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Abstract 

Predictive processing is emerging as a common computational hypothesis to account for 

diverse psychological functions subserved by a brain, providing a systems-level framework for 

characterizing structure-function relationships of its distinct substructures. Here, we contribute to 

this framework by examining gradients of functional connectivity as a low dimensional spatial 

representation of functional variation in the brain and demonstrating their computational 

implications for predictive processing. Specifically, we investigated functional connectivity 

gradients in the cerebral cortex, the cerebellum, and the hippocampus using resting-state 

functional MRI data collected from large samples of healthy young adults. We then evaluated 

the degree to which these structures share common principles of functional organization by 

assessing the correspondence of their gradients. We show that the organizing principles of 

these structures primarily follow two functional gradients consistent with the existing hierarchical 

accounts of predictive processing: A model-error gradient that describes the flow of prediction 

and prediction error signals, and a model-precision gradient that differentiates regions involved 

in the representation and attentional modulation of such signals in the cerebral cortex. Using 

these gradients, we also demonstrated triangulation of functional connectivity involving distinct 

subregions of the three structures, which allows characterization of distinct ways in which these 

structures functionally interact with each other, possibly subserving unique and complementary 

aspects of predictive processing. These findings support the viability of computational 

hypotheses about the functional relationships between the cerebral cortex, the cerebellum, and 

the hippocampus that may be instrumental for understanding the brain’s dynamics within its 

large-scale predictive architecture. 
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Introduction 

Predictive processing is emerging as a common neurocomputational hypothesis to 

account for diverse psychological functions subserved by a brain 1,2. A variety of specific 

proposals abound, but they are united by three hypothesized components that are thought to be 

implemented in a hierarchical arrangement within the brain’s architecture: (i) Prediction signals 

that the brain constructs using memory, also variously referred to as a generative or an internal 

model 3, “top-down” processing 4–6, a forward model 7–9, and “feedback” 10; (ii) incoming sense 

data from the body’s sensory surfaces encoded as the differences from predicted sensory 

inputs, called prediction errors, “bottom-up” processing, an inverse model, and “feedforward” 

signals; and (iii) precision signals that modulate predictions and prediction errors, corresponding 

to various attention signals 11,12. Prediction errors are potential teaching signals, but their 

capacity to update the model is thought to depend on how they are weighted by predicted 

precision signals, which are interpreted as the value of the information they provide, or 

“salience” 13 (see 14 for a discussion of precision and salience). Prediction signals are also 

thought to be weighted by their estimated value to explain the incoming sense data, similarly 

weighted by precision signals 11–13. 

To date, predictive processing hypotheses have been offered to describe the 

computational capacities of several structures within the vertebrate brain, including the cerebral 

cortex 1,6,13,15–19, the cerebellum 7–9,20, and the hippocampus 21–24. Integrating these hypotheses 

into a systems-level framework for understanding brain structure-function relationships has the 

potential to computationally unify a variety of psychological and biological phenomena that are 

typically studied separately. In this paper, we contribute to this framework by examining 

gradients of functional connectivity, which reduce the dimensionality of complex brain 

connectivity data to describe continuous transitions in connectivity within a given structure and 

potentially offer parsimonious organizing principles to describe structure-function relationships 

25,26. Intrinsic brain networks are often described in terms of patterns or modes of activity that 
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reflect the similarity between the activity in different regions (i.e., functional connectivity). 

Functional connectivity gradients take this one step further by examining the patterns based on 

the similarity—not between activity—but between functional connectivity. Specifically, we 

investigated the degree of correspondence in functional connectivity gradients across the 

cerebral cortex, the cerebellum, and the hippocampus to test the hypothesis that these 

structures share common principles of functional organization that are consistent with the 

current hierarchical predictive processing accounts. Characterizing the coordination of functional 

connectivity gradients could be useful for formulating novel hypotheses about the role of these 

structures in the brain’s internal model of the body in the world, all in the ultimate service of 

predictive regulation of the body (i.e., allostasis) 27. 

To identify such connectivity gradients, previous research capitalized on intrinsic 

functional connectivity derived from functional magnetic resonance imaging (fMRI) data 

collected when the brain is not being deliberately probed with an external task 28,29. Studies 

focusing on the cerebral cortex have most commonly revealed two gradients identifying gradual 

changes in connectivity profiles 30–35, which are consistent with the hypothesized role of different 

cortical areas in predictive processing 36. Previous research has also identified gradients that 

characterize the functional organization of the cerebellar cortex 37,38 and the hippocampus 39–41, 

suggesting that it may be possible to discover coordination in the connectivity gradients across 

these structures and the cerebral cortex. Functional coordination across different structures in 

the brain is also suggested by evidence describing learning systems across the cerebral cortex 

and cerebellum 20,42, cerebral cortex and hippocampus 43,44, and cerebellum and hippocampus 

45–49. However, to our knowledge, no published study to date has examined how the functional 

organization of one structure relates to another, and what such functional correspondence might 

reveal about the contribution of these learning systems to the brain’s predictive processing 

architecture. 
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In the present study, we investigated the correspondence between intrinsic functional 

connectivity gradients in the cerebral cortex, the cerebellum, and the hippocampus using fMRI 

data collected at wakeful rest from large samples of healthy young adult participants. We 

derived functional connectivity gradients for each structure via diffusion map embedding, an 

established technique to nonlinearly reduce the dimensionality of large-scale connectivity data 

50,51. We chose to examine our findings from the perspective of the cerebral cortex to consider 

how the cerebellar and the hippocampal gradients might align along the cerebral cortical 

gradients. We projected the cerebellar and hippocampal gradients onto the cerebral cortex to 

discover the common axes of functional organization. Finally, we performed a series of seed-

based analyses of intrinsic functional connectivity to further characterize the functional 

correspondence between these gradients. This procedure allowed us to triangulate the three 

structures along a given connectivity gradient hypothesized to support particular aspects of 

predictive processing implemented in the brain. Finally, we evaluated the extent to which these 

findings were consistent with the computational hypothesis of predictive processing. 

Results 

We examined the functional organization of the cerebral cortex, the cerebellum, and the 

hippocampus using fMRI data collected during wakeful rest from healthy young adult 

participants in the Human Connectome Project (HCP, n = 1,003) 52 as our primary sample and 

in the Brain Genomics Superstruct Project (GSP, n = 1,102) 53,54 as our validation sample. 

Following prior work on connectivity gradients 32,38,41, we analyzed the vertex-/voxel-wise 

similarity of intrinsic functional connectivity patterns in these structures based on the group 

average dense connectivity matrices via diffusion map embedding 50,51. Diffusion map 

embedding identifies multiple axes of variation in functional connectivity as continuous 

gradients, without ascribing each vertex or voxel to a singular functional unit (e.g., network). 

