
BWA-MEME: BWA-MEM emulated with a machine
learning approach
Youngmok Jung 1 and Dongsu Han 1∗

1Department of electrical enginerring, KAIST, Daejeon, 34141, REP. OF KOREA

∗To whom correspondence should be addressed.
Abstract

Motivation: The growing use of next-generation sequencing and enlarged sequencing throughput require efficient
short-read alignment, where seeding is one of the major performance bottlenecks. The key challenge in the seeding
phase is searching for exact matches of substrings of short reads in the reference DNA sequence. Existing algorithms,
however, present limitations in performance due to their frequent memory accesses.
Results: This paper presents BWA-MEME, the first full-fledged short read alignment software that leverages learned
indices for solving the exact match search problem for efficient seeding. BWA-MEME is a practical and efficient seeding
algorithm based on a suffix array search algorithm that solves the challenges in utilizing learned indices for SMEM search
which is extensively used in the seeding phase. Our evaluation shows that BWA-MEME achieves up to 3.45x speedup in
seeding throughput over BWA-MEM2 by reducing the number of instructions by 4.60x, memory accesses by 8.77x, and
LLC misses by 2.21x, while ensuring the identical SAM output to BWA-MEM2.
Availability: The source code and test scripts are available for academic use at https://github.com/kaist-ina/BWA-MEME/.
Contact: tom418@kaist.ac.kr, dhan.ee@kaist.ac.kr

1 Introduction
DNA sequencing has become a critical piece in modern medicine,
advancing the practice in disease diagnosis, prognosis, and therapeutic
decisions. The state-of-the-art DNA sequencing method is called next-
generation sequencing (NGS). Modern NGS hardware generates billions
of short reads in a single run. This, in turn, requires the alignment of short
reads (i.e., short DNA fragments) to the reference DNA sequence. As large-
scale DNA sequencing operations run hundreds of NGS, developing an
efficient short read alignment algorithm has become ever more important.

The state-of-the-art alignment process is divided into two phases,
seeding and extending, following the seed-and-extend paradigm (Li, 2013;
Li and Homer, 2010; Liu and Schmidt, 2012; Liu et al., 2012). The
seeding phase searches for exact matches of seeds (substrings of short
reads) in the reference DNA sequence, which identifies the possible
alignment positions of the short read in the reference DNA sequence.
In the extending phase, the seeds from the earlier phase are extended.
In the process, the alignment scores of the extended seeds are calculated
using the Banded-Smith-Waterman (BSW) algorithm (Vasimuddin et al.,
2019). Many studies (Ahmed et al., 2015; Ho et al., 2019; Houtgast et al.,
2018; Subramaniyan et al., 2021; Tárraga et al., 2014) have shown that the
seeding phase is a major performance bottleneck in the popular alignment
software BWA-MEM2 (Vasimuddin et al., 2019) and Bowtie 2 (Langmead
and Salzberg, 2012). In particular, finding an exact match of short reads—
or substrings of short reads—within the reference DNA sequence, is
the main problem that fundamentally constrains the performance of the
seeding phase (Langmead and Salzberg, 2012; Li, 2013; Li et al., 2009).
Thus, in this paper, we focus on the seeding phase which involves only the
exact matching.

For efficient exact match search, it is necessary to index the reference
DNA sequence and perform an in-memory index lookup. Recently, several
new index structures have been studied to solve the exact match search

problem in an efficient manner. The state-of-the-art index structures
fall into two major categories: traditional index-based (Subramaniyan
et al., 2021; Vasimuddin et al., 2019) and machine-learning-based (Ho
et al., 2019, 2021; Kirsche et al., 2021). Examples of the traditional
index structures are FM-index (Langmead and Salzberg, 2012; Li,
2013; Li and Durbin, 2009; Li et al., 2009) and enumerated radix tree
(ERT) (Subramaniyan et al., 2021) index. FM-index is a compressed
version of the suffix array (Ferragina and Manzini, 2001), which
progressively extends a substring from a single character and finds its
exact match in the reference DNA sequence. We refer to the substring of
the short read that is given as input to the exact match search problem as a
substring. The typical length of a short read is between 100 to 300. To speed
up the process, the ERT index uses an enumerated index table for finding
the exact match of the first 15 consecutive bases of the substring. After this,
ERT utilizes a radix tree that encodes the suffixes of the reference DNA
sequence, which naturally supports multi-character lookups. Despite this,
both FM-index and ERT index requires O(N) memory accesses, where
N is the length of the input substring.

LISA (Ho et al., 2019, 2021) and Sapling (Kirsche et al., 2021)
use machine-learning-based index structures. LISA proposes a new data-
structure called IP-BWT. IP-BWT employs a learned index that supports
an exact match lookup in the suffix array. Although it is still a linear
time algorithm, using IP-BWT requires fewer memory accesses compared
to the original FM-index because it matches 21 bases in a single lookup.
However, LISA assumes seed search only starts at the first base of the short
read, whereas the seeding algorithm in BWA-MEM2 requires to start the
search at an arbitrary point in the short read. Thus, LISA cannot be used as
a replacement of BWA-MEM2. Sapling (Kirsche et al., 2021) has shown
that employing a learned index in suffix array search can outperform FM-
index based algorithms. However, Sapling only works for input substrings
that have the perfect match to the reference DNA sequence. Therefore, it
cannot be used for real-world alignment where the input may not have a
perfect match to the reference DNA sequence.

1

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.09.01.457579doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.01.457579
http://creativecommons.org/licenses/by-nc/4.0/

2 Jung et al.

The key limitation of existing index structures is that it requires
memory accesses and instructions proportional to the length of the
substring. In reality, seeds are of variable size, and thus the index structure
must support a fast exact match search for arbitrary length substrings. Our
central tenet is that to obtain high seeding throughput, we must minimize
the number of memory accesses required for exact match search of arbitrary
length substrings and break the strong dependency between the length of
substring and the number of memory accesses.

