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Abstract

Experiments and models in perceptual decision-making point to a key role of an

integration process that accumulates sensory evidence over time. We endow a

probabilistic agent comprising several such integrators with widely spread time scales

and let it learn, by trial-and-error, to weight the different filtered versions of a noisy

signal. The agent discovers a strategy markedly different from the literature “standard”,

according to which a decision made when the accumulated evidence hits a

predetermined threshold. The agent instead decides during fleeting windows

corresponding to the alignment of many integrators, akin to a majority vote. This

strategy presents three distinguishing signatures. 1) Signal neutrality: a marked

insensitivity to the signal coherence in the interval preceding the decision, as also

observed in experiments. 2) Scalar property: the mean of the response times varies

glaringly for different signal coherences, yet the shape of the distribution stays largely

unchanged. 3) Collapsing boundaries: the agent learns to behave as if subject to a

non-monotonic urgency signal, reminiscent in shape of the theoretically optimal. These

three characteristics, which emerge from the interaction of a multi-scale learning agent
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with a highly volatile environment, are hallmarks, we argue, of an optimal decision

strategy in challenging situations. As such, the present results may shed light on general

information-processing principles leveraged by the brain itself.

Author summary

The rate of integration of sensory information prior to a decision-making process needs 1

to be versatile and adaptable to different situations. While driving can require quick 2

reactions, evaluating the authenticity of a painting can require long observations, and 3

consequently the concept of representations over multiple timescales appears necessary 4

from an intuitive perspective. Nevertheless, there is a lack of theoretical research that 5

exploits multiple timescales, despite the presence of a variety of integration rates have 6

been experimentally observed. In the following work, we developed a decision-making 7

model based on integrators with multiple characteristic times and analysed its 8

behaviour on a highly volatile and biologically relevant task. Through trial and error 9

and reward maximisation, the model discovers an effective strategy that is surprisingly 10

different and more robust in comparison to the more “classical”, single time-scale 11

approach. More importantly, the strategy learnt exhibits remarkable agreement with 12

experimental findings, suggesting a fundamental role of multiple timescales for 13

decision-making. Our model, despite being abstract, achieves a good degree of biological 14

realism and perform robustly in different environments. 15

1 Introduction 16

Perceptual decision-making is one of the most fundamental interactions of a biological 17

agent with its environment. It is not by chance that perceptual decision-making 18

processes have been long studied in the context of operant conditioning [1], where an 19

animal learns to associate choices and consequences by trial-and-error, and where 20

imperfect performance is considered a consequence of imperfect learning or the reflex of 21

the learning strategy itself [2]. 22

The research on perceptual decision-making, on the other hand, has mainly focused 23

on tasks where uncertainty (typically in the form of noisy signals) and time (for 24
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instance duration of the observation and response delays) play a pivotal role [3–6]. In 25

such scenarios, the errors made by the subject at the end of a training phase, as well as 26

the relevant performance metrics (e.g. accuracy or speed of response), are deemed 27

informative of the cognitive mechanisms involved [7–10]. In fact, there have been 28

numerous attempts to compare the behaviour of animal subjects to the performance of 29

different algorithms and determine how optimal the displayed behaviour is [7, 11–15]. 30

The present paper sits at the junction of these two traditions - learning theory and 31

cognitive psychology. We present an artificial agent whose task is simply to determine 32

whether a noisy signal has positive or negative mean value. This problem represents an 33

idealised version of tasks often used in decision making experiments (e.g., random 34

dots [16–18]). The agent integrates the noisy signal over multiple time scales and takes 35

a decision in a probabilistic manner. Over many task repetitions, by observing the 36

consequences of its choices, the agent learns to maximise the expected reward for each 37

presentation of the signal. 38

The accumulation of evidence over time is one of the key ideas emerged from the 39

perceptual decision-making field [5, 7, 19–22]. A fundamental model across psychology 40

and neuroscience, the drift-diffusion model (also know as ‘bounded evidence 41

accumulation’ model), consists of two or more competing traces that accumulate sensory 42

evidence for different choices; the first trace to hit a threshold makes the associated 43

option the final decision [23]. The drift-diffusion model is a continuous time variant of 44

the sequential probability ratio test [24, 25] and has a strong theoretical support: in the 45

case of two-alternative forced choices it is optimal in selecting between two hypotheses. 46

Despite its simplicity, this model can account for many psychophysical and neural 47

observations, such as distribution of response times and performance when varying 48

sensory coherence [26,27]. 49

Notwithstanding its success, alternatives have been proposed to the standard 50

drift-diffusion model [7, 28,29] to account for unexplained phenomena such as primacy 51

and recency effects, asymptotic accuracy, and “fast errors” [30–32]. Of notable 52

importance is the Ornstein–Uhlenbeck model, which modifies the standard 53

drift-diffusion model by including a decay term in the dynamics of the accumulation. 54

Although the Ornstein–Uhlenbeck model is capable to account for many experimental 55

observations, including neurophysiological ones [28,32], it introduces a characteristic 56
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time scale over which the model ‘forgets’ the past sensory information. This begs the 57

question of how to determine the value of the relevant time scale. A common approach 58

in the literature is to treat the time scale of the accumulation as a free parameter that 59

is optimised to match experimental data [32]. However, such approach does not address 60

how the time scale of the accumulator could be tuned in the first instance, particularly 61

since different tasks may require processing information at different time scales, and 62

thus such a tuning should be context dependent. 63

Here we tackle a different, but closely related question. We hypothesise that our 64

artificial agent is equipped with many forgetful integrators of the incoming signal, of 65

widely different characteristic times, and we ask how the agent would choose among 66

these accumulators, or, more precisely, how it would assign a weight to each of them. In 67

doing this, we are relying on a key result from the field of reservoir computing: the 68

projection of an input signal over many different time scales allows, by means of a linear 69

transformation, to implement a wide range of mappings between the input and an 70

output signal [33, 34]. Beyond the computational advantage, such approach is consistent 71

with the ample evidence of the coexistence of many time scales in brain 72

functionality [35–39], even at the single neuron level [40–42]. 73

Our proposed agent combines weighted sums of its accumulators to estimate, instant 74

by instant, the optimal probability of choosing one of the two options (‘move right’, 75

‘move left’) or whether to wait to accumulate more evidence. Unlike the standard 76

drift-diffusion model, there is no fixed threshold for a decision, but instead the decision 77

time is a function of the accumulated evidence. Besides being arguably more biologically 78

plausible, a probabilistic decision-making mechanism has clear computational 79

advantages, for instance, it allows for better balancing of exploration and exploitation 80

and better strategies to deal with unpredictable or antagonistic environments ( [43], 81

Chapter 13). In this context, the learnable parameters are the weights assigned to each 82

accumulator throughout the repetition of the task. Learning takes place within the 83

framework of reinforcement learning [43,44]. The agent is not told which actions to take 84

but instead must discover which actions yield the highest reward by trial-and-error. 85

Though reinforcement learning has been applied in the context of perceptual 86

decision-making [9, 45–47], to our knowledge this is the first time that reinforcement 87

learning is used to optimise the evidence accumulation over multiple time scales. 88

August 3, 2021 4/39

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.09.01.458481doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458481
http://creativecommons.org/licenses/by/4.0/


