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Abstract

Collective behaviour in living systems is observed across many scales, from bacteria to insects,

to fish shoals. Zebrafish have emerged as a model system amenable to laboratory study. Here

we report a three-dimensional study of the collective dynamics of fifty Zebrafish. We observed

the emergence of collective behaviour changing between polarised to randomised, upon adaption

to new environmental conditions. We quantify the spatial and temporal correlation functions of

the fish and identify two length scales, the persistence length and the nearest neighbour distance,

that capture the essence of the behavioural changes. The ratio of the two length scales correlates

robustly with the polarisation of collective motion that we explain with a reductionist model of

self–propelled particles with alignment interactions.

I. INTRODUCTION

In living systems aggregation occurs at different scales, ranging from bacteria (microns) to

insects (centimetres) to fish shoals (tens of kilometres) and with emerging complex patterns

[1, 2]. These manifestations of collective behaviour originate from the interactions among

the individual agents and between the agents and the environment [3]. Such interactions are

often modelled by a combination of deterministic and stochastic contributions, capturing

the individual’s variability observed in nature and unknown or uncontrollable variables.

The emergence of collective behaviour has been shown to be advantageous for communities

[4–6], and identifying commonalities and universal patterns across scales and species is an

outstanding challenge [7, 8]. Understanding the relationship between the collective behaviour

and animal interactions has potential technological applications, for example to reverse

engineer algorithms for the design of intelligent swarming systems [9]. Successful examples

include the global optimisation algorithm for the travelling salesman problem inspired by the

behaviour of ants, and implementation of the Boids flocking model in schooling of robotic

fish [10, 11].

In a reductionist approach, collective behaviour can be modelled with interacting agents

representing individuals in living systems. For example, groups of animals may be treated as

if they were self-propelled particles with different interacting rules [12, 13]. Examples of using

simple agent–based models applied to complex behaviour include describing the curvature of

the fish trajectories as a Ornstein–Uhlenbeck process [14], modelling the ordered movement
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of bird flocks by an Ising spin model [2, 15], mapping of midge swarms onto particulate

systems to explain the scale-free velocity correlations [12, 16, 17] and swarming in active

colloids [18, 19]. One of the simplest and approaches is the Vicsek model [20], in which

the agents only interact via velocity alignment. Despite its simplicity, a dynamical phase

transition from polarised flocking to randomised swarming can be identified, providing a

basis to describe collective motion in biological systems [21, 22].

The study of collective behaviour in living systems typically has focused on two-

dimensional cases for reason of simplicity, making the quantitative characterisation of

three-dimensional systems such as flocks of birds of shoal of fish rare. To bridge this gap,

Zebrafish (Danio rerio) present a wealth of possibilities [23]: zebrafish manifest shoaling

behaviour, i.e. they form groups and aggregates, both in nature and in the laboratory;

also, it is easy to constrain the fish in controlled environments for long–time observations.

Typically, the response of fish to different perturbations, such as food and illumination, can

be pursued [23–25]. Furthermore, genetic modification have been very extensively developed

for Zebrafish, giving them altered cognitive or physical conditions, and yielding different

collective behaviour [26, 27].

However, tracking Zebrafish in three dimensions (3D) has proven difficult [28]. To the best

of our knowledge, previous studies on the 3D locomotion of Zebrafish focussed either on the

development of the methodology [29, 30], or were limited to very small group sizes (N ≤ 5)

[28, 31, 32], while ideally one would like to study the 3D behaviour of a statistically significant

number of individuals, representative of a typical community. In the field, zebrafish swim

in 3D with group sizes ranging from tens to thousands [33].

Here we report on the collective behaviour of a large group (N = 50) of wild-type Ze-

brafish, captured by a custom 3D tracking system. The observed fish shoals present different

behaviours, showing different levels of local density and velocity synchronisation. We iden-

tify two well-separated time scales (re-orientation time and state-changing time) and two

important length scales (persistence length and nearest neighbour distance) for the Zebrafish

movement. The time scales indicate the fish group change their collective state gradually

and continuously. The spatial scales change significantly as collective behaviour evolves over

time, with strong correlations between spatial correlations and shoaling. Finally, we reveal

a simple and universal relationship between the global velocity alignment of the shoals (the

polarisation) and the the ratio between the two length scales (the reduced persistence length).
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We rationalise this finding through the simulation of simple agent-based models, in which

an extra inertia term is added to the Vicsek model. Our findings illustrate complex be-

haviour in Zebrafish shoaling, with couplings between spatial and orientational correlations

that could only be revealed through a full three-dimensional analysis.