In this paper, we present BWA-MEME, the first alignment software that
performs exact match search with O(1) memory accesses leveraging the
learned index. Specifically, we design the first full-fledged learned-index-
based seeding algorithm that achieves constant lookup time for an exact
match search of arbitrary length substrings. BWA-MEME significantly
reduces the number of instructions, memory accesses, and LLC misses, in
particular, for the long substrings.

Building a full-fledged alignment software that leverages learned index
in suffix array search, however, involves solving a number of new and non-
trivial challenges. First, the learned index has to provide an accurate exact
match position of an arbitrary substring in the suffix array. However, it is
difficult to guarantee high prediction accuracy in the suffix array which is
large and has an imbalanced distribution of suffixes. Furthermore, variable-
length suffix or substring must be encoded into the numerical key to use
the learned index. Second, using the suffix array search requires a new
design for the super-maximal exact match (SMEM) search (Li, 2012,
2013). SMEM search algorithm must find all seeds covering the given point
of the short read, while minimizing the number of exact match searches.
Seeding algorithm uses a hit threshold to find seeds that have multiple
hits in the reference DNA sequence. Thus, the SMEM search algorithm is
required to find seeds with the maximum number of hits but is less than or
equal to the hit threshold. Finally, minimizing the memory accesses and
CPU cache misses introduced by using a learned index is important.

BWA-MEME addresses these challenges by introducing a new learned
index structure and algorithms. First, we present a partially-3-layer
recursive model index (P-RMI) which adapts well to the imbalanced
distribution of suffixes and provides accurate prediction. In this process,
we design an algorithm that encodes the input substring or suffixes into
a numerical key. The numerical key is given as input to P-RMI where
P-RMI provides predicted position in the suffix array and error bound for
the prediction. Binary search is performed within the error bound to find
the reference position where the substring aligns to. Second, we present
an efficient SMEM search algorithm that uses the same or less number
of exact match searches compared to the state-of-the-art SMEM search
algorithms. Finally, we reuse the lookup result to exploit the redundancy
of the input substrings to the exact match search problem. This further
reduces the number of memory accesses and CPU cache misses that occur
during the seeding phase.

Our evaluation shows that, 1) BWA-MEME achieve up to 3.45x
and 1.42x speedups in seeding throughput and alignment throughput
respectively over BWA-MEM2, while ensuring identical output; 2)
BWA-MEME drastically reduces the number of instructions executed by
4.60x, memory accesses by 8.77x, last-level-cache (LLC) misses by 2.21x,
and data fetched per read by 4.41x compared to seeding algorithm of BWA-
MEM2; and 3) BWA-MEME provides options to balance the trade-off
between alignment throughput and the required memory space.

2 Background

2.1 The Seeding algorithm of BWA-MEM2 and ERT

A maximal-exact match is a substring (of short reads) that cannot be
further extended in either direction without a change in the number of
hits (exact matches) to the reference DNA sequence. A SMEM is a

unique MEM that is not contained in other MEMs. To find all positions
of seeds where the short read may potentially align, the seeding algorithm
executes a super-maximal exact match (SMEM) search multiple times with
various pivot points, minimum seed length thresholds, and hit thresholds.
SMEMs found in the SMEM search that are longer than the minimum
seed length threshold are selected as seeds. In the following, we denote
the SMEM search algorithm of BWA-MEM2 (Vasimuddin et al., 2019)
and ERT (Subramaniyan et al., 2021) as SMEM-BWA and SMEM-ERT,
respectively.
SMEM search algorithm and extension. We first describe the extension
used in SMEM search and explain how extensions are performed to find
SMEMs. Let S be a short read, and S[i, j] denote the substring between
position i and position j of the short read. Extension from position Ps is
finding farthest positionPe where the substringS[Ps, Pe] has a maximum
number of hits but is less than or equal to the hit threshold. Therefore, for
each extension, the exact match search algorithm is used to find the number
of hits for substring S[Ps, Pe]. Depending on the direction of extension, it
is called forward extension ifPs < Pe and otherwise backward extension.
We denote each point where forward and backward extension end as
forward(p) and backward(p), respectively.

The goal of an SMEM search algorithm is to find all SMEMs
that include the pivot point Ppivot. As SMEMs are substrings that
cannot be further extended, all SMEMs that include Ppivot can be
found by; 1) performing a forward extension from Ppivot of the short
read and; 2) performing a backward extension from every points in
[Ppivot, forward(Ppivot)]. This finds all SMEMs that include Ppivot

but incurs excessive computation.
SMEM search algorithm of BWA-MEM2. Instead of performing
backward extension in all points in [Ppivot, forward(Ppivot)], SMEM-
BWA performs backward extension only in the point p where substring
S[Ppivot, p] and substring S[Ppivot, p + 1] have different number of
hits. This is because for ∀p ∈ [Ppivot, forward(Ppivot)], if substring
S[Ppivot, p] and substring S[Ppivot, p + 1] have the same number of
hits, backward(p) and backward(p+1) are identical. Therefore, during
the forward extension from Ppivot, all positions where a number of hits
changes are marked as left extension points (LEPs).