This feature allowed us to comprehensively examine the organizing principles of functional 

connectivity in the cerebral cortex, the cerebellum, and the hippocampus and evaluate their 
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correspondence. Unless otherwise noted, all reported findings in the following sections were 

obtained using the HCP dataset. Overall similar results were obtained with the GSP dataset, 

with slight differences in the distribution of gradient values across the major subfields in the 

hippocampus (Supplementary Fig. S2). This is likely due to differences in the voxel resolution 

during data acquisition that had affected the ability to detect subfield specificity in the GSP 

dataset.  

Two principal functional gradients of the cerebral cortex consistent with a predictive processing 

account of brain function 

To derive functional gradients of the cerebral cortex, we first constructed a subset of the 

whole-brain group average functional connectivity matrix with all cortical vertices, which we 

used as input to diffusion map embedding. From this analysis, we identified principal gradients 

that describe the maximal variance in functional connectivity patterns in the cerebral cortex, 

replicating those identified by prior work 25,30,32,36 (Fig. 1 and Supplementary Fig. S1). These 

three gradients collectively explained >70% of variance in the data in both the HCP and GSP 

samples, with each accounting for >10%, as previously observed 30. Gradient 1 (G1) 

corresponded to a well-documented gradient consistent with cytoarchitectural evidence in the 

cerebral cortex 55–57. We refer to G1 as a model-error gradient, which we previously 

characterized as being anchored at one end by ensembles that can be described as initiating 

the prediction signals that constitute the brain’s internal model of its body in the world (e.g., 

default mode network), as well as those that estimate the precision of such signals (i.e., the 

model’s priors) (e.g., frontoparietal control network) 13,36. At the other end, this gradient was 

anchored by ensembles important for processing the sensory inputs that continually confirm or 

refine predictions, through supplying prediction errors (e.g., exteroceptive sensory networks) as 

well as those that estimate the precision of prediction error signals (e.g., salience network). 

Gradient 3 (G3) was consistent with a model-precision gradient that distinguishes between 

ensembles hypothesized to be involved in the representation of prediction and prediction error 
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signals (e.g., default mode and exteroceptive sensory networks) and those involved in the 

implementation of attentional modulation—or precision—over those signals (e.g., salience, 

frontoparietal, and dorsal attention networks) 13,36. We also identified Gradient 2 (G2) replicating 

prior work, although its interpretation remains speculative. This gradient is anchored by 

ensembles primarily involved in the sensory representation of visual information at one end, and 

those involved in the representation of non-visual (somatosensory/motor, auditory, 

interoceptive) domains and multimodal integration at the other. 

 

Fig. 1. The principal gradients of human cerebral cortex based on the HCP data (n = 1,003). 
Functional connectivity gradients are a low dimensional spatial representation of connectivity 
profiles, such that the proximity of colors can be interpreted as greater similarity of connectivity 
patterns 32. (a) The three most dominant gradients of the cerebral cortex projected onto an inflated 
cortical surface (left hemisphere only). These gradients replicate previous findings and identify 
model-error (Gradient 1), visual-sensorimotor (Gradient 2), and model-precision (Gradient 3) 
gradients. (b) Box plots show the median and distribution of gradient values separately for each 
of the canonical functional network 54. The networks are ordered by the mean value. Vertices 
belonging with the so-called default mode and “limbic” networks are shown in the same color, as 
these networks are not always distinguished in the literature 58 and both contain agranular, limbic 
tissue 17. (c) A scree plot showing the proportion of variance explained by each of the ten gradients 
derived from diffusion map embedding. (d) A scatterplot depicting the relationship between 
Gradient 1 and Gradient 3, where each dot represents a cerebral cortical vertex color-coded by 
the corresponding network assignment. 
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The principal functional gradients of the cerebellum and the hippocampus 

To characterize the functional organization of the cerebellum and the hippocampus, we 

derived functional connectivity gradients separately for the cerebellum, left hippocampus, and 

right hippocampus. We first constructed group average functional connectivity matrices between 

all cerebellar voxels and all cortical vertices, as well as between all hippocampal voxels and all 

cortical vertices, which were used as input for diffusion map embedding. We derived cerebellar 

and hippocampal gradients by interrogating cerebello-cortical and hippocampo-cortical 

connectivity, respectively, rather than using connectivity within each structure, given our goal to 

characterize the functional organization of these structures in terms of their relation to the 

cerebral cortex. This approach is consistent with that of prior work examining functional 

gradients in the hippocampus and subcortical structures 40,41,59–61. The resulting gradients, 

therefore, represented the most dominant dimensions of spatial variability in functional 

connectivity patterns with the cerebral cortex within each structure.  

In the cerebellum, we identified two gradients consistent with prior work on cerebellar 

gradients 38. Together, these gradients explained >60% of the variance in the data, with G1 

accounting for >50% and G2 accounting for >10% in both the HCP and GSP samples. G1 

captured a bilateral dissociation of lobules IV, V, and VI and lobule VIII from the posterior part of 

Crus I and II and the medial part of lobule IX, whereas G2 distinguished bilaterally the anterior 

parts of Crus I and Crus II along with lobule VIIb from the rest of the cerebellar cortex (Fig. 2a 

and Supplementary Fig. S2a). In the hippocampus, we also identified two gradients consistent 

with available evidence on hippocampal gradients 41. These gradients together explained >50% 

of the variance in the data within each hemisphere, with G1 accounting for >30% and G2 

accounting for >20% of variance in both datasets. G1 generally captured spatial variation in 

functional connectivity along the longitudinal axis of the hippocampus, whereas the variation 

captured by G2 was observed in both the longitudinal axis and the transverse (i.e., medial-

lateral) axis (Fig. 2b and Supplementary Fig. S2b). To properly understand G2 in terms of 
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hippocampal microstructure 41, we performed Mann-Whitney tests to compare the distribution of 

gradient values for the major subfields within each hemisphere: Subicular complex, CA1-3, and 

CA4-dentate gyrus (CA4-DG), which were derived from the established segmentation protocol 

62. This analysis revealed that G2 was anchored by the subiculum at one end and CA1-3 and 

CA4-DG at the other (p < .001), with no significant differences between the CA subfields. G1 

better distinguished the CA subfields, with CA1-3 showing the highest values overall, followed 

by subiculum and then the CA4-DG (p ≤ .001).   