II. RESULTS

A. Experimental Observation

We tracked the movement of zebrafish from multiple angles using three synchronised

cameras. We collected data for fish groups with different ages, with young fish (labelled as

Y1–Y4) and old fish (labelled as O1–O4). Figure 1(a) schematically illustrates the overall

setup of the experiment, where the cameras were mounted above the water to observe the

fish in a white tank in the shape of a parabolic dish, enabling 3D tracking [2, 34–36]. With

this apparatus, we extract the 3D positions of the centre of each fish at different time points,

with the frequency of 15 Hz. We then link these positions into 3D trajectories. Figure 1(b)

presents typical 3D trajectories from 50 young zebrafish during a period of 10 seconds,

where the fish group changed its moving direction at the wall of the tank. The zebrafish

always formed a single coherent group, without splitting into separate clusters during our

observations. Movie S1–S3 are examples of the their movements. Figure 1(c) shows the

cumulative spatial distribution of the zebrafish in the tank, during a one-hour observation.

It is clear from this figure that the fish tend to swim near the central and bottom part of the

tank, and that the density distribution is inhomogeneous. The propensity of zebrafish to

swim near the wall was our motivation to use a bowl-shaped fish tank shown in(c), so that

there are no corners for the fish to aggregate in, compared to a square-shaped container like

conventional aquaria.

B. Evolving Collective Behaviour

The 3D tracking yields the positions of the fish, whose discrete time derivative gives the

velocities. From these two quantities, we calculate three global descriptors to characterise

the behaviour of the fish: the average speed, the polarisation, and the nearest neighbour

distance. The average speed is defined as v0 = 1/N
∑
|vi| where i runs over all the tracked
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FIG. 1. Experimental setup and overall spatial distributions. (a) Schematic illustration

of the experimental setup. Zebrafish were transferred into a bowl-shaped tank and three cameras

were mounted above the air-water interface to record the trajectories of the fish. (b) 3D trajectories

obtained from the synchronised videos of different cameras. These trajectories belong to 50 young

Zebrafish (group Y1) in 10 seconds. (c) The spatial distribution of 50 young fish (Y1) during a

one-hour observation. Brighter colour indicates higher density. The top panel shows the result in

XY plane, obtained from a max-projection of the full 3D distribution. The bottom panel shows

a max-projection in XZ plane. The outline of the tank and water-air interface, obtained from 3D

measurement, are labelled.

individuals. The polarisation Φ characterises the alignment of the velocities. It is defined

as the modulus of the average orientation, written as [20], Φ = 1/N |
∑

(vi/|vi|)| where i

runs over all the individuals. Large polarisation (Φ ∼ 1) signifies synchronised and ordered

movement, while low polarisation indicates decorrelated, random movement. The nearest

neighbour distance between the fish centres is defined according to the Euclidean metric, and
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FIG. 2. The behavioural quantities of 50 young Zebrafish (group Y1). (a) The auto–

correlation function of the polarisation and average speed of the fish group. (b) The auto–

correlation function of the orientations of fish. (c) Sequence of radial distribution functions with

increasing time: at early times (top curves) the fish are clustered together so that the peak is large;

at later times (bottom curves) the local density decreases and so does the peak height. (d) The

time evolution of the averaged behavioural quantities for 50 young fish. Each point corresponds to

the average value in 2 minutes. The error bars illustrate the standard error values.

we focus on is arithmetic mean d1. We note that while v0 and Φ are dynamical quantities

defined from the velocities d1 is a static quantity that does not depend on time differences.