Figure 1 illustrates the design. (1) Determining LEPs: SMEM-BWA
starts with the forward extension of a single character at the pivot point
of the short read. During the forward extension, substrings are extended
one character at a time using the FM-index. The LEP bit is set to 1 when
the number of hits changes from the preceding substring. In Figure 1,
the number of hits decreases as the length of forward extended substring
increases, and the LEP bit is set to 1 when the number of hits changes. Each
dashed line box represents a single extension. (2) SMEM search: The
backward extension is performed in the positions where the LEP bit is set to
1. After the backward extension is performed in each position, SMEMs are
selected from the backward extended substrings. SMEMs are backward-
extended substrings that are not contained in other substrings and are longer
than the minimum seed length threshold. In Figure 1 backward extension
is not performed in the substrings with LEP bit set to 0 which is labeled
"Not Extended". Substrings that are contained in other longer substrings
are labeled "Contained", and substrings that are not contained in the other
substrings are selected as SMEM which are labeled "SMEM".
SMEM search algorithm of ERT. One limitation of SMEM-BWA is
that it still performs backward extensions on substrings that eventually do
not become SMEM. To overcome this limitation, SMEM-ERT performs
extensions in a zigzag fashion. Similar to SMEM-BWA, SMEM-ERT
performs backward and forward extension in positions where the LEP
bit is set to 1. This is intended to avoid finding duplicate SMEMs and
reduce redundant extensions.

Figure 2 illustrates the two stages of SMEM-ERT: (1) Obtaining LEP
bits: SMEM-ERT starts with a forward extension at the pivot point of the

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.09.01.457579doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.01.457579
http://creativecommons.org/licenses/by-nc/4.0/

BWA-MEME 3

short read. LEP bits for all characters in the forward extension are obtained
from the ERT index. (2) SMEM searching in zigzag fashion: Starting
at the pivot point, the backward and forward extensions are repeatedly
performed until the forward extension reaches the end of the obtained
LEP bits. The forward extension starts at the point where the backward
extension ends, and the backward extension always starts at the nearest
point where the LEP bit is set to 1, as illustrated in Figure 2.

..T C C C A T A A C A A C T A G A C A G A A G C A T T C T C A G A A A C..

Pivot Point LEP Bit
A

ACAACT

AC
ACA
ACAA
ACAAC

Hits

ACAACTA

13
11
9
9
7
6
6

1
1
0
1
1
0
1

ATAACAACTA

CCCATAA

ACA
CCCATAACAA

ACAACT
ATAACAAC

CCCATAAC

SMEM
Contained
Not Extended

Contained
Contained

SMEM

Pivot Point

(1) Obtaining LEP bits (2) SMEM searching

Not Extended

: Forward Extension : Backward Extension

Read

a
b
c
d
e
f
g

a
b
c
d
e
f
g

Fig. 1. SMEM Search Algorithm of BWA-MEM2 (SMEM-BWA algorithm)

1101101000100001000 : LEP bits
(1) Obtaining LEP bits

(2) SMEM Searching in zigzag fashion

ACAACTAGACAGAAGCATTPivot Point

CCCATAA

CCCATAACAA

ATAACAAC

ATAACAACTA

SMEM

SMEM

: Forward Extension

: Backward Extension
: Forward Extension
: Backward Extension
: Forward Extension

TAACAACTAGACA : Backward Extension

: Forward Extension : Backward Extension

..T C C C A T A A C A A C T A G A C A G A A G C A T T C T C A G A A A C..Read

Fig. 2. SMEM Search Algorithm of ERT (SMEM-ERT algorithm)

2.2 Recursive Model Index Structure

Learned indices use machine learning (ML) models (e.g. linear regression
model) to replace traditional index structures or search methods used for
sorted key-value data (e.g. B-tree, binary search). Recursive model index
(RMI) (Kraska et al., 2018) is a commonly used hierarchical structure for
learned indices, which uses multiple layers of ML models. The first layer
usually has a single model and subsequent layers have a progressively
larger number of models. The algorithm of RMI consists of the training
and lookup phase. For simplicity, we refer to a ML model as a model.
Training phase. Training is performed layer by layer starting from the
first layer. Model in the first layer is trained with whole key-value data to
predict the position of keys accurately. Then keys are distributed to the
models in the second layer according to the predicted position of keys.
Models in the second layer are trained with the assigned key-value data
and keys are again distributed to the models in the third layer. This process
continues until the models in the last layer are trained. As prediction may
have an error, RMI guarantees a search bound for keys seen in the training
phase. The error bound of leaf models is calculated by iterating through
keys assigned to each leaf model. We refer to models that are used for the
output of RMI as the leaf models. Each leaf model stores the calculated
error bound to be used later in the lookup phase.
Lookup phase. The lookup phase of RMI consists of two stages. Stage 1)
Prediction: Given a key, the first layer model predicts the position of the
key, and one of the models in the second layer is selected according to the
prediction. The selected model in the second layer subsequently makes a
prediction, and one of the models in the third layer is selected. RMI repeats
this process recursively until the model in the last layer is selected. The
prediction made in the last layer is used as the output of RMI. Stage 2)

Last mile search: The true position of the key is searched starting from
the predicted position of RMI. Binary search can be used if an error bound
for prediction is defined in the training phase. Otherwise, linear search or
exponential search is used.

3 Motivation and Goal
To solve the exact match search problem with minimal time, it is necessary
to index the reference DNA sequence and perform an in-memory index
lookup. However, it is a challenging task to build an index that fits in
limited memory and supports exact match search of substring (which have
a length between 0 to 300) in a long reference DNA sequence (e.g. 3 billion
lengths for human reference DNA).
Why use learned index? Applying machine learning based indexing in the
short read alignment is attractive considering that reference DNA sequence
does not change frequently. Once the models are trained, they can be
used without further training unless the new version of the reference DNA
sequence is made. In addition, most of the short reads have the perfect
match to the reference DNA sequence (Consortium et al., 2015), which
means that the test data and the train data are similar. This makes the
machine-learning based approach even more effective.
Why apply learned index on suffix array? A suffix array is an array
that stores the positions of suffixes sorted in lexicographical order. For
a human reference DNA sequence whose size is 6G bases (including its
reverse complement), the corresponding suffix array is 31 GB. However,
suffix array search has not been used for the exact match search problem
because it is slow when combined with the binary search which requires
O(log(|R|)) times of memory accesses. Therefore, FM-index applies
Burrows-Wheeler transform (BWT) (Li and Durbin, 2009) on suffix array,
which reduces the number of memory accesses fromO(log(|R|) toO(N),
where N is the length of the substring. Recently, LISA presented IP-BWT
which integrates learned index to FM-index. In particular, LISA processes
21 bases in a single learned index lookup followed by additional binary
search in IP-BWT. For the input substring that is longer than 21, LISA
requires multiple learned index and IP-BWT lookups, which results in
memory accesses proportional to the length of substring. Therefore, the
number of memory accesses in LISA is lower bounded by the length of
substring, even if the learned index predicts the exact position.