There are three key characteristics in decision making processes, as suggested by 89

psychophysical experiments and models: signal neutrality, the scalar property, and 90

collapsing boundaries. In what follows, we will discuss how the strategy discovered by 91

the agent during the training phase, while strikingly different to the one suggested by 92

the drift-diffusion model, fits well the relevant psychophysical results. 93

With signal neutrality we denote the insensitivity, on part of the accumulation 94

process, to the signal’s mean value, in the interval preceding the decision. Such 95

insensitivity has been repeatedly observed in the lateral intraparietal cortex during a 96

motion-discrimination task [4, 48]. This characteristic trend is consistently found in the 97

agent, but not in the single accumulators. 98

Secondly, the agent displays a distribution of response times whose shape is invariant 99

for different mean values of the signal, notwithstanding a corresponding wide change in 100

the average response time. This is the scalar property, as extensively reported in the 101

temporal cognition [49], multistable perception [50], and even (with some caveats) 102

perceptual decision making literature [51]. 103

By looking at the internal workings of the agent after the training phase, we will 104

conclude that signal neutrality and the scalar property have a common origin in how 105

the agent leverages the multiple time scales at its disposal. Notably, the agent tries to 106

achieve an integration process whose average scales like a power-law in time, but with a 107

nearly-constant variance. 108

The collapsing boundaries (also referred to as urgency signal [52]) are introduced to 109

push drift-diffusion models towards a decision even in more difficult or uncertain cases, 110

by making the decision threshold a decreasing function of time. We will show how the 111

agent learns to behave, thanks to the multiple time scales at its disposal, as if subject to 112

non-monothonic boundaries (collapsing for later response times), having a shape 113

reminiscent of the ones proposed in the literature [8, 10] for solving perceptual decision 114

problems like the one confronted here. 115

These three characteristics (signal neutrality, scalar property, collapsing boundaries), 116

we argue, are hallmarks of an optimal strategy to make decisions in a highly volatile 117

environment. Our model proposes that these characteristics are consistent with a 118

multi-scale agent that makes use of a simple learning rule, as such it could be 119

implemented in the brain itself, at least in its fundamental determinants, obviously 120
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disregarding many layers of complexity. From this perspective, we believe that the 121

present model, despite its simplicity and abstraction from a biological implementation, 122

could shed light on general information-processing principles that can be possibly 123

leveraged by the brain. 124

2 Results 125

2.1 Model description 126

Inspired by classical random dots experiments, we model a two-alternative forced-choice 127

task as a decision over the sign of the mean value of a noisy signal s(t) (see Fig. 1). The 128

signal (black line) consists of independent samples from a Gaussian distribution of mean 129

µ and standard deviation σ, each drawn every time step ∆t = 10 ms. 130

The agent is not required to decide at a prescribed time, it has the option to wait 131

and then see another sample, or to perform one of two actions, ‘left’ and ‘right’, 132

respectively associated with the decision µ < 0 and µ > 0, at each step. When an action 133

is made, the episode ends, and a reward is delivered only if the agent correctly guessed 134

the sign of µ; otherwise, the agent receives nothing. Each episode has a maximum 135

duration Tmax. When Tmax is reached, another ‘wait’ from the agent leads to the end of 136

the episode and no reward is delivered. 137

Whilst σ is constant, the value of µ is instead re-sampled at the beginning of each 138

episode from a Gaussian distribution p(µ) of zero mean and variance σµ. This 139

second-order uncertainty makes the agent experience a wide range of values of µ, putting 140

severely to the test its ability to generalise to episodes of varying signal-to-noise ratios. 141

The agent comprises nτ = 10 leaky integrators xτ (dark blue to cyan lines in Fig. 1) 142

that independently integrate the noisy signal over different time scales τ : 143

ẋτ = −xτ − s(t)

τ
, (1)

and correspondingly nτ leaky integrators xTτ (yellow to red lines in Fig. 1) that 144

integrate a constant input (a ‘time signal’, here valued 1), to account for the possible 145

effects of an internal ‘clock’: 146

ẋTτ = −x
T
τ − 1

τ
. (2)
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Both the xτ and the xTτ are reset to 0 at the beginning of each episode (note, therefore, 147

that xTτ (t) = 1− e−
t
τ ≥ 0 for all t). 148

The τs are chosen on a logarithmic scale (i.e., τi = α τi−1, with α a suitable 149

constant), with τ1 = τmin = 100 ms and τnτ = τmax = 10 s, so as to allow the agent to 150

accumulate information over a wide range of different time scales. 151

At each time step t, the agent computes six weighted sums, three for the signal xτ (t)

and three for the clock xTτ (t). The first four of these weighted sums are related to the

two possible actions:

ΣSright(t) ≡
∑
τ

wright,τ

[
xτ (t) + ξτ (t)

]
(3)

ΣTright(t) ≡
∑
τ

wTright,τ

[
xTτ (t) + ξTτ (t)

]
+ bright (4)

ΣSleft(t) ≡
∑
τ

wleft,τ

[
xτ (t) + ξτ (t)

]
(5)

ΣTleft(t) ≡
∑
τ

wTleft,τ

[
xTτ (t) + ξTτ (t)

]
+ bleft (6)

where bright and bleft are constants and all the ξτ (t)s and ξTτ (t)s are drawn independently 152

for each t and each τ from a Gaussian distribution with zero mean and standard 153

deviation σI . The ΣSs and the ΣT carry information, respectively, on the signal and the 154

time elapsed since the beginning of each episode. Even though the xTτ increase with 155

time, the ΣT s can be non-monotonic, something that will play an important in role in 156

implementing an effective ‘moving threshold’ for the decision mechanism. 157

The other two sums are instead related to the ‘wait’ option:

ΣSwait(t) ≡
∑
τ

wwait,τ |xτ (t) + ξτ (t)| (7)

ΣTwait(t) ≡
∑
τ

wTwait,τ

[
xTτ (t) + ξTτ (t)

]
+ bwait, (8)

where the absolute value in Eq. 7 is taken to account for the intuition that a signal and 158

its negative mirror should equally affect the agent’s propensity to defer a decision. The 159

ξτ (t)s and ξTτ (t)s are introduced to model the intrinsic noise implied in any plausible 160

biological implementation of the integration process, such as fluctuations in the 161

instantaneous firing rate of a network of neurons. 162
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By setting: 163

Σx ≡ ΣSx + ΣTx (9)

(with x ∈ {left, right, wait}), the six sums are then non-linearly combined through a 164

softmax function (the white circles on the far right of Fig. 1) to define a probability 165

distribution over the possible actions: 166

pright(t) =
eΣright(t)

eΣleft(t) + eΣwait(t) + eΣright(t)
(10)

and analogous expressions for ‘left’ and ‘wait’. By definition, 167

pleft(t) + pwait(t) + pright(t) = 1 for every t. The agent then randomly chooses an option 168

according to the three probabilities. 169

The agent is thus completely determined by the choice of the six sets of nτ weights: 170

wleft,τ , wwait,τ , wright,τ , wTleft,τ , wTwait,τ , wTright,τ , and three constant offsets bleft, bwait, 171

and bright. These weights and offsets are learned by trial-and-error through a 172

reinforcement learning procedure aiming to maximise the reward received on a large 173

number of episodes (see Methods). All the results shown, if not otherwise stated, are 174

obtained using the same set of weights, at the end of the training procedure, with 175

Tmax = 2 s, σ = 0.18 s−
1
2 , σµ = 0.25, and σI = 0.02. 176

In random dots experiments, usually a number of dots moves randomly on a screen, 177

with a fraction of them moving instead coherently in one direction (either left or right in 178

different episodes). The percentage of coherently moving dots (‘coherence’) is a measure 179

of how difficult an episode is, not unlike |µ| in the model (with sign of µ corresponding 180

to a coherent movement towards left or towards right respectively). To make the 181

parallel between the present task and the experimental settings more evident, in the 182

following we will show results using either |µ| or the coherence of the signal, the two 183

measures being related by (see Methods): 184

|µ| = 0.216
coherence√

100− coherence
. (11)

During learning, the model estimates at each step t the total future expected reward 185

V (t) for the current episode. Such estimate is computed by a linear summation of the 186

integrators (Fig. 1, bottom-right) and is used to establish a moving baseline to 187
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modulate the changes in the model’s weights during training. The adoption of the 188

baseline V (t) constitutes a standard procedure for actor-critic reinforcement learning 189

algorithms (see Methods for more details). 190

Fig 1. Task and model schematic. The random movement of a group of dots on a screen (far
left) is represented as a uni-dimensional noisy signal s(t) (black line), sampled at discrete time
steps ∆t = 10 ms, from a Gaussian distribution of mean µ and variance σ2. The task requires
the subject to guess the sign of µ, by moving a lever to the right (positive sign) or to the left
(negative sign); the subject can ‘choose when to choose’, within a maximum episode duration
Tmax. The learning agent integrates the signal over different time scales τ (xτ (t)s, blue lines);
over the same time scales the agent integrates a constant input (xT

τ (t)s, yellow-red lines) to
simulate an internal clock mechanism estimating the passage of time; in both cases, the darker
the colour the longer the corresponding time scale. At each time instance, the weighted sums of
the integrators (far right) are fed into a decision layer that computes the probability of
choosing ‘left’ and ‘right’, thus terminating the episode, or to ‘wait’ to see another sample of
s(t). If the subject gives the correct answer (the guessed sign coincides with the actual sign of
µ) within the time limit, a reward is delivered; otherwise, nothing happens. In any case, a new
episode starts. The agent learns by observing the consequences (obtained rewards) of its
actions, adapting the weights assigned to the xτ (t)s and xT

τ (t)s. During learning, the model
estimates at each step t the total future expected reward V (t) for the current episode as a
linear summation of the integrators (bottom right).