 

Fig. 2. The principal gradients of human cerebellum and hippocampus based on the HCP data (n 
= 1,003). (a) The two most dominant gradients of the cerebellum replicated previous findings 38. 
(b) The most dominant gradient of the hippocampus replicated previous findings 41 and identified 
an anterior-posterior dissociation along the longitudinal axis, which also differentiated the major 
hippocampal subfields. The second most dominant gradient was also consistent with differences 
by hippocampal microstructure, with the subiculum exhibiting highest gradient values overall 
compared with the other two subregions. Box plots show the median and distribution of G2 values 
per subfields separately for each hemisphere. Asterisks denote significant (***p < .001, **p ≤ .001) 
differences relative to the other two subfields. DG = dentate gyrus. A figure illustrating the 
hippocampal subfields within the right hippocampus (red = CA1-3, blue = CA4-DG, green = 
subiculum) was reproduced from 62 with permission. 

 

Gradient-informed triangulation of intrinsic functional connectivity between the cerebral cortex, 

the cerebellum, and the hippocampus 

Next, we calculated functional connectivity maps for the cerebral cortex weighted as a 

factor of gradient values for cerebellar and hippocampal gradients 36,59. This procedure allowed 
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us to characterize these gradients in terms of their relations to the cerebral cortex. To calculate 

voxel-wise gradient-weighted functional connectivity with the cerebral cortex, we multiplied the 

group average cerebello-cortical (or hippocampo-cortical) functional connectivity matrix by a 

vector of voxel-wise values from cerebellar (or hippocampal) gradients. The weighted 

connectivity matrix was then reduced to a single cortical surface map representing the degree of 

connectivity between the cerebellum (or hippocampus) and the cerebral cortex along a 

particular gradient. For example, to characterize how cerebellar G1 relates to the cerebral 

cortex, we multiplied each row of the cerebello-cortical functional connectivity matrix (rows = 

cerebellar voxels, columns = cortical vertices) by the corresponding G1 value for that particular 

cerebellar voxel obtained from diffusion map embedding. In this way, the pattern of functional 

connectivity between each cerebellar voxel and all cortical vertices was weighted by its position 

on cerebellar G1. The G1-weighted cerebello-cortical connectivity values in this matrix were 

summed over all rows (i.e., all cerebellar voxels), resulting in a single cortical representation 

(projection) of this cerebellar gradient. We repeated this procedure for each gradient derived for 

the cerebellum and the hippocampus. 

We then quantitatively assessed the correspondence between the cerebral cortical 

gradients (Fig. 1 and Supplementary Fig. S1) and the gradient-weighted functional 

connectivity maps of the cerebellum (Fig. 2a and Supplementary Fig. S2a) and the 

hippocampus (Fig. 2b and Supplementary Fig. S2b) by computing vertex-wise Spearman’s 

rank correlations, while statistically controlling for autocorrelations 63. The model-error gradient 

in the cerebral cortex (G1) showed the strongest statistical correspondence to cerebellar G1 and 

hippocampal G2; the weighted functional connectivity maps of cerebellar G1 and hippocampal 

G2 showed moderate, statistically significant correspondence. The model-precision cortical 

gradient (G3) similarly showed strong correspondence to cerebellar G2 and hippocampal G1, 

with the weighted connectivity maps of cerebellar G2 and hippocampal G1 also showing strong 

correspondence (all p’s < .001) (Fig. 3 and Supplementary Fig. S3). 
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Fig. 3. Gradient-weighted functional connectivity maps of the cerebellum and the hippocampus. 
(a) Cerebellar G1 captured a dissociation in functional connectivity most consistent with cortical 
G1, from ensembles including the default mode and frontoparietal networks to those including the 
exteroceptive sensory and salience networks (i.e., the model-error gradient). In contrast, 
cerebellar G2 captured a dissociation in connectivity most consistent with cortical G3, from 
ensembles including the default mode and exteroceptive networks to those including the 
frontoparietal and salience networks (i.e., the model-precision gradient). Box plots and 
scatterplots represent similar information as described in Fig. 1b, but here they are based on 
gradient-weighted functional connectivity maps. (b) Hippocampal G1 captured a dissociation in 
functional connectivity most consistent with cortical G3, whereas hippocampal G2 captured a 
dissociation in connectivity most consistent with cortical G1. (c) A similarity matrix illustrating the 
magnitude (Spearman’s r) of correlation between cortical gradients and gradient-weighted 
functional connectivity maps of the cerebellum and the hippocampus. Highlighted in yellow are 
the strongest cortico-cerebellar or cortico-hippocampal associations identifying the 
correspondence of gradients between a pair of structures (all p’s < .001). p-values associated 
with the entire correlation matrix is included as part of Supplementary Fig. S5). FC, functional 
connectivity. 
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A series of seed-based analyses of intrinsic functional connectivity between the three 

structures allowed us to further characterize the connectivity profiles for the cortical, cerebellar, 

and hippocampal gradients. This analysis was conducted separately for the cortical model-error 

gradient (G1) and its corresponding hippocampal (G2) and cerebellar (G1) gradients, and for the 

cortical model-precision (G3) and its corresponding hippocampal (G1) and cerebellar (G2), 

gradients (Fig. 3c). Seed regions of interest (ROIs) were defined as the vertices/voxels with the 

top and bottom 10% values on each gradient, resulting in two ROIs per structure per gradient. 

We then computed the mean BOLD activity time course based on all vertices/voxels within each 

ROI and correlated it with the time course of every vertex/voxel in the other two structures. If the 

connectivity gradients indeed correspond to one another across the three structures, then we 

should expect that the vertices/voxels representing the top (bottom) 10% of each gradient show 

stronger functional connectivity with each other than with other parts of these structures. 

Results of this analysis based on the HCP data are summarized in Fig. 4 (for results 

based on the GSP data, see Supplementary Fig. S4). Fig. 4A-C illustrate three of the seed 

ROIs used in this analysis, generated by identifying the vertices/voxels in each structure 

showing the top 10% of the gradient values along the cortical model-precision gradient as well 

as its corresponding cerebellar and hippocampal gradients (i.e., areas of each structure 

potentially more related to the representation of prediction and error signals). The same 

procedure was repeated with the vertices/voxels anchoring the bottom 10% of these gradients, 

yielding a set of ROIs representing the areas of each structure potentially more related to 

precision signals modulating prediction and error signals (Fig. 4D-F). In the hippocampus, the 

voxels anchoring the top and bottom 10% were exclusively localized to CA1-3 along the 

longitudinal axis. We defined the ROIs following the same procedure for the cortical model-error 

gradient and the corresponding cerebellar and hippocampal gradients, yielding a set of ROIs 

anchoring the top 10% of the vertices/voxels representing the areas of each structure potentially 

more related to the internal model (prediction signals) (Fig. 4G-I) as well as those ROIs 
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anchoring the bottom 10% of the vertices/voxels representing the areas of each structure 

potentially more related to processing of sense data from the periphery (prediction error signals) 

(Fig. 4J-L). In the hippocampus, the voxels anchoring the top 10% (middle subregions) were 

localized to the subiculum medially and to CA1-3 laterally, whereas those anchoring the bottom 

10% (anteroventral subregions) were predominantly localized to CA1-3.   