In contrast, directly employing a learned index to suffix array search
without using a compressed structure of FM-index, requires number of
memory accesses independent to the length of input substring. This is
because the number of memory accesses required in the suffix array search
is bounded by the errors of the leaf models in P-RMI which is a constant
value determined at the training phase. The learned index itself requires a
single memory access to find the exact match in the best case, which is the
minimum achievable value for the exact match search problem. Hence, to
achieve the minimal lookup time, we choose to utilize learned index on
the suffix array.
Goal of BWA-MEME. Our goal is to build a practical and efficient
alignment software that leverages learned index and suffix array search in
the seeding phase. The accuracy of the short read alignment is important,
therefore the output must be identical with that of BWA-MEM2. This
paper considers running alignment software on CPUs only. However, we
believe it can be further accelerated by using hardware acceleration.

4 Design of BWA-MEME

4.1 P-RMI: Partially-3-layer RMI

We present P-RMI that enables efficient suffix array search by making two
enhancements to 2-layer RMI:
Mitigating data imbalance. Due to redundant sequences in the reference
DNA, using naïve 2 or 3 layer RMI results in imbalanced distribution of

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.09.01.457579doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.01.457579
http://creativecommons.org/licenses/by-nc/4.0/

4 Jung et al.

B

Seeding Phase

Exact Match Search (§4.2)

Lookup Result
Reuse (§4.4)

Training Phase (Index building Phase)

AAAAAAA…

…

CATAATAA…

…

GAACAAA…

…

TTTTTTT…

Suffix Array Tokenizer

(Prediction, Error Bound)

Reuse?
No

Yes
SMEM
Search
(§4.3)

Partially-3-layer RMI (§4.1)

Last mile search

Prediction,
Error Bound

Pos

0

3203

7248

9953

MEM
Position,
Length

Query
Sequence

Short Read,
Pivot Point,
Thresholds

Seeds

CTTCCCATAACAACTAGACAGAAGCATTCTCAGAAACTTATTTGTGATGTGTGTACTCAAC Short Read: …

Seeding
Algorithm

P-RMI
Lookup

B Prediction

Layer 1

Layer 2

Partial layer

Fig. 3. BWA-MEME: Design Overview

data in the leaf models. The number of keys per leaf model forms a long tail
distribution, with a small number of leaf models occupying a significant
fraction of keys. A model trained with a small subset of data generally
has a higher prediction accuracy. Therefore, mitigating data imbalance
is necessary to improve the prediction accuracy of RMI. For the human
reference DNA and a 2-layer RMI constructed with 228 leaf models, 85%
of the leaf models have data, and the rest are empty. Among the non-empty
leaves, 0.22% of them hold 16.5% of key-value data from the suffix array.

To mitigate the imbalance in data distribution with minimum overhead,
we introduce partially-3-layer RMI (P-RMI). Instead of fully employing
the third layer models, P-RMI adaptively adds an additional layer of models
only to the second layer models which are suffering from elongated lookup
time due to the imbalance in data distribution. Training P-RMI is done layer
by layer which is the same as RMI. If the number of assigned keys in the
second layer model exceeds the number of key thresholds, an additional
layer of models is added to the second layer model. Accordingly, the
prediction of the second layer model shifts its role to assign keys to the
models in the added layer. The number of models in the additional layer is
calculated according to the number of keys assigned and the target average
keys per leaf model. When an additional layer is added, an indicator bit is
set and stored with the parameters.
Defining the error bound for last-mile search. To minimize the number
of memory access in the last mile search, we choose to perform a binary
search within the predefined error bound instead of using the exponential
search or linear search. However, RMI does not guarantee an error bound
for the keys that are not provided in the training phase. The original RMI
work provides a solution that can be used in 2-layer RMI when all models
within the RMI are monotonic (Kraska et al., 2018; Marcus et al., 2020;
Rashelbach et al., 2020). However, it does not generalize for 3 layer RMI
even if the models are monotonic. Thus, we extend the solution to work
on our P-RMI.

Our main observation is that the error bound can be guaranteed for the
multi-layer RMI, if the leaf models are monotonically increasing function
and the index of the leaf model that a key is assigned to is monotonic
with regard to the input key. We omit the proof here. Therefore, we build
P-RMI with two design constraints. First, P-RMI forces models to be a
monotonically increasing function. Second, the P-RMI constrains that the
models form a tree. This makes the index of the leaf model monotonically
increasing with regard to the input key. ML models used in the leaf models
of P-RMI and the position of keys are both monotonically increasing
functions of the key. Therefore, a prediction error is also a monotonically
increasing function of the key as it is the difference between the output
of the leaf models and the position of keys. Hence, finding the minimum
and maximum error of all keys that can be assigned to the leaf models
guarantees an error bound to be defined for arbitrary input keys, including
duplicate keys or keys not seen in the training phase.