We start from the analysis of temporal correlations of these three scalar quantities. No-

tably, all three exhibit two distinct time scales. Figure 2(a) shows the auto–correlation

functions (ACF) of v0, Φ and d1 averaged over the group of 50 young fish, calculated from

a one hour observation. The ACFs present two decays and one intermediate plateau. We

identify the first decay with the short time (∼1s) reorientation time, characteristic of Ze-

brafish behaviour. This can be shown through the analysis of the autocorrelation of the

orientations Fig. 2(b), which are characterised by an exponential decay with relaxation time

〈τ〉 also close to ∼1s, which is compatible with the previously reported turning rate timescale

(∼0.7s) [37].
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The plateau and subsequent decay of the ACF of the scalar quantities v0, Φ and d1, with

the time scale of ∼120 seconds, represent complete decorrelation from the initial state, indi-

cating that the shoal properties change significantly on this much longer timescale. There-

fore, we employ time-windows of 120 seconds to average the time evolution of of v0, Φ and

d1, to characterise the states of the fish groups with moving averages 〈v0〉(t), 〈Φ〉(t) and

〈d1〉(t).

To characterise the degree of spatial correlation of the fish, we focus on the fish centre of

mass and calculate their radial distribution function (RDF), see Fig. 2(c), which quantifies

the amount of pair (fish-fish) correlations and it is commonly employed in the characterisa-

tion fo disordered systems ranging from gas to liquids, from plasma to planetary nebulae[38].

Details on the RDF can be found in the supplementary information (SI). All the RDFs ex-

hibit one peak at a short separation, indicating the most likely short-distance separation

between fish. The peak height is a measure of the cohesion of the fish group. Inspired by

liquid state theory [38], we take the negative logarithm of the peak height to characterise

what we call as the “effective attraction” among the fish, noted as 〈ε〉. While d1 quantifies a

characteristic lengthscale in the macroscopic collective state, ε quantifies the fish propensity

to remain neighbours. In Fig. 2 we see that d1 and ε are strongly correlated, confirming that

d1 is also a measure of the cohesion of the collective states. We term 〈v0〉, 〈Φ〉, 〈τ〉, 〈d1〉,

and 〈ε〉 “behavioural quantities”, and the brackets indicate the moving average.

Figure 2(d) illustrates the time-evolution of all the behavioural quantities, calculated

from the movement of 50 young fish (group Y1) ten minutes after they were extracted from

a husbandry aquarium and introduced into the observation tank. Over time, the behavioural

quantities drift, indicating that a steady state cannot be defined over the timescale of 1 hour.

This result is generic, as the separated time scales and changing states were obtained from

repeated experiments on the fish group (Y2–Y4), and also from different groups of older

Zebrafish (O1–O4).

C. Shoaling State Described by Two Length Scales

To describe the space of possible collective macroscopic states we employ two dimensioned

lengths, the nearest neighbour distance 〈d1〉 defined above and a second scale characterising

the typical distance that a single fish covers without reorientation, the persistence length
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FIG. 3. The states of Zebrafish characterised by two length scales. (a) The states of the

fish represented by the nearest neighbour distance and the persistence length. The brightness of

the markers corresponds to the value of the polarisation. Each scatter–point corresponds to a time-

average of 2 minutes. Different shapes indicate different fish groups from different experiments.

(b) A multilinear regression model fitting the relationship between the polarisation and the two

length scales, indicating the polarisation increase with the increase of persistence length, and the

decrease of the nearest neighbour distance. The model is rendered as a 2D plane, whose darkness

indicate the value of polarisation.

〈lp〉 . Tis is defined as the product of the speed and the orientational relaxation time

〈lp〉 = 〈v0〉〈τ〉.

The resulting 〈lp〉 and 〈d1〉 diagram is illustrated in Fig. 3(a). As we move across the dia-

gram, the degree of alignment of the fish motion – the polarisation – also changes, indicating

that changes in the local density (as measured by 〈d1〉) and in the pattern and velocity of

motion (as measured by 〈lp〉) are reflected in the polar order of the shoals. For high 〈lp〉

and low 〈d1〉 , the movements of the fish are cohesive and ordered (Movie S1). For the fish

states with a low 〈d1〉 and low 〈lp〉, the movements are cohesive but disordered (Movie S3).