The vertices representing the top 10% of the cortical model-precision gradient G3 

(primarily those within the default mode network; Fig. 4A) showed relatively stronger positive 

functional connectivity with areas of the cerebellum overlapping with the top 10% of the voxels 

in cerebellar G2 (parts of lobule I-VI, posterior Crus I/II, and posterior lobule VIII/IX; Fig. 4B) and 

with areas of the hippocampus overlapping with the top 10% of the voxels in hippocampal G1 

(dorsal anterior subregions; Fig. 4C), compared with other parts of the target structures. We 

identified similar patterns of spatial overlap in functional connectivity when using the top 10% 

voxels in cerebellar G2 and in hippocampal G2 as seed ROIs. Similarly, the vertices representing 

the bottom 10% of the cortical model-precision gradient G3 (primarily those within the salience 

and frontoparietal networks; Fig. 4D) showed relatively stronger positive functional connectivity 

with areas of the cerebellum overlapping with the bottom 10% of the voxels in cerebellar G2 

(anterior parts of Crus I/II and lobule VIIb; Fig. 4E) and with areas of the hippocampus 

overlapping with the bottom 10% of the voxels in hippocampal G1 (posterior-most subregions), 

compared with other parts of the target structures. 

We identified such pattern of functional connectivity triangulation similarly for the cortical 

model-error gradient and the corresponding cerebellar and hippocampal gradients, although 

there was overall less specificity in the connectivity pattern (Fig. 4, right). Specifically, the 

vertices representing the top 10% of cortical model-error G1 (primarily the default mode network; 

Fig. 4G) showed relatively stronger and positive functional connectivity with areas of the 

cerebellum overlapping with the top 10% of the voxels in cerebellar G1 (parts of Crus I/II and 

posterior lobule IX; Fig. 4H) and the areas of the hippocampus overlapping with the top 10% of 
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the voxels in hippocampal G2 (middle lateral and medial subregions; Fig. 4I). Similarly, the 

vertices representing the bottom 10% of cortical model-error G1 (primarily the somatomotor 

network; Fig. 4J) showed relatively stronger positive functional connectivity with areas of the 

cerebellum overlapping with the bottom 10% of the voxels in cerebellar G1 (lobules IV, V, VI, 

and VIII; Fig. 4K) and the areas of the hippocampus overlapping with the bottom 10% of 

hippocampal G2 (ventral anterior subregions; Fig. 4L). Triangulation of functional connectivity 

appeared less specific along the model-error gradient, as the cortical and cerebellar subregions 

relevant for this gradient showed widespread connectivity throughout the hippocampus. These 

results point to the possibility that the distinct subregions of the cerebral cortex, the cerebellum, 

and the hippocampus form functional circuits that may contribute to the brain’s large-scale 

implementation of predictive processing. Importantly, we replicated this pattern of connectivity in 

a large, independent sample of healthy young adults (Supplementary Fig. S4), suggesting that 

our results are robust to variations in data acquisition parameters and preprocessing methods. 

 
Fig. 4. Triangulation of intrinsic functional connectivity between the cerebral cortex, the 
cerebellum, and the hippocampus along the cortical model-precision (left) and the cortical model-
error (right) gradients in the HCP (n = 1,003) data. (A) Seed region of interest (ROI) representing 
the top 10% of the vertices in cortical model-precision G3. (B) Seed ROI representing the top 10% 
of the voxels in cerebellar G2. (C) Seed ROI representing the top 10% of the voxels in hippocampal 
G1. (D) Seed ROI representing the bottom 10% of the vertices in cortical model-precision G3. (E) 
Seed ROI representing the bottom 10% of the voxels in cerebellar G2. (F) Seed ROI representing 
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the bottom 10% of the voxels in hippocampal G1. (G) Seed ROI representing the top 10% of the 
vertices in cortical model-error G1. (H) Seed ROI representing the top 10% of the voxels in 
cerebellar G1. (I) Seed ROI representing the top 10% of the voxels in hippocampal G2. (J) Seed 
ROI representing the bottom 10% of the vertices in cortical model-error G1. (K) Seed ROI 
representing the bottom 10% of the voxels in cerebellar G1. (L) Seed ROI representing the bottom 
10% of the voxels in hippocampal G2. Functional connectivity maps shown here for a given 
structure were calculated through a combination of binarization and inclusive masking of the 
contributing maps as well as proportional thresholding (see Methods). We expect, and indeed 
observe, that there is remarkable spatial overlap between a given seed ROI (e.g., the top 10% of 
the vertices in cortical model-precision G3) and areas of the same structure functionally connected 
to parts of the other two structures anchoring the same end of the gradient (e.g., the top 10% of 
the voxels in cerebellar G2 and hippocampal G1). 

 

Discussion 

Accumulating evidence reveals that the organization of the cerebral cortex 30,32–36,64–66, 

the cerebellum 38,59, and the hippocampus 39–41,67,68 can be described with multiple gradients of 

structural and functional features in humans. In the cerebral cortex, converging evidence from 

network-, circuit-, and cytoarchitectural-levels of analysis suggest that such gradients can be 

interpreted as the organizing principles underlying predictive processing 36,55,56,69,70, guiding the 

flow of prediction signals, prediction error signals, and precision signals. In the present study, 

analyses of two large datasets, consisting of more than 2,000 participants, revealed that there 

are corresponding connectivity gradients across the cerebral cortex, the cerebellum, and the 

hippocampus, suggesting that these gradients might be meaningfully interpreted within a 

common computational framework. These results, and the specific computational hypotheses 

that they suggest, represent an important step toward an integrative account of brain function, 

building upon the existing literature on brain functional gradients that has so far largely focused 

on single regions without interrogating their interactions 38,41,61,71.  

Functional connectivity gradients as a common neural architecture for predictive processing 

The principal cortical gradient was anchored, at one end, by ensembles that can be 

described as initiating the prediction signals that constitute the brain’s internal model of its body 

in the world (e.g., default mode network), as well as the ensembles that estimate the precision 

of such signals (e.g., frontoparietal control network). At the other end, this gradient was 
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anchored by ensembles important for processing sensory inputs that continually confirm or 

refine the internal model (e.g., exteroceptive sensory networks) as well as those that estimate 

the precision of prediction error signals (e.g., salience network) (see 13,36 and references therein 

regarding the roles of cortical ensembles). Although in the present work we refer to this gradient 

as a model-error gradient, it has also been variably called by previous studies an internal-

external gradient 36 and a transmodal-primary sensorimotor gradient 32. This gradient is 

consistent with a key structural hypothesis supported by more than 30 years of tract-tracing of 

distinctive cortico-cortical connections in mammalian brains 55,57,72 that describes the flow of 

prediction and prediction error signals throughout the cerebral cortex on the basis of 

cytoarchitectural properties (Fig. 5).  

