comprised the second most discriminatory sets of summary statistics, with their 367 

discriminant accuracy being only slightly lower than 𝑆𝑆
𝐷1

 (0.988, Table 4). The third most 368 

discriminatory sets of summary statistics were 𝑆𝑆𝐴𝑟+𝐻𝑒 , 𝑆𝑆𝐻+𝐷 , and 𝑆𝑆
𝐴𝑟+𝐻+𝐻𝑒+ 𝐷1

. Finally, 369 

the least discriminatory set of summary statistics was  𝑆𝑆𝐻𝑒  (Table 4). As it was the case with 370 

KLFDA, neural network results indicated that combining different sets of summary statistics 371 

(increasing the number of summary statistics) did not increase discriminatory power (Table 372 

4). 373 
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Table 4. Performance of different sets of summary statistics in discriminating five spatial 374 

scenarios using deep neural network 375 

 376 

Acc: Accuracy; Acc 95% CI: the 95% interval of accuracy; Kappa: Cohen's kappa coefficient (κ). 377 

The discriminatory power of all sets of summary statistics using the neural network was 378 

higher than that of KLFDA and CRFC (Tables 2-4). This indicates that the neural network 379 

performed better than the two other ML methods. Unlike KLFDA and CRFC, the deep neural 380 

network did better at discriminating between panmixia and island model, with most sets of 381 

summary statistics (except 𝑆𝑆𝐻𝑒 ) 100 % successfully discriminating between these two 382 

scenarios (Table S4).  𝑆𝑆
𝐴𝑟+𝐻𝑒+ 𝐷1

 and 𝑆𝑆𝐴𝑟+𝐻+𝐻𝑒  did a better job (0.2% error rate) in 383 

differentiating the stepping-stone model and hierarchical stepping-stone model compared to 384 

other sets of summary statistics (Table S4).  385 

Summary 

statistics 
ArSS HSS HeSS 

1
DSS 

Ar+HeSS H+
1

DSS 
Ar+H+HeSS Ar+He+

1
DSS Ar+H+He+

1
DSS 

Accuracy 

(Acc) 
0.988 0.988 0.974 0.99 0.986 0.986 0.988 0.99 0.986 

Acc 95% 

CI  

(0.9741, 

0.9956) 

(0.9741, 

0.9956) 

(0.9559, 

0.9861) 

(0.9768, 

0.9967) 

(0.9714, 

0.9944) 

(0.9714, 

0.9944) 

(0.9741, 

0.9956) 

(0.9768, 

0.9967) 

(0.9714, 

0.9944) 

Kappa  0.985 0.985 0.9675 0.9875 0.9825 0.9825 0.985 0.9875 0.9825 
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  386 

Fig. 3. Variable importance estimated using the deep neural network. Results are shown only for the 387 

top 30 ranked summary statistics among the 178 summary statistics. Statistics abbreviations are given 388 

in Table S1. 389 

Figure 3 presents the variable importance of the top 30 ranked summary statistics among the 390 

total 178 summary statistics according to their discriminatory power estimated from the deep 391 

neural network. 𝑆𝑆𝐻 , 𝑆𝑆
𝐷1

 , 𝑆𝑆𝐴𝑟 , and 𝑆𝑆𝐻𝑒  accounted for 11/30 (5 overlapped statistics 392 

with 𝑆𝑆
𝐷1

), 10/30, 8/30, and 6/30 of the top-30 ranked summary statistics respectively (Fig. 393 

3). The first three most informative summary statistics were 𝜌𝐽,𝑑, SD (𝐽𝑟
𝑅  

) and 𝜌𝛥𝐷,𝑑. They 394 

contributed equally toward the ability to discriminate among all spatial scenarios (importance 395 

values are all 100, Figs. 3 & S1). Similar to CRFC results, among the top 10 most 396 
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informative statistics, the first (𝜌𝐽,𝑑), second (SD (𝐽𝑟
𝑅

 

)), and the seventh (SD(𝜌𝐽,𝑑)) most 397 

important statistics belong to 𝑆𝑆𝐴𝑟 . 𝜌𝛥𝐷,𝑑, SD(𝜌𝛥𝐷,𝑑)), SD(ΔD
2

), and 𝐷𝛽
2 , which were the 398 

third, fourth, sixth, and tenth best-performing summary statistics respectively, belong to 399 

𝑆𝑆
𝐷1

.  Only two out of ten best-performing statistics, 𝜌𝐹𝑠𝑡,𝑑 and SD(𝐹𝑆𝑇
𝑅 ), ranking as the fifth 400 

and the eighth-most important summary statistic respectively, belong to 𝑆𝑆𝐻𝑒  (Fig. 3).  401 

Figure S1 presents the scenario-specific variable importance ranked in accordance with their 402 

overall importance (c.f., Fig. 3). The 16 top summary statistics contributed almost equally to 403 

panmixia, stepping-stone model, hierarchical stepping-stone model and hierarchical island 404 

model (Fig. S1). On the other hand, only the top five statistics, 𝜌𝐽,𝑑, SD (𝐽𝑟
𝑅  

), 𝜌𝛥𝐷,𝑑, 405 

SD(𝜌𝛥𝐷,𝑑), 𝜌𝐹𝑠𝑡,𝑑, contributed most to the power of discriminating the island model from 406 

other models (Fig. S1).  Besides the top 16 most important statistics,  𝐽𝑟
𝑅 and 𝐹𝑆𝑇