For fish states with high 〈d1〉 and low 〈lp〉, the fish are spatially separated with disordered

movements (Movie S2). Cohesive but dilute states are never observed. We also note that

there is a systematic difference between young (Y) and old (O) fish groups, with the former

characterised by larger persistence lengths, neighbour distances and polarisations while the

latter are clustered in a narrower range of persistence lengths with more disorder.
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The simplest model to capture the relationship between polarisation and the two length-

scales is a multilinear regression. This yields 〈Φ〉 = 0.039 〈lp〉 − 0.05 〈d1〉 + 0.147, with a

goodness of fit value (R2 = 0.73). This strong simplification suggests that most of the fish

macroscopic states reside on a planar manifold in the Φ–d1–lp space, illustrated in Fig. 3

(b). The value of 〈Φ〉 increases with the increase of 〈lp〉, and the decrease of 〈d1〉. Such

relationship is reminiscent of results from the agent-based Vicsek model, where the polarisa-

tion of self–propelled particles is determined by the density (∼ d−1
1 ) and orientational noise

(∼ l−1
p ) [20, 39]. In addition, the relationship between the polarisation and the local density

suggests a metric based interaction rule, rather than the topological counterpart [40]. In

other words, the fish tend to align with nearby neighbours, rather than a fixed number of

neighbours. A similar relationship between the polarisation and density was also found for

jackdaw flocks while responding to predators [41].

A further simplification to describe quantitatively the data can be obtained employing the

ratio between the persistence length and the nearest neighbour distance offers a simplified

description of the polarisation of the fish groups. Here we introduce the reduced persistence

length κ = 〈lp〉/〈d1〉. The value of κ exhibits a consistent relationship with the polarisation

for all the fish groups, as shown in Fig. 4 (a). All the experimental data points collapse

onto a single curve, especially for the younger fish groups (Y1–Y4) which have a much

wider dynamic range than the older groups. Notably, the young fish always transform from

ordered states with high κ value to disordered states with low κ value, possibly because of

the adaption to the observation tank.

To understand this relationship, we consider the fish motion as a sequence of persistent

paths interrupted by reorientations. In a simplified picture, the new swimming direction at

a reorientation event is determined by an effective local alignment interaction that depends

on the neighbourhood, and notably on the nearest neighbour distance d1. The fish states

with larger value of κ correspond to situations where each individual fish interacts with more

neighbours on average, between successive reorientations. The increased neighbour number

leads to a more ordered collective behaviour, so that the values of κ and Φ are positively

correlated as shown in Fig. 4(a).

The time-averaged spatial correlation of the velocity fluctuation supported our picture of

the local alignment interaction between the fish. Such a correlation function is defined as,
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C(r) =

∑N
i [(vi − v̄) · (vj − v̄) δ(r − rij)]∑N

i δ(r − rij)
, (1)

where vi is the velocity of fish i, v̄ is the average velocity in one frame, rij is the distance

between two particles, and δ is the Dirac delta function. This function is widely used to

characterise the average alignment of velocity fluctuations of moving animals, at different

distances [2, 42, 43]. Figures 4(b) and (c) show the correlation functions for different fish

groups with low and high κ values, respectively. The distances are rescaled by the different

〈d1〉 values of each fish group. For both conditions, the correlation curve collapses beyond

one 〈d1〉, and peaks around the value of 〈d1〉, supporting our assumption that 〈d1〉 is the

length scale for the fish–fish interactions.

D. Vicsek Model Rationalisation of the Experiments

The relationship between κ and Φ, presented in Fig. 4(a), can be easily compared with

simulations as both κ and Φ are dimensionless quantities. Here we explore this through

simulations proposing a new modification of the original Vicsek model [20]. The Vicsek

model treats the fish as point-like agents with an associated velocity vector of constant speed

v0. During the movement, the fish adjust their orientations to align with the neighbours’

average moving direction. In order to take into account of memory effects in a simple

fashion, we add an inertia term into the Vicsek model, so that each agent partially retain

their velocities after the update, with the following rule

vi(t+ 1) = v0Θ

(1− α) v0Rη

Θ

∑
j∈Si

vj(t)