 
Fig. 5. A gradient of predictive processing in the cerebral cortex. (a) Prediction signals originate 
in the deep layers (Layers V and VI) of less differentiated cortical areas (e.g., agranular cortex 
with undifferentiated Layers II and III and without a Layer IV) and terminate in superficial layers 
of areas with a more developed laminar structure (e.g., dysgranular cortices with differentiated 
Layers II and III and a rudimentary Layer IV or granular cortices with differentiated Layers II and 
III and a well-defined Layer IV). Prediction signals, as they cascade from agranular cortices to 
highly granular primary sensory areas, can be described as perceptual inferences that arise from 
the lossy compression that occurs during learning 2,16. Prediction error signals flow in the opposite 
direction, originating in the superficial layers (II and III) with more laminar differentiation and 
terminating in the deep layers (V and VI) of areas with less differentiated laminar architecture (66 
as discussed in 2; see also recent work by 67, 68). This cytoarchitectural gradient is thought to 
support information compression in the cerebral cortex. Prediction errors are compressed and 
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reduced in dimensionality 13,73 as they flow from the upper layers of highly granular primary 
sensory regions (whose upper layers contain many smaller pyramidal neurons with fewer 
connections) to less granular motor cortex 74 and other heteromodal regions (whose upper layers 
contain fewer but larger pyramidal neurons with many more connections), and finally to 
dysgranular and agranular limbic regions. (b) This structural model of cortico-cortical connections 
successfully predicts the flow of information in frontal, temporal, and parietal cortices in 
experiments with monkeys and cats 55,56. Figure adopted from 2, with permission. 
 

Additional tract-tracing and optogenetic evidence support the involvement of this 

gradient in predictive processing. For instance, it has been shown that long-range connections 

exist between cortical limbic areas (e.g., anterior cingulate cortex) and primary sensory areas 

(e.g., V1) 75, which are two areas that anchor the ends of the model-error gradient, with the 

former thought to send sensory prediction signals to the latter 76. Such evidence is in line with 

other findings that a substantial fraction of activity in the visual cortex does not derive from 

incoming visual input per se 77–81, consistent with observations that the majority of synapses in 

V1 originate from top-down sources 82. Multimodal evidence also demonstrates the 

correspondence between the model-error gradient with regional variability in intracortical myelin 

83 as well as cellular density and soma size 33, further substantiating the role of this gradient as a 

primary organizing principle in the cerebral cortex.  

Recent research also describes this model-error gradient as important for learning and 

meaning-making. Unanticipated sense data (i.e., prediction errors), as they propagate from 

primary sensory regions (the external pole of this gradient) to agranular limbic regions (the 

internal pole), undergo lossy compression and are reduced in dimensionality 13,16,73. This 

process of information compression has also been described as conceptual learning 13 or 

construction of “generic priors” consisting of low-dimensional representations of the most 

frequent behavioral states 84. Such dimensionality reduction allows the brain to represent a large 

amount of information with a smaller population of neurons by decreasing redundancy and 

increasing efficiency, because smaller populations of neurons are summarizing statistical 

regularities in the spiking patterns of larger populations of neurons in the sensorimotor regions. 

Moving in the direction from internal to external poles, it is hypothesized that the low-
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dimensional, multimodal summaries are generatively reassembled as prediction signals in 

agranular limbic cortices, becoming successively decompressed and particularized as 

perceptual inferences (also called embodied simulations) that propagate out to more 

architecturally granular regions at the external pole 13. These hypotheses are consistent with 

“core-periphery” 32,85 and “bow-tie” 86 descriptions of cortical networks. 

The second gradient in the cerebral cortex distinguished ensembles associated with the 

representation of prediction and prediction error signals (anchored in nodes from the sensory 

and default mode networks) from those involved in the implementation of attentional modulation 

to set the precision of these signals (with nodes from frontoparietal and salience networks) 36, 

where “attention” is defined not in terms of properties of subjective awareness but as signals 

that modulate the firing rate of neurons. It has been hypothesized that the frontoparietal network 

estimates the precision of prediction signals or priors, possibly suppressing or inhibiting 

prediction ensembles whose priors are very low 13. In contrast, the salience network may alter 

the gain on prediction error signals as they propagate from the sensory periphery, reflecting 

confidence in the reliability and quality of incoming sensory information as well as its predicted 

relevance for allostasis and motor control 13. During some tasks, these modulatory networks 

cohere into a single “task positive” network 87 or a “multiple demand” system 88. 

Our results lend support to the hypothesis that the cerebral cortex, the cerebellum, and 

the hippocampus all share common axes of functional organization. Regarding the cerebellum, 

we largely replicated across samples prior work on functional connectivity gradients in this 

structure 38. The most dominant gradient in the cerebellum has been characterized as a gradual 

transition from areas involved in motor function to those implicated in non-motor functions 

involved in cognitive, social, and emotional tasks 38. It is anchored at one end by the default 

mode and frontoparietal control networks and at the other end by the somatomotor and salience 

networks, consistent with the cortical model-error gradient. The second cerebellar gradient 

showed preferential functional connectivity with the default mode and somatomotor networks at 
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one end and the frontoparietal and salience networks at the other 89. This gradient has been 

interpreted as reflective of differences in relation to “task-focus” 38 that preferentially engages 

networks in the presence of higher cognitive load 87; this is consistent with the cortical model-

precision gradient in the present study. 

Turning to the hippocampus, the most dominant gradient that has been identified in the 

hippocampus captures variation in functional connectivity along its longitudinal axis 39–41, 

consistent with evidence identifying gradual changes in anatomical connectivity, gene 

expression, and electrophysiological response properties along this axis 68,90,91. The largest 

difference in functional connectivity between the anterior and posterior subregions has been 

observed with the frontoparietal and salience networks, with the posterior (septal) hippocampus 

showing stronger positive connectivity with these networks, and the default mode and 

somatomotor networks at the anterior (uncal) end 41. Our results generally confirmed this 

pattern, which is consistent with the model-precision gradient of the cerebral cortex. The second 

hippocampal gradient seems to correspond to hippocampal microstructure, primarily isolating 

the subiculum from the CA subfields. This result is in line with prior evidence characterizing 

distinct subfields with variation in connectivity, computational roles, and myeloarchitectural 

maturation 92–95. Also consistent with our finding, the subiculum was found to show stronger 

functional connectivity with the default mode network than the other subfields, whereas CA1-3 

showed stronger connectivity with the somatosensory, somatomotor, and visual networks 41; this 

gradient thus appears to be consistent with the model-error gradient in the cerebral cortex. 