𝑃  also 407 

contributed substantially to the power of discriminating stepping-stone and hierarchical 408 

stepping-stone models (Fig. S1). 409 

 410 

 411 
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Discussion 412 

In this study, we performed a comprehensive assessment of the discriminatory power of 9 413 

sets of summary statistics, comprised of ArSS, HSS, HeSS and 𝑆𝑆
𝐷1

. Since different methods to 414 

estimate discriminatory power may lead to different results, we employed three up-to-date 415 

machine learning methods to compare the power of the different sets of summary statistics. 416 

All results led to the same conclusion that 𝑆𝑆
𝐷1

 outperformed the other sets of summary 417 

statistics in the discrimination of spatial-structure scenarios. Though, 𝑆𝑆
𝐷1

, was overall the 418 

best set of diversity measures, without undue emphasising on rare or common entities, Ar SS 419 

and He SS also provided complementary information that 𝑆𝑆
𝐷1

 did not capture.  420 

Jaccard dissimilarity (J) and its Mantel’ r ranked as the top summary statistics among all the 421 

summary statistics for differentiating spatial scenarios, followed by ΔD and then FST  as well 422 

as their Mantel’s r. In addition, we found that combining sets of summary statistics did not 423 

necessarily increase discriminatory power (e.g., KLFDA and neural network models in 424 

Tables 2 & 4). Therefore, a more efficient strategy would be combining the most informative 425 

summary statistics in each set depending on the alternative spatial scenarios that could apply 426 

to each dataset based on existing information.  427 

During the past 20 years, evolutionary biologists and population geneticists have been using 428 

diversity metrics as the summary statistics to make inference on the evolutionary and 429 

demographic histories of populations via approximate Bayesian computation (ABC). 430 

Information theory offers a spectrum of summary statistics that can be used with ABC. 431 

However, the choice of summary statistics in population genetics has focused on the HeSS 432 

family (i.e., heterozygosity, He, and fixation, Fst). The use of HeSS up-weight the signal 433 

provided by common alleles while down-weighting rare alleles, thus it may miss important 434 
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information under scenarios that involve bottlenecks or founder events. To avoid this 435 

problem, it is common to combine ArSS and HeSS, however, our results indicate that the same 436 

or more discriminatory power could be obtained using only the 𝑆𝑆
𝐷1

 set. These results 437 

provide further support for the idea that simply increasing the number of summary statistics 438 

without considering their individual discriminatory power may decrease the inference 439 

accuracy.  440 

Our systematic assessment of the power of these summary statistics showed that, HeSS, the 441 

most commonly used set of summary statistics in population genetics performed worst in the 442 

discrimination of typical spatial-structure scenarios tested by three different classification 443 

approaches. J, ΔD, and FST are β-diversity measures evaluating the extent of genetic 444 

differentiation between populations, with ΔD and FST being estimated based on allele 445 

frequency, and J being estimated based on allele presence/absence data. Generally, genetic 446 

differentiation is usually estimated using FST (Wright 1949) and its variants (GST (Nei 1973)) 447 

calculated from heterozygosity (He) while J and ΔD, which are more informative according 448 

to our results, are rarely used as statistics to measure population genetic inference.  449 

Our results indicate that ArSS contributed better to differentiate between panmixia and the 450 

other scenarios. 𝑆𝑆
𝐷1  

 on the other hand, exhibits high accuracy in differentiating all 451 

scenarios, especially being good at discriminating between stepping-stone and hierarchical 452 

stepping-stone models. Therefore, ArSS seems useful for detecting the scenarios that depart 453 

from panmixia, and 𝑆𝑆
𝐷1  

 may be helpful to differentiate between more complex spatial 454 

scenarios. On the other hand, we did not observe advantageous properties in HeSS in detecting 455 

the spatial structuring signals under the five spatial scenarios considered. Though ΔD showed 456 

high power of detecting the signal of the spatial structure changes, there is still a lack of 457 
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knowledge about the relationship between ΔD and demographic parameters, as well as ΔD’s 458 

response to selection.  459 

For a long time, important guidelines for species and genetic diversity conservation have 460 

been made using the richness and Simpson index in terms of species diversity (Scott et al. 461 

1987; Jost et al. 2010), and heterozygosity (derived from F-statistics framework) in terms of 462 

genetic diversity (Aitken, Luikart & Allendorf 2012). The results of this study suggest that 463 

summary statistics based on Hill’s numbers are promising tools for detecting diversity 464 

changes in biological conservation studies.  465 

In summary, diversity of order q =1 (1D) and Shannon differentiation offer a unified approach 466 

integrating diversity across all levels of biological organizations. Our results suggest that  467 

𝑆𝑆
𝐷1

 would perform well for the purpose of inference of population structure using 468 

inferential frameworks such as approximate Bayesian computation (ABC). It is clear that no 469 

single set of diversity measures can capture all the information contained in raw population 470 

genetics datasets and our study suggest that the type of summary statistic we may want to use 471 

depends on the specific question being asked.  472 

Finally, we found different machine learning methods showed different performance to 473 

distinguish spatial structure scenarios. KLFDA gave the lowest discriminant accuracy while 474 

the deep neural network gave the highest discriminant accuracy among the three 475 

classification methods (Tables 2-4). In contrast, conditional random forest did not show the 476 

difference between the power of 𝑆𝑆𝐻  and 𝑆𝑆
𝐷1

 as well as other combinations of summary 477 

statistics (Table 3). The conditional random forest also showed lower power to identify the 478 

importance of summary statistics compared to neural networks (Figs. 2-3). The deep neural 479 

network showed more advantages than KLFDA and conditional random forest in this study, 480 
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which provides additional support to recent assertions that machine learning methods 481 

represent promising tools to carry out inference in ecology and evolution (Schrider & Kern 482 

2018).  483 

Data and code availability  484 

The input files and scripts for generating simulation as well as the analyses of summary 485 

statistics are available at https://github.com/xinghuq/SS_performance. 486 
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