P-RMI configuration. The following factors determine the performance
of a P-RMI: number of models and types of ML models. Using a large
number of models results in a smaller error bound but increases the size of
P-RMI. To balance between the lookup performance and the size of P-RMI,
BWA-MEME choose a number of models in the second and additional
layer to match the target average keys per model. Also, the additional
layer is added to the second layer models where a number of keys exceed
the number of keys threshold. We choose 20 as the target average keys
per model and 500 as the number of keys threshold. Another important
configuration is the type of model as it affects both the prediction accuracy
and the size of the index. We found the best performance can be obtained
using bit shift operation in the first layer, linear regression models in the
second layer, and linear spline models in the additional layer. For the
human reference DNA, P-RMI has 228 models in the second layer and
48,047,097 models in the additional layer resulting in a total of 7.6GB.

4.2 Exact match search with P-RMI

BWA-MEME replaces the exact match search algorithm of BWA-MEM2
with an exact match search algorithm (Exact-MEME) based on suffix array
search that uses P-RMI.
Tokenization of query sequence. Tokenization is a procedure that encodes
a variable length suffix or a substring of the short read into a numerical
key. The tokenized key should preserve the lexicographical order and be
expressive enough to represent the string key. We observe that most suffixes
longer than a certain length become unique suffix strings in the reference
DNA sequence. Therefore, we choose to use the first K characters of the
query sequence and apply 2-bit encoding to the characters. One problem
that arises is using K larger than 32 makes the computation expensive
in the models of RMI (Wang et al., 2020). For example, using a 128-bit
(64 bases) key requires a 128-bit machine learning model to be used in
RMI. However, no mainstream processors have hardware support for the
floating-point operation with bits larger than 64. This results in a simple
128-bit linear regression model to be 5 times or much slower than the 64-
bit linear regression model. Also, we observe that K larger than 32 has
marginal gain in prediction accuracy, thus we select 32 for K.

Tokenization of variable-length string is done in two steps. The first
32 characters are obtained from each variable-length string by padding an
arbitrary character to the string if the string is shorter than 32 and trimming
characters if it is longer. The 32 characters are then encoded into a numeric
key using the 2-bit encoding of bases.
P-RMI lookup. P-RMI stores an indicator bit in the second layer models
that tells an additional layer of models is added or not. If the indicator bit
is not set, the prediction and error value from the second layer is chosen
as the output. If the indicator bit is set, the start and end indices of the
third layer are obtained from the error value. According to the prediction
of the second layer model, the leaf model is selected among the third layer
models between the start and end indices.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.09.01.457579doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.01.457579
http://creativecommons.org/licenses/by-nc/4.0/

BWA-MEME 5

The error obtained from P-RMI includes maximum error and minimum
error which defines the error bound. A binary search is performed within
the error bound to find the sorted position of the query sequence in the
suffix array. If the sorted position is found and the query sequence exactly
matches the corresponding suffix, the sorted position is selected as the
longest exact match position. If the sorted position of the query sequence
is between two sequential suffixes, the position of suffix with the longer
exact match is selected. For notation simplicity, we refer to the longest
exact match found in Exact-MEME as LEM.
Reducing memory accesses in the last mile search. The last mile search
stage accounts for a significant portion of memory accesses. Therefore it
is important to reduce the memory accesses. During the last mile search,
comparisons are performed several times between suffixes and the input
substring. To compare a suffix and the input substring, characters of suffix
should be obtained from the reference DNA sequence which requires
two random memory accesses. The first memory access is made to the
suffix array which contains the position of the suffix in the reference DNA
sequence. Subsequently, another memory access is made to the reference
DNA sequence to retrieve the suffix characters. The two memory access are
random and likely to cause CPU cache misses. To reduce the cache misses,
BWA-MEME co-locates position value and the characters of the suffix in
a single index data-structure. In particular, the position value and the 32
characters (64-bit) of the suffixes are co-located, allowing any substring
shorter than 33 can be compared with a single CPU cache miss. For the
human reference DNA sequence, using 32-character suffixes results in
49GB of memory usage.

4.3 Making SMEM Search Efficient

This section presents how BWA-MEME find SMEMs using the
Exact-MEME algorithm.
Extension with Exact-MEME algorithm. The extension finds a substring
that has the maximum number of hits but is less than or equal to the hit
threshold. However, the Exact-MEME algorithm finds only the longest
exact match (LEM) position without progressively extending a substring.

To remedy this, BWA-MEME designs an extension function that
performs a linear search starting from the output LEM position of the
Exact-MEME algorithm. The key insight we leverage is that exact
matching positions are all sequentially positioned in the suffix array and
the exact match length of query in suffixes monotonically decreases as
distance increases from the LEM position. The algorithm of the extension
function consists of 3 steps. First, the query of extension function is given to
the Exact-MEME algorithm which outputs the LEM position of the query
in the suffix array. Next, a linear search is performed starting from the
LEM position. The linear search defines an exact match range of suffixes
where the input substring has a partial exact match. The size of the exact
match range must be largest as possible but is less than or equal to the hit
threshold. Also, input substring and all suffixes in the exact match range
must have an exact match length longer than that of suffixes not in the
exact match range. Finally, the start position of the exact match range, the
minimum exact match length inside the exact match range, and the size of
the exact match range (number of hits) are returned as the output.
Reducing redundant extensions without using LEP bits. Reducing
the number of redundant extensions in the SMEM search algorithm is
necessary to minimize the number of exact match searches. SMEM-
BWA and SMEM-ERT achieve this by tracking the change in number
of hits during the first forward extension. The LEP bits obtained from
the forward extension are used to reduce redundant extensions. However,
unlike SMEM-BWA or SMEM-ERT, it is infeasible to track the change
in number of hits while extending a substring using the Exact-MEME
algorithm. Therefore, we design a new SMEM search algorithm that does
not require LEP bits and uses the same or less number of extensions

compared to SMEM-BWA or SMEM-ERT. We observe that repeatedly
performing backward and forward extensions starting from the pivot
point finds all SMEMs without redundant extensions. The extensions are
performed until the extension no longer includes the pivot point. We show
the correctness of SMEM output by proving the SMEM output is identical
with SMEM-ERT. The proof can be found in the Supplementary Material.