These observations were confirmed with our vertex-wise analysis of correspondence in 

functional connectivity gradients across structures, suggesting that the model-error and model-

precision gradients may represent the common axes of functional organization capturing the 

coordination of prediction, prediction error, and precision signals. This evidence has important 

implications for understanding the computational mechanisms underlying functional coordination 

across these structures. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2021. ; https://doi.org/10.1101/2021.09.01.456844doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.456844
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

20 

Coordination of cortical and cerebellar connectivity gradients 

 A traditional view of cortico-cerebellar interactions is that the cerebellum estimates the 

sensory state of the body by anticipating the consequences of a motor command 9,20,42, possibly 

as a means to compensate for the relatively slower temporal scale in which sensory feedback 

signals are processed in the cerebral cortex 96,97. In sensorimotor coordination, current evidence 

suggests that the cerebellar cortex (e.g., lobules V and VI) receives efferent copies of motor 

commands from Layer V of the primary motor cortex via the pontine nuclei 98,99 and predicts the 

expected sensory consequences of those commands 100,101. The inferior olive in the medulla 

oblongata is thought to play a critical role as one comparator of the predictions about the 

sensory consequences of motor commands from the cerebellum vs. the actual sensory input 

conveyed via afferent projections from the spinal cord 7,102. Prediction errors, i.e., the difference 

between the predicted and actual sensory inputs, are relayed to the premotor and primary motor 

cortices via the ventrolateral thalamus, as well as to motor neurons and interneurons in the 

lower brainstem and spinal cord to adjust motor movements online 103. These cerebellar-

mediated sensory prediction error signals are important for refining motor outputs as well as 

future sensory predictions 42. 

 An evolutionary perspective on the cerebellum helps to elaborate and modify this view to 

hypothesize the functional value of the coordinated cortico-cerebellar connectivity gradients 

identified in this work. The brains of all major groups of vertebrates include a cerebellum 104,105. 

In fish, for example, the cerebellum-like structure allows the brain to model expected patterns of 

peripheral sensory input related to predictable water currents and the animal’s own movement, 

and adaptively filter the sensory consequences of these sensory signals, which in turn helps the 

fish detect unpredictable, behaviorally relevant sensory events and compute the corresponding 

sensory prediction errors more effectively 106. From this perspective, the cerebellum (and 

cerebellum-like structures) might be thought of as a sensory structure running a sensory model 
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of the body in the world, which has been elaborated in land vertebrates, and particularly in 

mammals, in the service of complex motor control.  

In humans, the cerebellum receives ascending sensory inputs from the dorsal 

spinocerebellar tract (via the medulla), while at the same time also receiving from the ventral 

spinocerebellar tract (via the pons) copies of motor commands originally sent to spinal motor 

neurons 107; these latter signals can be considered corollary discharge 108. In the cerebral cortex, 

corollary discharge of motor commands are thought to serve as sensory prediction signals 

13,15,109 and the same may be true for corollary discharge signals reaching the cerebellum 

42,108,110. Convergence of sensory predictions and incoming sense data would allow the 

cerebellum to compare the two sources of information, possibly resulting in the computation of 

sensory prediction errors. Both Purkinje cells and granule cells in the cerebellar cortex are 

thought to be involved in this comparison process 107. Given these lines of evidence, one 

possibility is that the cerebellum might send these modeled prediction error signals to the 

primary motor cortex to rapidly adjust motor control faster than cortical sensory prediction errors 

can be computed, in addition to sending its descending prediction signals to the effector organs 

via the brainstem. These cerebellar prediction errors might also be compared to the sensory 

prediction errors computed in the cerebral cortex. 

 This logic helps us speculate on the functional significance of cerebellar G1, whose 

connectivity patterns correspond to the model-error gradient within the cerebral cortex. For 

instance, one novel hypothesis is that, at one end, the cerebellum’s predictions about sensory 

prediction errors might be available to adjust motor and sensory predictions that originate in the 

default mode network, whose precision may be modulated by the frontoparietal network. These 

cerebellar prediction errors might be able to modulate activity of these networks faster than 

cortically computed sensory prediction errors, which are computed relatively more slowly. At the 

other end of this gradient, cerebellar modeled sensory prediction errors might be available to 

compare with sensory prediction errors modeled in the cerebral cortex, in the cortical sensory 
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networks. Consistent with this hypothesis, current theories of cerebellar function posit that such 

predictive mechanisms may generalize to perceptual activity 7,42,111–114. For instance, in visual 

perception, the cerebellum is thought to be critical for predicting incoming sensory information 

based on sequence detection and updating predictions based on the statistics of the sensory 

environment 115–120. Visual information is conveyed polysynaptically from visual association 

cortical areas to cerebellar lobules VI and VII via the pons 121,122. From the perspective of the 

cerebellum, this information may represent sensory prediction error signals from the cerebral 

cortex. Visual inputs also reach the cerebellum from primary sensory receptors (e.g., via the 

superior colliculus) 122, which may allow the cerebellum to generate and update predictions 

about future sensory experiences. Collectively, one overarching hypothesis concerning cortico-

cerebellar interaction is that both the cerebral cortex and the cerebellum are capable of 

computing sensory prediction errors and are possibly exchanging and comparing them to more 

efficiently update the brain’s internal model of its body in the world. This is just one example of a 

novel hypothesis suggested by the correspondence of connectivity gradients observed in this 

study, which provides a fruitful avenue for future research using anatomical, 

electrophysiological, and lesion data across species.  

 Recent evidence also suggests that the cerebellum may be involved in estimating the 

precision of sensory prediction errors, consistent with the organization of cerebellar G2 

corresponding to the model-precision gradient in the cerebral cortex. During motor learning, the 

brain controls error sensitivity (i.e., the extent to which the brain changes the motor commands 

in the trial following an error) by learning relatively more from small and consistent errors than 

from larger and variable ones 123,124. This learning mechanism depends critically on the memory 

of errors that accumulates during training, which exists independently of two traditional forms of 

motor memory (memory of perturbations and of actions) 123. Although motor learning can occur 

on different time scales with different error sensitivities 125, the memory of errors is thought to 

exert its influence through the error sensitivity of the fast learning process 123. Therefore, one 
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possibility is that the cerebellum rapidly estimates the reliability of sensory prediction errors, 

conveying this information to parts of the cerebral cortex (e.g., the premotor areas such as the 

anterior mid cingulate cortex within the salience network) where it is further used to update 

precision estimates about sensory prediction error signals. 