Fig 2. Learned decision strategy. Evolution of pright(t) (blue line) and pleft(t) (red) during an
episode where the correct action is ‘right’ (that is, µ > 0). Decisions are made within short
‘active’ windows of time during which fleeting bursts of pleft(t) or pright(t), corresponding to the
alignment of many integrators, make an action possible. coloured circles: value of a subset of 5
of the 10 integrators (slow to fast associated time scales from top to bottom). Reds: negative
values; blues: positive values. Uniformly positive (negative) values for the integrators are
associated with bursts of pright (pleft; see times denoted with 1 and 2 in the plot). The converse
is not true: outside bursts (point 3) or when a burst withers (point 4), not all the integrators
assume low absolute values.

2.2 Decision as a majority vote 191

Fig. 2 shows the evolution of pright(t) (blue line) and pleft(t) (red) during an episode 192

where the correct action is ‘right’ (that is, µ > 0). As expected, pright(t) is for the most 193

part greater then pleft(t) (although this is unnoticeable in the plot where the 194

probabilities are very small), signalling that the agent favours the action associated with 195

the correct decision. Nevertheless, both probabilities are very low most of the time, 196

implying that pwait(t) is often close to one (not shown). Thus, the agent appears to 197

select a strategy in which decisions are made within short ‘active’ windows of time 198

during which fleeting bursts of pleft(t) or pright(t) make an action possible. Such 199

strategy is not trivially associated with the intuitive picture of a process accumulating 200

information over time until some threshold is met. 201
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This is due to the availability of multiple time scale. In fact, the agent exploits the 202

information carried by the different integrators by waiting for their consensus, akin to a 203

majority vote. A short-lived fluctuation in the fastest integrators would not be enough 204

for a decision. Yet, in conjunction with a longer-lived fluctuation of the slower 205

integrators, a burst in one of the actions is triggered. Being the consensus fleeting, such 206

probability bursts are usually quite low (they often stay below a probability of 0.1) and 207

therefore function as ‘open windows’ paving the way to a decision, more than as 208

‘funnels’ forcing it. Decisions therefore happen when the different time scales stay in 209

agreement for an extended period (roughly 100 ms). 210

This is illustrated in Fig. 2 with coloured circles, each row representing the evolution 211

of one integrator (for a subset of 5 of the 10 integrators, with slow to fast time scales 212

from top to bottom). As expected, inside a burst of pright(t) almost all the integrators 213

present large positive values (dark blue, see for example temporal instance number 1 in 214

Fig. 2). On the other hand, integrators typically assume negative values (light to dark 215

red) in correspondence of bursts of pleft(t), as it is shown in the temporal instance 216

number 2. The converse is not true: in absence of probability bursts, not all the 217

integrators assume low absolute values (see, for example, coloured circles corresponding 218

to number 3). This is due to the fact that the integrators, though correlated, detect 219

fluctuations in the signal over different time scales. Moreover, the non-linear nature of 220

the probability function (Eq. 10) dampens integrators’ fluctuations falling below a given 221

range of values. When a burst fades away (see for example points between 2 and 4) not 222

all the integrators go down together. Initially the faster integrators become neutral or 223

even slightly change sign. Afterwards the slower integrators follow suit. But the process 224

is not, of course, completely linear, and you can have (see instance number 4 and 225

neighbouring points) higher values for intermediate integrators, while the slowest one is 226

still decreasing, and the faster ones fluctuate rapidly. 227

2.3 Model’s performance 228

Fig. 3A shows the fraction of correct choices as a function of the decision time, both for 229

the agent at end of training (black line) and for the optimal fixed-t observer (blue line) 230

that, at each time t, simply chooses according to the sign of the sum of the signal up to 231

August 3, 2021 10/39

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.09.01.458481doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458481
http://creativecommons.org/licenses/by/4.0/


time t. Its performance can be derived analytically: 232

Fraction Correct(t) =
1

2
+

1

π
arctan

√
σ2
µ t

σ2
(12)

If the task were to decide exactly at time t, no other decision maker could outperform it; 233

for this reason it is deemed optimal. Of course, the present task does not force a 234

decision time; yet, the comparison with the fixed-t observer sheds lights on the agent’s 235

strategy and the underlying trade-offs. 236

The agent is free to“choose when to choose”, thus it is not surprising that it clearly 237

outperforms the optimal fixed-t observer for shorter decision times (the inset of Fig. 3A 238

shows the distribution of decision times for the agent). We see that the two 239

performances cross slightly above the average decision time for the agent; beyond this 240

point, the fixed-t observer dominates. Indeed, the agent can make the easy decisions 241

early on and wait to see how the signal evolves when the choice appears more uncertain; 242

the fixed-t observer, on the other hand, is bound to decide at time t, no matter how 243

clear or ambiguous the observed signal was up to that point. Thus, the steep rise of the 244

agent’s performance for very short decision times is mainly a reflection of its ability to 245

tell apart the easy episodes from the hard ones. The fixed-t observer catches up for 246

longer times, where the agent is left with only the most difficult decisions and its 247

performance consequently declines. For the fixed-t observer, instead, larger ts always 248

mean more information and therefore its performance monotonically increases. We 249

notice how at the crossing point, the agent has already made the large part of its 250

decisions, as it is apparent from the distribution of decision times. 251

The agent outperforms all the single-time-scale integrators, Eq. 1, when each time 252

scale is in turn taken from the set of the τs available to the agent (Fig. 3B; agent: 253

dashed line; single-time-scale integrators: circles). Single-time-scale integrators 254

correspond to the Ornstein-Uhlenbeck decision process that extends the standard 255

drift-diffusion model [28, 32]: whenever the integrator crosses a threshold or its negative 256

mirror a decision is made (µ > 0 and µ < 0 respectively). For each integrator, the 257

threshold was chosen by numerically maximizing the fraction of correct responses on a 258

sample of signals. The performance of the single-time-scale integrator peaks for 259

intermediate values of the associated time scale τ , though it always stays well below the 260
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performance attained by the agent. The agent, therefore, is able to leverage the 261

information on multiple time scales to gain a clear performance advantage with respect 262

to the drift-diffusion model on the whole spectrum of τs. 263

Fig. 3C and D show the accuracy and the mean response time of the agent, as the 264

coherence of the signal varies (Eq. 11). The black line in panel Fig. 3C is computed as: 265

Fraction Correct(coherence) = 1− 1

2
exp

[
−
(coherence

7.97

)1.62
]

(13)

as in Fig. 3 of [4], where the parameters of the curve were fitted to experimental data; 266

the match between the experimental fit and the result of the agent is striking. In Fig. 267

3D, instead, the black line is a generic sigmoidal function plotted for illustration 268

purposes. As found in the experiments, the agent’s responses become faster as the task 269

becomes easier (larger coherences). 270

Fig 3. Performance after training. A: Fraction of correct choices as a function of the decision
time, both for the agent at end of training (black line) and for optimal fixed-t observer (blue
line) that simply chooses according to the sign of the accumulated signal up to time t (see
text). The agent clearly outperforms the fixed-t observer for shorter decision times, thanks to
its freedom to ‘choose when to choose’. The steep rise of the agent’s performance for very short
decision times is mainly a reflection of its ability to tell apart the easy episodes from the hard
ones. Inset: response time histograms for correct (grey) and wrong (green) decisions B: the
agent (dashed line) outperforms, considering the fraction of correct choices on a sample of
episodes, all the single-time-scale integrators with optimised decision threshold (dots; the
continuous line is a second-degree polynomial fit for illustration purposes). The performance of
the single-time-scale integrator peaks for intermediate values of the associated time scale τ ,
though it always stays below the performance attained by the agent. C and D: Accuracy and
mean response times for different values of coherence (dots). C: The accuracy curve for the
agent is in very good agreement with experimental findings: the black line is the result of a fit
on experimental data ( [4]; see text for more details). D: As accuracy increases, responses
become faster, as found in experiments (black line: fit with a sigmoid-like function).