4.4 P-RMI Lookup Result Reuse

To identify all possible alignment candidates, the seeding algorithm
performs multiple SMEM searches on each short read with various pivot
points and thresholds. This results in higher sensitivity in alignment (Li,
2013), but also numerous exact match searches of substrings that have long
overlap with each other. But, even if the queries have long overlap with
each other, different paths are accessed in P-RMI which incurs random
memory accesses, which results in CPU cache misses. The P-RMI lookup
and last-mile search accounts for most of the computation time in the
seeding phase, thus reducing their cost brings further speedup.
Substituting P-RMI lookup for ISA lookup. To reduce memory accesses,
we use an additional index called inverse suffix array (ISA). At the index
building step, BWA-MEME constructs ISA that stores the translation from
the reference position to the suffix array position (i.e. ISA[SA[j]] = j for

j ∈ |SA|). Assume a query Qi where the LEM position in the suffix array
is known and a new query Qn are given. BWA-MEME uses the ISA and
LEM position ofQi to predict the LEM position ofQn ifQi[X : X+N]

overlaps with Qn[0 : N] where X is the start position and N is the length
of the overlap. We refer to the overlapping bases between the identified
query and the new query as overlapping bases. Let SA and idx be the suffix
array and LEM position of Qi, such that Qi aligns to SA[idx] position
in the reference. Then the overlapping bases must align to SA[idx] +X

position in the reference and the LEM position of the overlapping bases in
the suffix array is ISA[SA[idx] +X]. To find the LEM position of Qn

where Qn[0 : N] is the overlapping bases, BWA-MEME performs last-
mile search starting at ISA[SA[idx]+X] in the suffix array. The benefits
of using ISA instead of P-RMI lookup come from better spatial locality and
higher prediction accuracy. To predict the LEM position of the Qn, ISA
is accessed within the length of short read distance from ISA[SA[idx]],
whereas P-RMI lookup requires completely random access to memory.
Also, long overlaps often lead to unique suffixes which results in better
prediction than using P-RMI lookup.
When to use lookup result reuse. BWA-MEME decides to reuse P-RMI
lookup result in two cases: First, when the short read has a perfect match
to the reference DNA sequence, it is guaranteed for the LEM positions of
any new queries to align to the perfect exact match position of the short
read. The LEM positions of the new queries can be concluded from the
LEM position of the perfect exact match without further last-mile search.
As a perfect exact match of short read is common in NGS, this reduces a
significant amount of memory accesses and CPU cache misses. Second,
when the new query partially overlaps with the identified query and the
overlapping bases are long enough, the LEM position of the new query
is likely to be near the LEM position of the overlapping bases. To find
the actual LEM position in the suffix array, we use an exponential search
starting from the predicted position.

5 Results
We evaluate BWA-MEME to answer the following questions:

• Does BWA-MEME have identical SAM output with BWA-MEM2?
• How does it compare with the state-of-the-art alignment software

BWA-MEM2 and ERT?
• How effective is P-RMI compared to original RMIs?

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.09.01.457579doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.01.457579
http://creativecommons.org/licenses/by-nc/4.0/

6 Jung et al.

0

1

2

3

4

N
o
rm

a
li

ze
d

S
ee

d
in

g
 t

h
ro

u
g

h
p

u
t

1.93x

3.32x

(a) Seeding throughput

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
ze

d
 I

n
st

ru
ct

io
n

s

(b) Instructions

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
ze

d
 M

em
o

ry
 a

cc
es

se
s

: Load : Store

(c) Memory accesses

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
ze

d

L

L
C

 m
is

s

(d) LLC misses

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
ze

d

D
a

ta
 f

e
tc

h
e
d

 /
 r

e
a

d

(e) Data fetched / read

Fig. 4. Comparing BWA-MEM2, ERT, and BWA-MEME

0

30

60

90

120

150

0.8

1.0

1.2

1.4

In
d

ex
 S

iz
e

(G
B

)

N
o

rm
a

li
ze

d

a
li

g
n

m
en

t
th

ro
u

g
h

p
u

t Options
§5.4

Fig. 5. Alignment throughput of BWA-MEM2, ERT, variants
of BWA-MEME,and BWA-MEME

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

C
D

F

Number of last mile search

P-RMI

2-layer RMI with binary search

3-layer RMI with exponential search

2-layer RMI with exponential search

(a) Cumulatative distribution of the number of last mile
search for P-RMI and the original RMIs

: Binary search: Exponential search

1.0

1.5

2.0

2.5

3.0

N
o

rm
a

li
ze

d

S
ee

d
in

g
 t

h
ro

u
g

h
p

u
t

3.0

4.0

5.0

6.0

7.0

8.0

A
v

er
a

g
e

N
u

m
b

er
 o

f
la

st
-m

il
e

se
a

rc
h

(b) Average number of last mile search and
normalized seeding throughput

Fig. 6. Comparing P-RMI and original RMIs

1

2

3

4

5

0
.0

%

0
.1

%

0
.2

%

0
.5

%

1
.0

%

1
.5

%

5
.0

%

0
.0

%

0
.1

%

0
.2

%

0
.5

%

1
.0

%

N
o

rm
a

li
ze

d

S
ee

d
in

g
 t

h
ro

u
g

h
p

u
t

Mutation ratioSequencing error

Fig. 7. Robustness of BWA-MEME

• How does BWA-MEME adapt to various memory sizes in servers?
• How sensitive is BWA-MEME to the sequencing error rates in the

short read and mutation ratio of the reference DNA?