Microanatomical and connectivity evidence further supports the hypothesis that the 

cerebellum can exert rapid modulation of signals in the cerebral cortex via coordinated 

gradients. The majority of cerebellar neurons are granule cells, which can generate action 

potentials that are relatively short-lived and at much higher frequencies than neurons in the 

cerebral cortex 96. Deep cerebellar nuclei, which are the gateway of cerebellar output, can also 

be modulated to fire up to 100+ Hz on average 126. These physiological properties may allow the 

cerebellum to rapidly modulate prediction, prediction error, and precision signals in the cerebral 

cortex in a domain-general fashion. Despite the fact that the cerebral cortex and the cerebellum 

are connected to each other only by way of polysynaptic circuits 89,127, numerous nonprimary 

sensorimotor (e.g., parietal association, parahippocampal, occipitotemporal, and prefrontal) 

areas of the cerebral cortex project to the cerebellar cortex via the cortico-ponto-cerebellar 

paths 128. The neocortical areas that project to specific parts of the cerebellar cortex via the pons 

are also the target of efferent projections from the same cerebellar cortical areas via the 

thalamus 129–131. These parallel, reciprocally-connected circuits might provide an anatomical 

substrate for the coordinated functional connectivity gradients identified in this study. Overall, 

our findings extend prior work in the functional parcellation of the cerebellum 38,89,132–134 by 

suggesting the potential mechanisms underlying the contribution of cortico-cerebellar 

interactions to the brain’s predictive processing. 

Coordination of cortical and hippocampal connectivity gradients 

A traditional view of cortico-hippocampal interactions is that the cerebral cortex 

generates predictions based on the sensory statistics of the environment, whereas the 

hippocampus—which itself generates prediction signals—reweights and alters the cortical 
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signals according to the goals of the organism 43,44. This mechanism draws upon the functional 

loop between the hippocampus, the entorhinal cortex, and the neocortex. Cortical afferents to 

the hippocampus carry highly compressed, multi-modal summaries of sensory information via 

the entorhinal cortex 135, whose Layer II and III project widely to the DG, CA1-CA4, and the 

subiculum via the perforant path 91,136. From the perspective of the hippocampus, these signals 

may represent prediction error signals from the cerebral cortex. Subcortical projections to the 

hippocampus include those from the medial septum, amygdala, anterior thalamic nuclei, 

supramammillary nucleus of the hypothalamus, as well as several brainstem nuclei such as the 

ventral tegmental area, periaqueductal gray, and locus coeruleus 136,137, possibly carrying 

information about the sensory state of the body including energy and metabolic requirements. 

The hippocampus may integrate information coming from these sources in its own internal 

architecture to generate predictions about future experiences; this mechanism may as well be 

one way in which the hippocampus performs the reweighting and adjustment of cortical 

predictions. 

Hippocampal signals reach back out to the cerebral cortex through various routes to 

achieve these adjustments. Specifically, CA1 and the subiculum in turn project out to Layer V 

and VI of the entorhinal cortex 135 as well as widespread multimodal association areas in the 

cerebral cortex including the medial frontal cortex, temporal pole, orbitofrontal cortex, anterior 

and posterior cingulate cortices, parietal and inferotemporal cortices 138,139 and to some extent 

lateral frontal cortex 138. From the perspective of the cerebral cortex, these signals may 

represent prediction errors consisting of multi-modal information generated from within the 

hippocampus 140–142, which could then be unpacked and particularized as they are integrated 

with the cerebral cortex’s internal model. By adjusting the representations in the cerebral cortex, 

the hippocampus may help ensure that the subsequent prediction signals generated based on 

the cortex’s internal model are not slaves to the statistics of the external sensory environment 
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and instead more in line with the goals of the animal (i.e., weighted for the current and perdicted 

conditions of the body's internal environment) 44. 

One novel hypothesis emerging from the findings of the current study is that the 

hippocampal connectivity gradients together characterize the role of the hippocampus in 

adjusting prediction signals in the service of allostasis along the entire cortical sheet. That is, the 

two most dominant connectivity gradients of the hippocampus might actually be considered a 

single gradient with three functional anchors along the longitudinal axis. At the posterior end of 

the hippocampus (corresponding to the bottom 10% of hippocampal G1 in the current study), 

functional connectivity was stronger with the cortical attentional networks, suggesting the role of 

hippocampal neurons in this area in tuning the precision signals acting on prediction and 

prediction error signals in the cerebral cortex. The posterior (septal in rodents) hippocampus 

receives ascending interoceptive prediction errors from the medial septum 143 and from the 

supramammilary nucleus of the hypothalamus 144, which could reweight sensory statistics based 

on the internal state of the body. The medial septum is critical for the generation of theta 

frequency oscillations observed in the hippocampus 145,146, which are important for the 

hippocampus’ role in generating predicted sequences of sensory events 43. The medial septum 

also mediates the effect of vagus nerve (parasympathetic afferents) stimulation on hippocampal 

theta oscillations 147–149. This may suggest the posterior hippocampus’ involvement in using 

interoceptive information to guide processing of event sequences. 

In the middle of the hippocampus (corresponding to the top 10% of hippocampal G1 and 

G2), functional connectivity was stronger with the default mode network in the cerebral cortex. 

This network is critical for initiating prediction signals constituting the cerebral cortex’s internal 

model constructed from past experiences 13,150. This network is also key for conceptual 

processing 151, and on one hypothesis prediction signals can be thought of as low-dimensional, 

conceptual representations that guide the conceptualization (i.e., categorization) of incoming 

sensory information in the service of efficient bodily regulation 13. The middle portion of the 
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hippocampus, therefore, may interact with the default mode network in the cerebral cortex to 

categorize sensory inputs and give them meaning, where “meaning” includes the generation of 

visceromotor and motor action plans to deal with that particular event in a specific context 13. In 

this way, the hippocampus may also contribute to interoceptive predictions – by sending 

anticipated sensory consequences of visceromotor changes to the primary interoceptive cortex 

15,17 and therefore a change in affect (e.g., mood).     