2.4 Signal neutrality 271

A more microscopic look at the decision process surprisingly uncovers shared features 272

between the internal dynamics of the artificial agent and the activity observed in 273

neurons in the lateral intraparietal cortex (LIP) during a random dots task [4, 48]. 274

We will focus our attention on the evolution of a key observable in the model, 275

defined as (see Eqs. 9, 3, and 4): 276

∆Σright(t) ≡ Σright(t)− Σwait(t) (14)
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and its ‘left’ counterpart: ∆Σ(t) provides a direct measure of the propensity of the 277

agent, at time t, to make a ‘right’ or ‘left’ decision respectively (see Eq. 10). 278

Fig 4. Signal neutrality. ∆Σright(t) (see Eq. 14) provides a direct measure of the propensity
of the agent, at time t, to make a ‘right’ decision. A Evolution of ∆Σright, averaged over many
successful episodes with the same signal coherence. On the left, the episodes are aligned to the
beginning of the episode and ∆Σright shows a marked sensitivity to the coherence of the signal.
When the average is performed by aligning all the episodes to the time of the decision (right),
signal neutrality clearly appears: the sensitivity to the signal strength is completely lost and all
the lines collapse on the same curve for several hundreds of milliseconds. Inset: the same
analysis on wrong episodes. The similarities with what is found in the discharge of LIP neurons
during a motion-discrimination task are striking (see, e.g., Fig. 7 in [4]). B: Time course of xτ
for a single-time-scale integrator with τ = 2s and optimised decision threshold (xτ , for an
integrator with threshold, plays the role that ∆Σright has in the agent). C: Time course of
∆Σright (see Eq. 14 for an agent optimised with a single timescale τ = 2s . In both B and C
the collapse of the curves for different signal coherences is imperfect (rightmost part of the
plots). D: Comparison of performance and signal neutrality for the single-τ agent and the
single-time-scale integrator as τ varies. The proposed model (dashed lines) shows better
accuracy while exhibiting the experimentally observed collapse of the time course of neuronal
activity aligned at the decision time.

Fig. 4A shows the evolution of ∆Σright, averaged over many episodes in which the 279

agent has made the correct decision ‘right’. The traces are grouped by signal coherence. 280

The left part of Fig. 4A shows the evolution of the average ∆Σright, with traces aligned 281

to the beginning of the episode (so that t = 0 in the plot corresponds to t = 0 of each 282

signal). ∆Σright shows a marked sensitivity to the coherence of the signal. Moreover, 283

the traces do not saturate over several hundreds of milliseconds, highlighting how the 284

agent is making use of its slower integrators. 285

Ramp-like changes in the discharge of LIP neurons have been repeatedly observed, 286

with steeper rise in spike rate for higher stimulus coherence (see, e.g., Fig. 7 in [4]). 287

Such ramps have been interpreted as a signature of the accumulation of evidence 288

(originating in the extrastriate visual cortex, in the case of LIP neurons), for or against 289

a specific behavioural response (‘left’ or ‘right’) [9, 19]. This interpretation is fully 290

compatible with what is seen in the agent. 291

However, when the averages of the ∆Σright traces (or of the activity of LIP neurons) 292

are performed by aligning the episodes to the time of the decision, a clear signature of 293

signal neutrality emerges: sensitivity to the stimulus’s coherence is lost and all the lines 294

surprisingly collapse on the same curve (Fig. 4A, right). 295

For the experimental data, a reasonable explanation for such collapse is that the 296

neuronal circuitry is engaged in stereotyped dynamics, independent from the signal, just 297
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after a decision is made and before it is manifested with a physical action, perhaps as 298

the result of a feedback from downstream areas. 299

But this cannot hold for the agent, where instead signal neutrality arises precisely 300

from the presence of multiple time scales. Figs. 4B and C show the time course of the 301

equivalent of ∆Σright for a single-time-scale integrator (with optimised threshold) and 302

for an agent trained with just one time scale available (in both cases, τ = 2 s). For an 303

integrator with threshold, xτ plays the role that ∆Σright has in the agent. 304

In these cases, there is no clear collapse of the curves for different signal coherences 305

(rightmost part). To make this statement more systematic, we introduce an operative 306

measure of signal neutrality, that is basically the inverse of the maximum distance 307

between the curves for different coherences, averaged over the interval prior to the 308

decision (see Methods). In Fig. 4D we report this measure (upper bars) for five of the 309

10 time-constants τs used by the agent, both for the single-τ agent after training and for 310

the single-time-scale integrator with optimised threshold: signal neutrality is clearly 311

lower than that of the agent using all the 10 τs (upper dashed black line). At the same 312

time, all the single-τ models achieve lower accuracy with respect to the multi-τ agent 313

(lower bars vs lower dashed black line). 314

On the other hand, ∆Σleft (i.e., the propensity of the agent to make the wrong 315

decision; in this case, to choose ‘left’) does not display signal neutrality. The same holds 316

true for its experimental counterpart, that is the activity of LIP neurons when the 317

random dot motion is away from their receptive field (see Fig. 7 in [4], dashed lines). 318

2.5 The scalar property 319

The agent’s behaviour conforms to one of the hallmarks of temporal cognition: the 320

scalar property [49]. This is illustrated in Fig. 5: the distributions of response times of 321

the agent are shown for three different values of coherence (histograms; black lines are 322

best fits with a Gamma distribution). As the coherence increases, as expected, the 323

average response time of the agent decreases from 4.6 s to 370 ms. 324

Simply stated, the scalar property — as observed for example in interval timing [49], 325

and multistable perception [50] — implies that higher moments of the intervals’ 326

distribution scale as appropriate powers of the mean (in particular, this implies a 327
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constant coefficient of variation). Or, in other words, that the shape of the distribution 328

does not change when its mean varies, even over very wide ranges. 329

And indeed, the coefficient of variation of the agent moves in a very narrow range 330

(0.44 - 0.46, see legend; compatible with the experimental findings, see [49,50]), whilst 331

the mean value varies by more than one order of magnitude. The invariance of the 332

shape of the distribution is made immediately evident in the inset of Fig. 5. Here the 333

fitted Gamma distributions (black lines in the main plot) are rescaled so to all have 334

mean equal to 1 (colours are consistent with the histograms): the similarity of the three 335

curves is striking. Lastly, we note how the highest value of coherence reported in the 336

plot is very unlikely under the distribution used during the training phase; indeed it 337

corresponds to a value of µ five times the standard deviation σµ of the distribution of µ. 338

Thus, the scalar property appears to be a very robust property of the learned decision 339

strategy, holding well beyond the range of functioning to which the agent has been 340

accustomed during training. 341

Fig 5. Scalar property. Increasing the signal coherence, the average response time of the
agent decreases; still the coefficient of variation of the response times varies in a very narrow
range (see legend). The black lines are the best fit of the simulation histograms with a Gamma
distribution. Inset: the fitted Gamma distributions are rescaled so to have mean equal to 1,
making immediately evident how the shape of the distribution stays almost unchanged as its
average moves over almost one order of magnitude (colours consistent with the histograms in
the main plot). Note how the highest value of coherence is very unlikely under the distribution
used for training the agent (corresponding to a value of µ five times the standard deviation σµ
of the distribution of µ): the ‘invariant shape’ property of the response time distribution
therefore holds well beyond the typical range of functioning of the agent.