︸ ︷︷ ︸

Vicsek Model

+αvi(t)

 , (2)

where ~vi is the velocity or the ith fish, and the updated velocity of fish i is a linear mixture

of its previous velocity and a Vicsek term. The parameter α characterises the proportion

of the non-updated velocity, i.e. the inertia. This model is reduced to the Vicsek model by

setting α to 0. If α = 1, these agents will have constant ballistic movements without any

interaction. For the Vicsek term, Si is the set of the neighbours of fish i, and the Θ is a

normalising function. The operatorRη[r] randomly rotates the vector r into a new direction,

which is drawn uniformly from a cap on the unit sphere. The cap is centred around r with
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an area of 4πη. The value of η determines the degree of stochasticity of the system. Our

model is thus an inertial Vicsek model in three dimensions with vectorial noise.

We set the units of the interaction range ξ and time dt and fix the number density to

ρ = 1ξ−3 and speed v = 0.1ξ/dt. We then proceed with varying the two parameters α

and η to match the data. In particular we measure the average persistence length 〈k〉 and

polarisation 〈Φ〉 and find that for α = 0.63 we can fit the data only through the variation of

the noise strength η More details of the simulation are available in the SI). For η ∼ 1, the

movement of each agent is completely randomised, reproducing the low κ (or Φ) states of

the fish. For the case of η ∼ 0.65 the movements of the agents are ordered (Φ ∼ 0.64) and

mimic the states of fish with high κ. This is consistent with the fact that in the ordinary

Vicsek model the persistence length scales as ` ∼ v0/η
2. The good fit of the simulation

result suggests the fish–fish alignment interaction dominates their behaviour, and the fish

can change their states by changing the rotational noise (η).

We emphasise that the inertial Vicsek model is a crude approximation, as the only inter-

action of the model is velocity alignment. Without the attractive/repulsive interactions and

other details, the inertial Vicsek model does not reproduce the velocity correlation function

of the fish, as illustrated in Fig. 4(b) and(c), suggesting that more sophisticated models with

effective pairwise and higher order interactions may be developed in the future. Neverthe-

less, the model qualitatively reproduces the fact that the velocity correlation is stronger in

the high κ states.

III. DISCUSSION AND CONCLUSION

Our results confirm some previous observations and open novel research directions. The

young fish appear to adapt to a new environment with the reduction of the effective attrac-

tion and speed (Fig. 2). Such behaviour is consistent with previous observations of dense

groups of fish dispersing over 2-3 hours [44]. At the same time, it was reported by Miller and

Gerlai that the habituation time has no influence on the Zebrafish group density [45]. We

speculate that this difference emerges from the way the statistics were performed. Typically,

Miller and Gerlai’s results were averaged over 8 different small fish groups (N=16), and it

is possible that the noise among different groups obfuscates the time dependence features

here highlighted. Despite the different claims, our result matched Miller and Gerlai’s result
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FIG. 4. Single–parameter description of the Zebrafish system. (a) The average polarisation

〈Φ〉 as a function of the reduced persistence length κ, where most data points collapse, and agree

with the simulation result of the inertial Vicsek model. The dashed line and grayscale zone represent

the expected average value and standard deviation of 〈Φ〉 for the uniform random sampling of

vectors on the unit sphere. (b) The velocity correlation function of the fish and the model in the

low κ states, highlighted in (a) with a × symbol. (c) The velocity correlation function of the fish

and the model in the high κ states, highlighted in (a) with a + symbol.

quantitatively (Fig. S5).

The macroscopic state polarisation of the fish groups decreases during the adaption pro-

cess for the young fish. This “schooling to shoaling” phenomenon has been observed pre-

viously in a quasi 2 dimensional environment [46]. Our results suggest that this behaviour

is present also in a fully three-dimensional context and that the change from schooling (po-

larised motion) to shoaling (unpolarised motion) is related to an increasingly disordered

or uncorrelated behaviour, corresponding to the increase in the noise term η in the Vicsek

model.