5.1 Methodology

Setup. We ran the experiments on Intel Xeon Gold 5220R @ 2.2 GHz
with 24 cores, 32KB L1, 24 MB L2, 35.75 MB L3 caches, running Ubuntu
20.04 (Linux kernel 5.4.0). We used the numactl utility to force all memory
allocations to a single socket. Unless noted otherwise, 48 threads were used
for all experiments with hyper-threading. To analyze the memory access
characteristics, we used the Intel Vtunes profiler.
Dataset. We use the reference human genome assembly (human_g1k_v37)
and 16 short reads datasets—7 from Illumina Platinum Genomes (Eberle
et al., 2017) and 9 from 1,000 Genomes Project Phase 3 (Consortium et al.,
2015). Details are included in the Supplementary Material.
Implementation. All algorithms of BWA-MEME are implemented in 3.5k
lines of C++ code and integrated into BWA-MEM2 code. BWA-MEM2
is the most widely used alignment software with various features used by
researchers. To guarantee BWA-MEME supports all features supported
in BWA-MEM2, we choose to replace the seeding algorithm in BWA-
MEM2 with our seeding algorithm. For the correctness of BWA-MEME,
we verified BWA-MEME and BWA-MEM2 have identical SAM outputs
in all 16 short read datasets. We implement the training process of P-
RMI on top of the open-source code based on Rust from the authors of
the learned index (Kraska et al., 2018). The training process outputs the
model parameters of P-RMI in binary data which is stored along with the
indices of the reference DNA. The model parameters are loaded in the
index loading step of BWA-MEME and used for the seeding algorithm.

5.2 Comparing BWA-MEME, BWA-MEM2, and ERT

To demonstrate BWA-MEME delivers significant improvement in seeding
throughput, we compare BWA-MEME with two state-of-the-art alignment

0.0 0.2 0.4 0.6 0.8 1.0

BWA-MEME

ERT

BWA-MEM2

: Runtime in Seeding : Runtime in others

Fig. 8. Runtime of the seeding in alignment software

software, BWA-MEM2 and ERT. Note that we cannot compare with LISA
and Sapling because they do not provide complete seeding.
Seeding throughput comparison. Figure 4 (a) shows the average seeding
throughput of BWA-MEM2, ERT, and BWA-MEME for the 16 short read
datasets. The seeding throughput of each alignment software in the figure
is normalized with respect to the seeding throughput of BWA-MEM2.
The error bars represent the standard deviation of the normalized seeding
throughput. BWA-MEME achieves average 3.32x speedup over BWA-
MEM2 and average 1.72x speedup over ERT. This is because algorithms in
BWA-MEME process exact matches in more memory efficient and cache-
friendly manner. Due to its efficient design, BWA-MEME completes
the job with 4.60x fewer number of instructions, 8.77x fewer memory
accesses, 2.21x fewer last-level cache (LLC) misses, and 4.41x less size
of data fetched per read, as shown in Figure 4 (b), (c), (d), and (e),
respectively.
Implications on alignment throughput. Figure 5 compares the end-
to-end alignment throughput of BWA-MEME and memory requirement.
BWA-MEME achieves up to 1.42x and 1.12x speedups over BWA-MEM2
and ERT. Note that the seeding phase accounts for average 50% of the
runtime in BWA-MEM2. Our seeding algorithm dramatically enhances
the seeding throughput. As a result the seeding phase accounts for 29.9%
in BWA-MEME as shown in Figure 8.

5.3 Performance Benefit of P-RMI

P-RMI contributes to higher seeding throughput because it provides
accurate prediction and a small error bound compared to the original

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.09.01.457579doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.01.457579
http://creativecommons.org/licenses/by-nc/4.0/

BWA-MEME 7

RMIs. Figure 6 (a) and (b) compare the number of last mile search and
seeding throughputs of using P-RMI or original RMIs in BWA-MEME.
The seeding throughput is normalized by the seeding throughput of BWA-
MEM2. For this evaluation, we use the first 10 million short reads in
ERR3239276 from 1,000 Genomes Project Phase 3. To accurately measure
the effect of choosing the RMI structure, we excluded the acceleration by
lookup result reuse. For 2-layer and 3-layer RMI, we used the linear spline
model in the leaf models and otherwise linear regression model which
showed the best performance in the RMI optimizer (Marcus et al., 2020).
In all cases, the number of leaf models is fixed to 228. For a fair comparison
of 3-layer RMI and P-RMI, we used 48,047,097 models in the second layer
of 3-layer RMI which is the same number of models used in the additional
layer of P-RMI. We applied a binary search when an error bound is provided
and an exponential search when an error bound is not provided. As shown
in Figure 6 (a) and (b), using an exponential search generally requires
more number of last mile search compared to using a binary search. The
3-layer RMI makes accurate predictions compared to the 2-layer RMI,
however, it incurs more CPU cache misses while inferencing the models
and performing the last mile search. Therefore using the 2-layer RMI
with error bound outperforms the 3-layer RMI in seeding throughput. P-
RMI combines the two advantages of using a binary search within the
error bound and higher prediction accuracy of 3-layer RMI. Hence, P-
RMI successfully outperforms the existing RMIs in seeding throughput,
at most 29.3%.

5.4 Memory trade-off design of BWA-MEME

We demonstrate BWA-MEME is able to meet various memory constraints.
Figure 5 shows the memory requirement and alignment throughput of each
variant of BWA-MEME. BWA-MEME uses 118 GB of memory, which
consists of P-RMI, suffix array (SA), 64-bit suffixes (32 characters from
§4.2), and inverse suffix array (ISA). BWA-MEME provides two options
that selectively load index data-structures to use less memory space, which
comes with a tradeoff in throughput. The first option is to exclude ISA
used for lookup result reuse, which brings down the memory requirement
to 88 GB. The seeding throughput slightly degrades over the full-mode
BWA-MEME, but it still outperforms BWA-MEM2 and ERT, achieving
2.69x and 1.33x speedups in seeding and alignment throughput over BWA-
MEM2. The second option excludes both the ISA and the 64-bit suffixes,
BWA-MEME uses only the P-RMI and suffix array to process seeding.
The memory requirement goes down to 38 GB, and BWA-MEME still
achieves 1.71x and 1.23x speedups in seeding and alignment throughput
over BWA-MEM2, which is similar to those of ERT.