In the following, we will show semi-analytically that signal neutrality and the scalar

property hold for a stochastic process, ∆ΣSright(t), with a decision threshold θ, provided

that it has two specific characteristics: ∆ΣSright(t) must possess a power-law mean and a

constant variance. That is,

〈∆ΣSright〉(t) ∝ µ ta (15)

Var[∆ΣSright](t) ' ς2, (16)

where µ, as in the agent’s task, gives a measure of how difficult the task is. 342

Indeed, a simple argument shows how Eqs. 15 and 16 are compatible with the scalar 343

property. Imagine that the decisions are made when ∆ΣSright reaches a threshold θ. 344
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Consider as the mean of the response time t = RT, in a first approximation, the time at 345

which 〈∆ΣSright〉(t) = θ; that is: 346

RT(µ) =
( θ
µ

) 1
a

. (17)

A similar calculation then provides the times RT± at which the mean ± the (constant) 347

standard deviation ς cross the threshold: 348

RT± =
(θ ∓ ς

µ

) 1
a

(18)

Taking RT− − RT+ as a rough measure of the standard deviation of the distribution of 349

response times, one has that the coefficient of variation: 350

CV ≡ RT− − RT+

RT
=

(θ + ς)
1
a − (θ − ς) 1

a

θ
1
a

(19)

does not depend on µ, that is on the difficulty of the task — this is our operative 351

definition of the scalar property. 352

The most straightforward explanation for signal neutrality, on the other hand, is 353

that, when crossing the threshold, the behavior of the stochastic process is dominated 354

by fluctuations, that are naturally independent of the coherence of the signal. Yet, such 355

fluctuations need to have a similar structure at different times, otherwise the behaviour 356

close to the decision threshold would still depend on the coherence: a strongly coherent 357

signal will lead to a short decision time and viceversa. In other words, a minimal 358

requirement would be a nearly-constant variance of the integration variable, and Eq. 16 359

is a prerequisite for signal neutrality. 360

We now will show how our model complies with these two conditions (Eqs. 15 and 361

16). Now, we rewrite Eq. 14 as (see Eqs. 3-9): 362

∆Σright = ∆ΣSright −∆ΣT (20)

where: 363

∆ΣSright ≡ ΣSright − ΣSwait (21)
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is a term that provides information on the signal only. And: 364

∆ΣT ≡ ΣTwait − ΣTright (22)

carries information on the passage of time only. We note that on the r.h.s. of Eq. 22 we 365

could insert ΣTleft in place of ΣTright with no notable numerical difference in the result. 366

This is because the right and left choices are a priori equivalent in the present task, and 367

therefore the inferred wTright,τ and wTleft,τ are in fact very similar. For this reason ∆ΣT 368

does not carry a ‘right’ label. 369

Focusing on Eq. 21, we note that, in fact, ∆ΣSright can be understood as a stochastic 370

process for which we can compute, under some approximations, how the mean and the 371

standard deviation evolve in time (see Methods). Defining: 372

∆wτ ≡ wright,τ − wwait,τ , (23)

we have: 373

〈∆ΣSright〉(t|µ) ' µ
∑
τ

∆wτ
(
1− exp(− t

τ
)
)

(24)

and:

Var[∆ΣSright](t|σ) ' σ2
∑
τ1

∑
τ2

∆wτ1 ∆wτ2
τ1 + τ2[

1− exp
(
− (

1

τ1
+

1

τ2
) t
)]
. (25)

Fig. 6 shows the result of Eqs. 24 (left) and 25 (right). What one finds is that both 374

〈∆ΣSright〉 and Var[∆ΣSright] (normalized as to have maximum value of 1) can be well 375

fitted by a saturating power law: 376

y(t) =
( t

t+ t0

)a
. (26)

In particular, the fitted parameters for 〈∆ΣSright〉 (t0 = 2.07 s, a = 0.76) make it 377

close to a power law, as in Eq. 15, on a broad range of t (roughly speaking t < t0, where 378

t0 > Tmax = 2 s): 379

〈∆ΣSright〉(t|µ) ∝ µ ta . (27)
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Fig 6. Mean and standard deviation of ∆ΣS
right(t). A: the mean (see Eq. 24) is close to a

power-law (∝ µ ta) in the typical range of reaction times (0.2− 1.6 s). The red line is a
saturating power-law fit (see text for details). B: the standard deviation (see Eq. 25) moves,
instead, in a quite limited range, approximating a constant time-course; the dashed black line
shows the evolution of the standard deviation for the drift-diffusion model for comparison. The
red line is a saturating power-law fit (see text for details). The curves in panels A and B are a
combination of contributions on multiple time scales (Eqs. 24 and 25), and provide a possible
explanation for signal neutrality and the scalar property displayed by the agent.

We note how a power-law trend is consistent with the seemingly non-saturating 380

behavior observed on the left part of Fig. 4A. 381

Moreover, Var[∆ΣSright] (t0 = 0.117 s, a = 1.71) moves in quite a narrow range of 382

values, i.e.: 383

Var[∆ΣSright](t) ' const, (28)

an approximation to Eq. 16. Thus, the agent roughly satisfies the conditions in which 384

signal neutrality and the scalar property hold for the very simple model introduced 385

above. 386

Such result is a direct consequence of having multiple time scales. Indeed, referring 387

back to Eqs. 24 and 25, the power-law form of the mean and the nearly-constant 388

variance of ∆ΣSright are achieved by aptly combining exponential contributions with 389

different saturation times. 390

On the contrary, the drift-diffusion model (that can be seen as having a single 391

infinite time scale) satisfies Eq. 15 (with a = 1) but not Eq. 16; indeed 392

Var[∆Σ](t|σ) = σ2 t 6= const (see the dashed black line in Fig. 6B for a graphical 393

comparison). In this case, the non-constant variance leads to a coefficient of variation 394

CV that strongly depends on µ: 395

CV =
σ√
µ θ

. (29)

We note that such result is not in contrast with the linear relationship between mean 396

and standard deviation of the response times found in [51]: such linear relationship is a 397

necessary, but not sufficient condition for a constant CV (the scalar property). In the 398

range of average response times explored in the reference, the CV varies on a quite 399

broad range, from approximately 0.5 (consistent with our findings and the evidence in 400

other experimental settings [49,50]) to almost 1 (corresponding to an exponential 401

distribution of response times). 402
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In the above argument, we assumed a constant decision threshold θ; but, we will see 403

in the next section, the agent behaves as if subject to a non-fixed threshold. However, if 404

for a single signal coherence µ the distribution of reaction times is not too wide (as 405

suggested by a coefficient of variation 0.45, see Fig. 5), θ can be assumed to vary in a 406

range narrow enough not to invalidate the argument. 407

Fig 7. Signal neutrality and scalar property during training. Evolution of signal neutrality
(black line), scalar property (blue line), and accuracy (dashed red line, scale on the right) as
the training progresses. Signal neutrality attains a broad maximum where the performance has
almost plateaued. Thus signal neutrality can be interpreted as the signature of a ‘satisficing’
strategy, rather than of an optimal one. The scalar property, on the other hand, keeps growing
even for very long training. Yet, the evolution of signal neutrality and the scalar property are
highly correlated, suggesting a common origin for the two (see Text for discussion).

In view of the above considerations, then, signal neutrality and the scalar property 408

share a same origin. Further evidence of this can be found in the evolution of the two 409

measures during the training phase. 410

Fig. 7 shows the average evolution, during training, of signal neutrality (black line; 411

the same measure reported in Fig. 4D), scalar property (blue line; see Methods for the 412

definition of the metric), and accuracy (dashed red line, scale on the right y-axis). 413

Accuracy is computed on a sample taken from the Gaussian p(µ) used for training. All 414

the lines are computed by averaging the results of 100 different realizations of the 415

training. 416

The evolution of signal neutrality and the scalar property are highly correlated for 417

much of the training phase, with an initial fast increase that continues up to about 418

104 − 105 episodes, where the accuracy has almost plateaued — this is the region of all 419

that has been shown above (Figs. 4A, 5, and 6). Such correlated progress naturally 420

hints to a common origin for the two measures, and makes us advance the hypothesis 421

that a behavioural policy displaying these two properties could represent an ‘optimal’ 422

information-extraction strategy for dealing with a decision task in a volatile 423

environment. It wouldn’t be by chance then that the agent robustly finds such a 424

strategy by tuning its parameters in a ecologically plausible way. 425

Yet, after about 105 training episodes — and therefore probably far beyond the 426

experimental training durations, the behaviour of the two curves in Fig. 7 starts to 427

diverge: whilst the scalar property keeps improving, signal neutrality attains a broad 428

peak, after which it gradually breaks down in the face of very modest performance gains. 429
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Therefore, the scalar property seems to be more fundamental then signal neutrality, at 430

least for what concerns the strategy asymptotically discovered by the learning agent. 431

In this sense, signal neutrality per se cannot be viewed as signature of an optimal 432

strategy for the agent, but rather of a ‘satisficing’ one [53]. Faced with a wide 433

distribution of coherences, the agent pretty quickly finds a robust strategy that, at 434

around decision time, disregards coherence by relying on fluctuations to make decisions, 435

and still ensures a very good performance. Nevertheless, the agent can do slightly 436

better, given enough training time, by giving more weight to the ‘drift’ component 437