 At the anterior end of the hippocampus (corresponding to the bottom 10% of 

hippocampal G2), functional connectivity was stronger with the somatosensory and 

somatomotor cortices, suggesting the role of hippocampal neurons in this area in sending motor 

and sensory predictions to the cerebral cortex, possibly along with visceromotor predictions 

given the presence of visceral maps within the primary motor cortex 152,153. Preferential 

connectivity with the sensorimotor cortices in the anterior (vs. posterior) hippocampus in 

humans is consistent with available evidence 40,68,154. In rodents, the temporal (i.e., anterior) two 

thirds of CA1 passing through the longitudinal association bundles project to the primary 

visceral sensory area and the supplementary somatosensory area 155, which may correspond to 

the functional connection observed in this study. The attentional-conceptual-

(viscero)sensorimotor gradient in the hippocampus, therefore, may characterize the 

hippocampus’ contribution to predictive processing in the brain, which involves the refinement of 

representations in the cerebral cortex regardless of whether they are content-based or 

modulatory. Such tripartite organization of hippocampal function is consistent with prior work in 

non-human primates and rodents characterizing the topographic organization of hippocampal-

entorhinal interconnections, where the anterior, middle, and posterior subregions of the 

hippocampus exhibit preferential connections with the medial, intermediate, and lateral bands of 

the entorhinal cortex, respectively 156–158. This entorhinal mediolateral gradient in turn appears to 

be associated with distinct patterns of functional connectivity in humans, although evidence is 

still preliminary given the limited spatial coverage of the data 159. Future work examining whole-
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brain high-resolution fMRI data is warranted to clarify the mechanisms underlying signal flow 

and integration along a neocortical, entorhinal, and hippocampal functional loop. 

Notably, our findings meaningfully extend the existing accounts of the functional 

organization of hippocampus identified in humans 160–163, by demonstrating evidence supporting 

the role of cortico-hippocampal interactions in domain-general computational processes. Much 

of the prior work examining longitudinal-axis functional specialization within the hippocampus 

has focused on characterizing it by distinct patterns of functional interaction with nearby 

structures in the medial temporal lobe or with a broader set of cortical regions that are 

canonically considered part of the default mode network; this specialization has been most 

typically linked to different aspects of episodic memory 154,161,164–171. Our findings are consistent 

with recent evidence showing that hippocampal functional specialization along its longitudinal 

axis reflects its relevance not just for memory but across multiple functional domains 172, thus 

underscoring the importance of adopting a more domain-general view of hippocampal function 

than traditionally thought in the memory literature.   

Coordination of cerebellar and hippocampal connectivity gradients 

  Finally, the current findings of coordinated connectivity gradients offer novel insights to 

probe observations that are relatively understudied in the literature, such as the interaction 

between the cerebellum and the hippocampus. Emerging evidence suggests the existence of a 

cerebello-hippocampal learning system 45–49,173,174, although its computational and functional 

architecture are relatively less well studied when compared to the other learning systems 

discussed. Viral tracing studies have so far identified polysynaptic connections between these 

structures mediated by regions including the supramammillary nucleus of the hypothalamus, 

medial septum, and ventrolateral/laterodorsal thalamus 48,175. There is also evidence pointing to 

the existence of direct connections between cerebellar and hippocampal subregions in humans 

176. The present findings reinforce the importance of testing specific hypotheses, for instance, 

about event segmentation and sequence processing in which both structures have been 
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(separately) implicated 43,117,177–180. Future work should investigate the complementary 

contributions of cortico-cerebellar, cortico-hippocampal, and cerebello-hippocampal interactions 

to the brain’s internal model, which might be characterized by their dissociable involvement in 

processing different types of information and/or on different timescales. 

Conclusions 

 The present results offer the opportunity to synthesize evidence across literatures, each 

targeting a different set of brain regions, into a common neurocomputational framework based 

on the principles of predictive processing. Our hypotheses, while speculative, illustrate the value 

of connectivity gradients in innovating specific questions about the computational aspects of 

brain function, with the model-error and model-precision gradients as two common axes of 

information processing in the brain. Future work might specifically address these questions, as 

well as probe modulation of connectivity gradient coordination across structures by explicit task 

demands or by clinical conditions in which neural mechanisms subserving predictive processing 

are hypothesized to be dysfunctional 181,182. The results might offer a coherent, 

neurobiologically-inspired research program to unite the study of mind and behavior, collapsing 

the artificial boundaries between cognitive, perceptual, affective, motor, and even social 

phenomena. This evidence might also provide a common framework for understanding more 

broadly the neurocomputational basis of mental disorders, neurodegenerative disorders, and 

physical disorders. 

 

Methods 

 A full description of the datasets, data processing, and analytical approaches is provided 

as part of Supplementary Methods. Briefly, we analyzed two large resting-state fMRI datasets, 

both of which are publicly available. The primary dataset consisted of 1,003 participants from 

the HCP WU-Minn Consortium 52 (HCP1200 2017 data release; Mage = 28.71, SDage = 3.71, 470 

males, 533 females; four 15 min runs per participant). Specifically, we utilized the group 
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average preprocessed dense functional connectome data generated via the HCP pipelines 

183,184. These data took the form of a 91,282 × 91,282 matrix representing the magnitude of 

functional connectivity between all cortical vertices and subcortical voxels; the hippocampus 

was represented as part of the subcortical volume space 183. A secondary, validation dataset 

was defined with an independent group of 1,139 participants from the GSP (Mage = 21.24, SDage 

= 2.70, 467 males, 672 females; two 6 min runs per participant) 53,54. We performed 

preprocessing of the GSP dataset using a surface-based pipeline 58,185, after which we 

generated the group average whole-brain vertex-/voxel-wise functional connectivity matrix. 

From these group-level functional connectivity matrices, we extracted (1) cortico-cortical, 

(2) cerebello-cortical, and (3) hippocampo-cortical connections, which were used as input for 

diffusion map embedding, a non-linear data dimensionality reduction technique that allows 

calculation of functional connectivity gradients as a low-dimensional representation of spatial 

variation in connectivity profiles 50,51. We performed post hoc characterization and interpretation 

of the observed functional gradients at various levels, including comparisons with the 

topography of canonical functional networks 54 and examination of gradient value distributions 

across major hippocampal subfields 62. To interpret the correspondence between 

cerebellar/hippocampal and cerebral cortical connectivity gradients, we computed gradient-

weighted functional connectivity in cortical space 36,59 and quantified the degree of spatial 

correlation while non-parametrically accounting for autocorrelations 63. Finally, to further 

demonstrate the correspondence between the cortical, cerebellar, and hippocampal functional 

gradients in terms of connectivity, we performed a seed-based functional connectivity analysis 

by targeting the vertices/voxels that occupied the top and bottom 10% of each gradient. This 

procedure enabled triangulation of intrinsic functional connectivity between distinct subregions 

of the three structures that corresponded to a common connectivity gradient. 
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Data Availability 

The HCP dataset is publicly available at https://db.humanconnectome.org. The GSP dataset is 

publicly available at 

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/25833. The fMRI 

data derivatives generated in this work will be made available at 

https://github.com/yutakatsumi/PredProcGradients. 
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