5.5 Effect of Mutation and Sequencing Error

BWA-MEME outperforms BWA-MEM2 given various mutation ratios in
the reference DNA or sequencing error rate of the short reads. Figure
7 shows the seeding throughput of BWA-MEME in varying sequencing
error and mutation ratio. We used 10 million of 200 length synthetic short
reads (Li, 2011). The seeding throughput is normalized by that of BWA-
MEM2. First, the mutation ratio was fixed to 0.1% to compare the seeding
throughput with varying sequencing error rates in the short reads. Next, the
sequencing error rate was fixed to 0.1% to compare the seeding throughput
with varying mutation ratios of reference. The seeding throughput of
BWA-MEME degrades as error increases because the large acceleration
comes from processing a long exact matching query with fewer operations.
However, BWA-MEME still outperforms BWA-MEM2 in all cases.

6 Discussion
We present BWA-MEME, a new alignment software based on suffix
array search and learned index. BWA-MEME introduces novel algorithms
and a new learned index structure for seeding algorithm. BWA-MEME

replaces the whole seeding algorithm used in BWA-MEM2 while ensuring
the identical SAM output with BWA-MEM2. We demonstrated using
learned index in suffix array search achieves up to 3.45x and 1.42x
speedups in seeding throughput and alignment throughput over BWA-
MEM2 by reducing number of instructions 4.60x, memory accesses 8.77x,
number of LLC misses 2.21x, and data fetched per read 4.41x. Finally, to
accommodate various memory sizes in the server, BWA-MEME provides
options to balance the trade-off between seeding throughput and the
required memory size.

Funding
This research was supported by Program of the National Research
Foundation (NRF) funded by the Korean government (MSIT) (No.
2021M3H9A203052011).

References
Ahmed, N. et al. (2015), Heterogeneous hardware/software acceleration of the bwa-

mem dna alignment algorithm, in ‘2015 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD)’, IEEE, pp. 240–246.

Consortium, G. P. et al. (2015), ‘A global reference for human genetic variation’,
Nature 526(7571), 68–74.

Eberle, M. A. et al. (2017), ‘A reference data set of 5.4 million phased human variants
validated by genetic inheritance from sequencing a three-generation 17-member
pedigree’, Genome research 27(1), 157–164.

Ferragina, P. and Manzini, G. (2001), An experimental study of an opportunistic
index., in ‘SODA’, pp. 269–278.

Ho, D. et al. (2019), ‘Lisa: towards learned dna sequence search’, arXiv preprint
arXiv:1910.04728 .

Ho, D. et al. (2021), ‘Lisa: Learned indexes for sequence analysis’, bioRxiv pp. 2020–
12.

Houtgast, E. J. et al. (2018), ‘Hardware acceleration of bwa-mem genomic short read
mapping for longer read lengths’, Computational biology and chemistry 75, 54–64.

Kirsche, M. et al. (2021), ‘Sapling: accelerating suffix array queries with learned
data models’, Bioinformatics 37(6), 744–749.

Kraska, T. et al. (2018), The case for learned index structures, in ‘Proceedings of the
2018 International Conference on Management of Data’, pp. 489–504.

Langmead, B. and Salzberg, S. L. (2012), ‘Fast gapped-read alignment with bowtie
2’, Nature methods 9(4), 357–359.

Li, H. (2011), ‘wgsim-read simulator for next generation sequencing’, Github
repository .

Li, H. (2012), ‘Exploring single-sample snp and indel calling with whole-genome de
novo assembly’, Bioinformatics 28(14), 1838–1844.

Li, H. (2013), ‘Aligning sequence reads, clone sequences and assembly contigs with
bwa-mem’, arXiv preprint arXiv:1303.3997 .

Li, H. and Durbin, R. (2009), ‘Fast and accurate short read alignment with burrows–
wheeler transform’, bioinformatics 25(14), 1754–1760.

Li, H. and Homer, N. (2010), ‘A survey of sequence alignment algorithms for next-
generation sequencing’, Briefings in bioinformatics 11(5), 473–483.

Li, R. et al. (2009), ‘Soap2: an improved ultrafast tool for short read alignment’,
Bioinformatics 25(15), 1966–1967.

Liu, Y. and Schmidt, B. (2012), ‘Long read alignment based on maximal exact match
seeds’, Bioinformatics 28(18), i318–i324.

Liu, Y. et al. (2012), ‘Cushaw: a cuda compatible short read aligner to large genomes
based on the burrows–wheeler transform’, Bioinformatics 28(14), 1830–1837.

Marcus, R. et al. (2020), Cdfshop: Exploring and optimizing learned index
structures, in ‘Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data’, pp. 2789–2792.

Rashelbach, A. et al. (2020), A computational approach to packet classification, in
‘Proceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols for
computer communication’, pp. 542–556.

Subramaniyan, A. et al. (2021), Accelerated seeding for genome sequence alignment
with enumerated radix trees, in ‘2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA)’, IEEE, pp. 388–401.

Tárraga, J. et al. (2014), ‘Acceleration of short and long dna read mapping without
loss of accuracy using suffix array’, Bioinformatics 30(23), 3396–3398.

Vasimuddin, M. et al. (2019), Efficient architecture-aware acceleration of bwa-
mem for multicore systems, in ‘2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS)’, pp. 314–324.

Wang, Y. et al. (2020), Sindex: a scalable learned index for string keys, in
‘Proceedings of the 11th ACM SIGOPS Asia-Pacific Workshop on Systems’,
pp. 17–24.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.09.01.457579doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.01.457579
http://creativecommons.org/licenses/by-nc/4.0/