(Eq. 24) and less to the ‘diffusion’ component (Eq. 25): this is what happens on the far 438

right of the plot. 439

2.6 Collapsing boundaries 440

The hypothesised optimality of the agent’s strategy finds indirect support in the 441

behaviour displayed by the component ∆ΣT of ∆Σ (Eq. 22) that depends only on the 442

passage of time and not on the signal. 443

In a sense, ∆ΣT (t) measures the propensity of the agent at time t to wait for 444

another input instead of making a (either right or left) decision, independently from the 445

signal. Indeed, looking back at Eq. 20, ∆ΣT effectively acts as a time-dependent bias 446

term that, in the context of a drift-diffusion model, could be straightforwardly 447

interpreted as a time-dependent threshold. Lacking a threshold mechanism, such 448

interpretation cannot be directly extended to the learning agent; yet it is reasonable to 449

expect that the range of values attained by ΣSright at decision time shifts in accordance 450

with the time-dependent bias. And this is indeed the case. 451

Fig. 8 shows (black thick line) the evolution of ∆ΣT (t) from 0 to Tmax = 2 s. In 452

addition, three sample trajectories of ∆ΣS(t) (coloured lines) are shown from t = 0 to 453

decision time (marked by circles). The shaded grey area marks the region where 70% of 454

the (correct) decisions are made; as expected, the region’s boundaries mostly run 455

parallel to ∆ΣT (t). 456

Therefore, in this sense, ∆ΣT does work a soft threshold for the decision. Conversely, 457

looking at Eq. 20, one can view −∆ΣT as an ‘urgency’ signal that pushes for a decision 458

as the episode time elapses, not unlike what has been observed experimentally in the 459
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lateral intraparietal area [52]. 460

In this respect we want to point out how the soft threshold ∆ΣT does not behave 461

purely as an urgency signal. In fact the decision is made more and more likely as the 462

time passes only after about 200 ms (when ∆ΣT reaches a peak); but initially earlier 463

decisions are favoured by a rise of the threshold. Such behaviour could be beneficial to 464

effectively exploit the tails of the distribution of µ: sometimes the signal received is very 465

clear, and the agent learns in those cases that an extremely quick decision is the best 466

option. 467

Yet, beyond such interpretations, it is interesting to note - coming back to our point 468

about the presumed optimality of the agent - how this shape of the moving threshold 469

qualitatively matches the one demonstrated to be optimal in [8] (see Fig. 2B therein; see 470

also [10]). Even if the models in the references and in the present paper are not 471

structurally equivalent, it is nonetheless striking that the agent, by trial-and-error, 472

seems able to approximate the optimal behaviour at least in this respect. And, on the 473

other hand, this piece of evidence gives support to the hypothesis that the agent could 474

somehow learn to leverage, through the multiple time scales at its disposal, some deeper 475

information processing strategy possibly exploited by the brain. 476

Fig 8. Collapsing boundaries. ∆Σ(t)right (see Eqs. 14 and 20) can be decomposed in a
signal-dependent part (∆ΣS

right) and a time-dependent part (∆ΣT ; see Eq. 22), that measures
the propensity of the agent at each time to wait for another input instead of making a decision.
In the plot, ∆ΣS

right for three sample episodes (coloured lines) is depicted, alongside ∆ΣT

(thick black line). ∆ΣT acts as a time-dependent threshold: most of the decisions (dots mark
the decision times) indeed fall inside a strip running parallel to it (the grey area is where 70%
of the decisions are made). The resulting boundaries do collapse, but only for longer response
times: until about 200 ms, a rise of the effective threshold favours early decisions.

2.7 Robustness 477

The utilisation of a wide range of time scales makes the performance of the agent robust 478

to variations of the task and to the intrinsic noise. This is shown in Fig. 9A and B. We 479

varied Tmax (the maximum duration of an episode) and σI (the standard deviation of 480

the intrinsic noise, ξτ s and ξTτ s in Eqs. 3-8) systematically and, for each value, run the 481

learning process from scratch. The results of the agent are then compared to those of 482

the single integrators, each with the decision threshold optimised for each individual 483

condition. 484
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In Fig. 9A, as Tmax increases (and σI stays at its reference point of 0.02), the 485

fraction of correct responses rises monotonically both for the agent (black line) and for 486

three single integrators (colored lines), with the performance of the agent staying 487

superior on the whole range of Tmax explored. Two features are noteworthy: first the 488

lines for the fastest and slowest integrators (τ = 0.1 s and τ = 10 s respectively) cross at 489

intermediate values of Tmax, with the longer τ surpassing the shorter ones for higher 490

episode durations; and, second, the advantage of the learning agent shrinks in 491

comparison to the longer τ for longer Tmax. These features have a common origin. 492

Indeed, from Eq. 1, a signal s(t) of mean µ will lead all the integrators, given enough 493

time, to the same (statistically) stationary value of µ, but with different levels of noise: 494

integrators with longer τs will have a smaller variance and thus will be more reliable in 495

detecting whether µ > 0 or µ < 0. On the other hand the time needed to reach the 496

stationary state will be longer for longer τs. Longer integrators will still be integrating 497

the signal for shorter Tmax and, as a consequence, their value will carry less information 498

on the µ. Hence, the smaller τs will dominate for shorter Tmax, the larger τ for longer 499

Tmax. The intermediate τ = 2.1 s, on the other hand, shows a steadier, intermediate, 500

trend. 501

In Fig. 9B, the level σI of intrinsic noise is varied, with Tmax kept constant at 2 s. 502

The performance of the agent (black line) is always substantially higher than that of the 503

single integrators (coloured lines). As expected, performance deteriorates as σI 504

increases from 0 to 0.2; yet the decrease is only surprisingly slight, considering that the 505

maximum value attained by σI is comparable with the typical dynamical range of the 506

integrators xτ . Such range is determined by the distribution p(µ) (here, a Gaussian of 507

standard deviation σµ = 0.25). It is then clear that the highest levels of intrinsic noise 508

really affect the typical value of the integrators. This is even more true taking into 509

account that the slowest integrators operate far from the asymptotic value, given the 510

limited integration time. This consideration is clearly reflected in the behaviour of the 511

single integrators. The fast integrators (τ = 0.1 s and τ = 2.1 s) indeed are scarcely 512

affected by the increase in noise. On the other hand, the slowest integrator (τ = 10 s) 513

shows good accuracy for very low levels of noise, but then becomes rapidly ineffective 514

for higher values of σI . 515

Fig. 9C shows the evolution of the ‘moving threshold’ ∆ΣT (Eq. 22) for three values 516
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of Tmax. For very low Tmax (black line) the threshold only decays, always pushing for a 517

decision. For higher values of Tmax, instead, as we have already seen in Fig. 8, the 518

moving threshold initially rises; it reaches a peak and then decays afterwards, making a 519

decision ever more likely. Such peak shifts with Tmax and so does, even more clearly, the 520

time at which the threshold reaches back its initial value (around 1 s for Tmax = 2.0 s, 521

and around 5 seconds for Tmax = 10 s). 522

Fig. 9D shows wright (Eq. 3; wleft ' wright) for different values of intrinsic noise σI 523

(continuous lines are fourth degree polynomial fits for illustrative purposes). Coherently 524

with what we have seen in Fig. 9B, the peak of the lines, corresponding to the most 525

exploited time scale, shifts towards lower τ values as σI increases. 526

Fig 9. The wide range of time scales makes the agent’s performance robust to variations of
the task and to the intrinsic noise. A: as Tmax increases, the fraction of correct responses rises
monotonically both for the agent (dashed black line) and for all the single integrators, with the
performance of the agent staying superior on the whole range of Tmax explored. B: varying the
level σI of intrinsic noise, the performance of the agent (dashed black line) stays always
substantially higher than that of the single integrators, notably for stronger noise. As expected,
the performance does deteriorate, but the decrease is surprisingly slight, considering that the
maximum value attained by σI is comparable with the typical dynamical range of the
integrators xτ . C: evolution of the ‘moving threshold’ ∆ΣT (Eq. 22) for three values of Tmax.
For higher values of Tmax (see also Fig. 8), the moving threshold presents a peak whose
position shifts with Tmax. D: wright (Eq. 3) for different values of intrinsic noise σI (continuous
lines are fourth degree polynomial fits for illustrative purposes). The peak of the lines,
corresponding to the most exploited time scale, shifts towards lower τ values as σI increases.