It is been speculated that all the biological systems were posed near the critical state,

to enjoy the maximum response to the environmental stimuli [47]. Here the inertial Vicsek

model offered a supporting evidence. The fluctuation of the polarisation, the susceptibility,

took a maximum value at moderate reduced persistence value κ ∼ 2, as illustrated Fig. 4 (a).

And the fish states were clustered around such region, where the fish can switch between the

disordered behaviour and ordered behaviour swiftly. Such disordered but critical behaviour

was also observed for the midges in the urban parks of Rome[17].

In conclusion, our work presents a quantitative study of the spatial and temporal corre-

lations manifested by a large group of Zebrafish. In our fully 3D characterisation, we have
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shown that there is a timescale separation between rapid reorientations at short times and

the formation of a dynamical state with characteristic spatial correlations at longer times.

Such spatial correlations evolve continuously and no steady state is observed in the time

window of one hour. Our analysis shows that the continuously changing collective macro-

scopic states of the fish can be described quantitatively by the persistence length and nearest

neighbour distance. The ratio of these length scales presents a characteristic correlation with

the polarisation of the fish group. This simple relation is supported by an elementary agent

based model in the class of the Vicsek models for collective behaviour.

Our analysis also opens multiple questions: the true nature of the interactions and how

these are linked to the sensory and vision capabilities of the fish is open to debate; also,

the reason for the change of the fish states remained unexplored, with the possibility of the

fish learning over time about the experimental conditions. Our work shows that Zebrafish

provides a viable model system for the study of animal collective behaviour where such

questions can be investigated in a quantitative manner.

A further intriguing possibility is to link the methodology that we develop here, with

genetic modifications to Zebrafish, for example with behavioural phenomena such as autism

[26] or physical alterations such as the stiffened bone and cartilage [48].

IV. METHODS

A. Data and Code Availability

The code for tracking the fish, including the 2D feature detection, 3D locating, trajectory

linking, and correlation calculation, is available free and open–source (link to GitHub). The

simulation code is also available on GitHub (link to repository). The dataset for generating

Fig. 2, 3, and 4 are available as supplementary information (Dataset S1), as well as some

pedagogical code snippets (Code S1).

B. Zebrafish Husbandry

Wildtype Zebrafish were kept in aquarium tanks with a fish density of about 10 fish / L.

The fish were fed with commercial flake fish food (Tetra Min). The temperature of the water

was maintained at 25°C and the pH ≈ 7. They were fed three times a day and experience
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natural day to night circles, with a natural environment where the bottom of the tank is

covered with soil, water plant, and decorations as standard conditions [49]. Our young group

(Y) were adults between 4-6 months post-fertilisation, while our old group (O) were aged

between 1-1.5 year. The standard body lengths of these fish were are available in the SI.

All the fish were bred at the fish facility of the University of Bristol. The experiments were

approved by the local ethics committee (University of Bristol Animal Welfare and Ethical

Review Body, AWERB) and given a UIN (university ethical approval identifier).

C. Apparatus

The movement of the Zebrafish were filmed in a separate bowl-shaped tank, which is

immersed in a larger water tank of 1.4 m diameter. The radius r increasing with the height

z following z = 0.2r2. The 3D geometry of the tank is measured experimentally by drawing

markers on the surface of the tank, and 3D re-construct the positions of the markers. Outside

the tank but inside the outer tank, heaters and filters were used to maintain the temperature

and quality of the water. The videos of Zebrafish were recorded with three synchronised

cameras (Basler acA2040 um), pointing towards the tank. A photo of the setup, and more

details are available in the SI.

D. Measurement and Analysis

Fifty Zebrafish were randomly collected from their living tank, moved to a temporary

container, then transferred to the film tank. The filming started about 10 minutes after

fish were transferred. The individual fish in each 2D images were located by our custom

script and we calculated the 3D positions of each fish following conventional computer vision

method [50, 51].

The 3D positions of the fish were linked into trajectories [52, 53]. Such linking process

yielded the positions and velocities of different fish in different frames. We segmented the

experimental data into different sections of 120 seconds, and treat each section as a steady

state, where the time averaged behavioural quantities were calculated. More details on the

tracking and analysis are available in the SI.
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