3 Evolution during training 527

Fig 10. Learning is characterised by a non-monotonic adaptation of the average response
time that is consequent to the necessity of finding a fine balance between integrating
information and the cost of waiting to make decisions. A: Accuracy of the model for signals
with different coherences across learning. B: Average response times and probability of not
making a decision before the end of the episode, i.e. after Tmax. Trials with increasing level of
coherences correspond to greater response times and greater probabilities of ‘late’ responses.
The initial descending trend (around 100 episodes) of the response times common to all
coherences is due to the initial ignorance of the agent about the nature of the task, on the
tendency to avoid late decisions and to prefer immediate rewards.

Fig. 10 illustrates how the behaviour of the agent evolves as it encounters new 528

episodes during learning. Fig. 10A shows the performance attained on average for four 529

different values of signal coherence at different times during the training phase. The 530

performance is of course always higher for higher values of coherence (‘easier’ episodes), 531

and tends to increase monotonically for all the values of coherence during training. This 532
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monotonic trend is not preserved, instead, looking at the average response time 533

(Fig. 10B). The response time drops at the beginning of training with values that are 534

very close for every value of coherence. The reason for such behaviour is related to how 535

the agent is initialised. At the beginning, the agent is ignorant about the rules of the 536

task and pre-programmed to make a random choice after having waited for a finite 537

random length of time. Without such random initialisation, the learning would not 538

proceed, since the agent needs to perform actions to learn the relative consequences. 539

While the agent is unable to tell apart signals with different coherences, the response 540

time then decreases. In fact, longer average response times are detrimental due to late 541

responses (no decision before the maximum time allowed Tmax) that are not rewarded. 542

This is made clear in the inset, that shows how the fraction of late responses quickly 543

drops to almost zero, and it stays there. Afterwards, the model starts to statistically 544

differentiate between signals with different coherences (the four lines diverge) and the 545

response time begins to rise. In this regime, waiting means accumulating more 546

information and helps to improve the performance. 547

4 Discussion 548

Decision making and reinforcement learning are fields with overlapping contributions: 549

both attempt to answer the question of how decisions are taken. In this work, we 550

unified these two views by having a reinforcement learning agent solving a classical 551

perceptual decision making task; in this we are not alone [9, 45–47]. This work is novel 552

for studying multiple time scales, that arguably exist in the brain [35–42], and their 553

effect on the decision making process, leading to surprising conclusions. 554

Here we have shown how the agent is able to learn an effective policy to solve the 555

task in a relatively small number of episodes. Effective at least in the sense that the 556

agent performs better than any single-time-scale drift-diffusion integrator. And that the 557

performance curve of the model fits remarkably well with the psychophysical results. 558

Also the experimental relationship between signal coherence and reaction time is 559

semi-quantitatively reproduced, with differences that can be likely traced back to the 560

fact that our agent does not include any non-decision delays. The agent’s performance, 561

moreover, is much more robust than the single accumulators’ to variations of the task. 562
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It comes therefore not unexpected that, at a more microscopic level, the policy 563

devised by the agent after the training is markedly different from the one suggested by 564

the drift-diffusion model, where the decision is taken when one of the integrating 565

processes reach the decision threshold. Instead, the proposed agent makes decisions 566

within short ‘active’ windows of time during which fleeting bursts in the probability of 567

choosing an action make that action possible. We interpret such behaviour as arising 568

from a ‘surge’ of probability in those short windows resulting from the broad agreement 569

on the decision of many integrators with different time scales, akin to the concept of 570

majority voting. This feature of the model could be in principle tested experimentally; 571

in this respect, we note how it is compatible with the analysis performed in [54] on 572

single-neuron single-trial spike trains in LIP area to uncover sudden activity jumps and 573

their informativeness about choice. 574

We have moreover shown how the time course of the key variable in our model, i.e. 575

the weighted combination of the integrators, reproduces many qualitative characteristics 576

observed in the activity of neurons in LIP area during a motion-discrimination 577

task [4, 48], notably what we have termed ‘signal neutrality’: the collapse of neuronal 578

activities to a single trajectory for different values of signal to noise ratio. The model 579

strongly suggests that such a collapse is due to the availability of multiple time scales: 580

in fact, at the level of the single integrator and when the model is trained with only one 581

of the integrators, the collapse is not observed. 582

Yet fluctuations too play a key role in signal neutrality. And indeed, as far as we can 583

discern, the observation of the phenomenon in [19], where no multiple time scales are 584

present, is rooted in the presence of large fluctuations in the activity traces being 585

averaged. Such fluctuations are smoothed out in the model, by a first order filter and by 586

the introduction of a random post-decision time, to form the decision; but nonetheless 587

they give a major contribution to the observed collapse, as testified by peak values well 588

above the decision threshold. 589

We have also shown how the distribution of response times exhibits a well defined 590

scalar property [49,50]: as the mean response time spans more than one order of 591

magnitude, the shape of the distribution stays quite unchanged. The drift-diffusion 592

model is capable of exhibiting a linear relationship between the mean response time and 593

its standard deviation [51], a prerequisite for the scalar property. Yet, it seems difficult 594
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for the drift-diffusion model to show a clear scalar property (see Eq. 29), namely to 595

produce response times with a constant coefficient of variation. Nonetheless, the 596

experimental results reported in [51] seem to support to a degree the linear relationship 597

(though the range of values of the coefficient of variation does not match the one from 598

the drift-diffusion model), and not a proper scalar property. Yet the very low 599

coefficients of variation for fast responses could result from ignoring the effect of 600

non-decision times, that can be assumed to have low variability [22]. 601

We have suggested that signal neutrality and the scalar property share a common 602

origin in how the agent leverages the multiple time scales at its disposal to make its 603

integration variable (∆ΣT ) a stochastic process whose mean scales like a power-law in 604

time, but with a nearly-constant variance. Such claim is corroborated by the observation 605

that signal neutrality and the scalar property build up together during training; this 606

represents a genuine prediction of the model, amenable to experimental testing. 607

One of the major distinctive points of this work is that the agent autonomously 608

learns how to behave pursuing the maximization of reward, with no strategy a priori 609

prescribed, not unlike a biological agent during a perceptual decision making experiment. 610

Our model is abstract of any detailed biological elements and provide little information 611

about the corresponding mechanisms at circuit level. Yet, similar to others, such as the 612

drift-diffusion model, it provides useful insights to complex processes. In fact we argue 613

that it might provide the right trade off between complexity and simplicity [55]: it does 614

not model directly the decision making process but rather learns when to make actions, 615

incorporating at the same time the concept of multiple time scales. 616

With this in mind, and given the evidence of reinforcement learning-compatible 617

signaling in the brain [56,57], we advance the hypothesis that the similarities between 618

the model workings and the experimental results originate from a common high-level 619

‘optimal’ strategy for dealing with a volatile environment, discovered through the 620

interaction with the rules of the task. Though the implementation substrates are very 621

different and present very different degrees of complexity, this shared strategy can help 622

shed light on general information-processing principles leveraged by the brain itself. 623

In this line of reasoning, we have shown how the agent, by means of the integrators 624

‘accumulating’ the passage of time, implements an effective decision threshold that 625

changes non-monotonically over the course of each episode. Such moving threshold 626
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matches qualitatively the optimal strategy for fixed-duration tasks [8, 10]. Although the 627

existence itself of ‘collapsing boundaries’ has been disputed [58], this results lends 628

support to the presumed optimality of the strategy discovered by the agent. 629

Timescales have been implicit in the reinforcement learning framework, in the 630

context of propagating information about the success (or failure) of the task in cases 631

where reward is not immediate, see for instance eligibility traces [43,59]. This is not 632

entirely the same as the concept of time scales in this model, where the emphasis is on 633

acquiring and retaining sensory information from the environment, not unlike what 634

happens in the field of Reservoir Computing [60]. 635

Admittedly abstract, the proposed framework allows for more detailed and 636

biologically plausible implementations. In this respect, we note how the building blocks 637

of the present model, i.e. the signal accumulators, have likely biological 638

counterparts [61,62], and at the same time have been subject to deep theoretical and 639

modeling analysis [50,54,63]. One notable idea emerging from such analysis is that 640

integrators with wildly different time scales, as required by a truly multi-scale system, 641

can be effectively implemented by pools of noisy attractors. Attractor dynamics has 642

been long one of the main staples of theoretical neuroscience, and as such it suffers no 643

lack of detailed spiking implementations [64]. On the other hand, several winner-take-all 644

spiking networks capable of implementing a probabilistic classification of noisy signal 645

have been described in the literature [65, 66]. Therefore we see no conceptual barriers to 646

a more detailed, spiking model mimicking the workings of the agent. 647

Beyond the specific interpretations provided by the model presented here, we would 648

like to advocate the consideration of multiple time scales in models handling 649

non-stationary and noisy information: there is indeed increasing evidence that 650

performance is improved or becomes more robust to changes to the environment as a 651

consequence. This is achieved thanks to the degeneracy offered by the wide range of 652

time scales, that allows the agent to adapt effectively to different conditions. Such 653

‘adaptive’ degeneracy can be seen as an instance of a general strategy seemingly 654

implemented in many biological systems: deploying a large number of elements 655

performing similar functions in order to build ‘sloppy’ neutral regions in the space of 656

conformations, where equivalent or nearly equivalent behaviours originate [67–70]. Just 657

those neutral regions allow for rapid and effective adaptation. In our opinion, 658

August 3, 2021 27/39

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.09.01.458481doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458481
http://creativecommons.org/licenses/by/4.0/


considering the complexity and unexpected shifts of the environments in which biological 659

agents live and operate, modelling efforts — even when very abstract — should see 660

robustness not just as an interesting characteristic, but as a paramount requisite. 661

5 Methods 662

5.1 Coherence 663

In [4], every three frames on the screen, a fraction c (‘coherence’) of dots are moved 664

coherently in the chosen direction by dx, while the other 1− c dots are randomly 665

displaced. We assume that each of the randomly moving dots is subjected to a change 666

∆x in their position following a probability distribution, with 〈∆x〉 = 0 and 667

Var[∆x] = σ2
x. Imagining that neurons with different receptive fields help to estimate 668

the average movement of the dots at each time step, we end up with a signal s of mean: 669

µ ≡ 〈s〉 = cdx (30)

and variance: 670

σ2 ≡ Var[s] = (1− c)σ2
x (31)

Then, we have the relationship: 671

µ

σ
=

c√
1− c

dx

σx
(32)

or: 672

µ ∝ coherence√
100− coherence

, (33)

where we have expressed the coherence as a percentage. Eq. 11 is a special case of this 673

one, with a proportionality constant chosen to match experimental ranges. 674

5.2 Learning 675

The learning algorithm adopted is a reinforcement learning actor-critic model with 676

eligibility traces [43]. The goal of reinforcement learning is to maximise the cumulative 677
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reward: 678

Gt = Rt+1 + γRt+2 + ...+ γt+N−1Rt+N (34)

where 0 ≤ γ ≤ 1 is a discount factor that describes the tendency of the agent to invest 679

in future rewards (here γ ' 1− 10−7). In our specific case, an episode ends when the 680

agent chooses ‘left’ or ‘right’, or the maximum allowed time Tmax is reached without a 681

decision. Rewards are given at the end of the episode only. The reward is 1 for the case 682

of correct decision, and 0 otherwise. The policy (the actor) is embodied by the 683

probabilities pa (a = ‘right’, ‘left’ or ‘wait’) defined in Eq. 10. Instead, the 684

parametrisation defining the critic, i.e. the value function V (t) = Ep{Gt|st}, is: 685

V (t) =
∑
τ

w̃τ |xτ (t)|+ w̃Tτ x
T
τ (t) + bv (35)

where the weights w̃s are learned alongside the ws, and we used the absolute value of

the integrators because, similarly to the definition of Σwait, positive and negative

fluctuations of the signal should contribute in the same way to the expected reward. For

each episode, the algorithm defines two sets of eligibility traces, ew̃t and ewt , for the

critic and the actor respectively:

ew̃t = γλw̃ew̃t−∆t + γt∇w̃ V (t)

ewt = γλwewt−∆t + γt∇w pa(t)

where t is the time inside an episode, and 0 ≤ λw ≤ 1 and 0 ≤ λw̃ ≤ 1 are the traces

decay parameters (here λw̃ = λw = 1− 10−5). The parameters are then updated

according to:

δ ≡ Rt+∆t + γV (t+ ∆t)− V (t)

w ← w + ηw δ ew

w̃ ← w̃ + ηw̃ δ ew̃.
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5.3 Rescaling σI for single integrators 686

When comparing the agent with a single integrator, we rescaled the amount of noise σI 687

affecting the single integrator by a factor αI , defined as 688

αI =
1√∑

τ w
2
right,τ/max

τ
(w2

right,τ )
≤ 1 (36)

(we could equivalently use wleft,τ , since wleft,τ ' −wright,τ ). 689

Eq. 36 takes into account the fact that the agent effectively lowers the total noise by 690

summing up nτ integrators xτ affected by independent sources of noise ξτ . Thus, 691

αI = 1 when just one of the wright,τ is different from 0, i.e. when the agent utilises just 692

one integrator. On the other hand, the maximum αI = 1√
nτ

is attained when the agent 693

weights equally all the integrators. 694

5.4 Signal neutrality and scalar property measures 695

To measure signal neutrality, we take the average ∆Σright(t), aligned to decision time, 696

for six different coherences (0%, 3.2%, 6.4%, 12.8%, 25.6%, 51.2%); each curve is 697

considered for an interval between 0 and 600 ms before the decision is taken; if the 698

number of points to average for a given coherence drops below 100 before the 600 ms, 699

the interval of definition of that curve is shrunk accordingly. We then rescale all the 700

curves to fit inside the range 0-1, so that the minimum of the minimum values attained 701

by each curve is 0; and the maximum of the maxima is 1. Then we compute, for each 702

time, the maximum distance between any pairs of rescaled curves (this distance is of 703

course always ≤ 1 thanks to the rescaling). Finally we take the average of such 704

maximum distance, and take the inverse: this is the operative measure of signal 705

neutrality used throughout the paper. 706

To give a measure of scalar property, we compute the coefficient of variation CV for 707

the distribution of response times corresponding to six values of coherence (0%, 3.2%, 708

6.4%, 12.8%, 25.6%, 51.2%). We then take the inverse of the difference between the 709

maximum and the minimum value of CV: this is the reported measure of the scalar 710

proprety (see Fig. 7). 711
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5.5 Mean and variance of ∆ΣS
right 712

Being the signal s(t) a constant µ plus a white noise Wt, Eq. 1 is a stochastic 713

differential equation: 714

dxτ (t) = −xτ (t)− µ
τ

dt+
σ

τ
dWt (37)

whose solution is (since by definition x(0)τ = 0): 715

xτ (t) = µ
(

1− exp
(
− t

τ

))
+
σ

τ

∫ t

0

exp
(s− t

τ

)
dWs. (38)

It is to find how the mean value of xτ (t) depends on t: 716

〈xτ (t)〉 = µ
(

1− exp
(
− t

τ

))
. (39)

In the following we will make use of the covariance 717

〈(xτ1(t)− 〈xτ1(t)〉) (xτ2(t)− 〈xτ2(t)〉)〉 for two generic τ1 and τ2; defining: 718

τ∗ ≡ τ1 τ2
τ1 + τ2

, (40)

and being δ(t) the Dirac delta function, we have:

〈(xτ1(t)− 〈xτ1(t)〉) (xτ2(t)− 〈xτ2(t)〉)〉 =
σ2

τ1 τ2

∫ t

0

∫ t

0

e
u−t
τ1 e

v−t
τ2 〈dWudWv〉

=
σ2

τ1 τ2

∫ t

0

∫ t

0

e
u−t
τ1 e

v−t
τ2 δ(u− v) dudv

=
σ2

τ1 τ2

∫ t

0

e
u−t
τ∗ du = σ2 τ∗

τ1 τ2

[
1− exp

(
− t

τ∗
)]

=
σ2

τ1 + τ2

[
1− exp

(
− (

1

τ1
+

1

τ2
) t
)]
. (41)

Neglecting the intrinsic noises ξτ and ξTτ and assuming that the xτ s do not change 719

sign during an episode, we can omit the absolute value in Eq. 7 and write, using Eq. 23: 720

∆ΣSright(t|µ, σ) =
∑
τ

∆wτ xτ (t). (42)

The assumption about the sign of the xτ s holds on average, but not at the beginning of 721

each episode when the xτ s are, by construction, close to 0. Disregarding this initial 722
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phase, though, the approximation is probably good most of the time. We can now easily 723

recover, from Eqs. 39 and 41, the mean and the variance of ∆ΣSright, as given by Eqs. 24 724

and 25. 725
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