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Synthetic Lethality (SL) is a promising concept in cancer research. A number of computational 

methods have been developed to predict SL in cancer metabolism, among which our network-

based computational approach, based on genetic Minimal Cut Sets (gMCSs), can be found. A 

major challenge of these approaches to SL is to systematically consider tumor environment, 

which is particularly relevant in cancer metabolism. Here, we propose a novel definition of SL 

for cancer metabolism that integrates genetic interactions and nutrient availability in the 

environment. We extend our gMCSs approach to determine this new family of metabolic 

synthetic lethal interactions. A computational and experimental proof-of-concept is presented 

for predicting the lethality of dihydrofolate reductase inhibition in different environments. 

Finally, our novel approach is applied to identify extracellular nutrient dependences of tumor 

cells, elucidating cholesterol and myo-inositol depletion as potential vulnerabilities in different 

malignancies.  
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Introduction

The main challenge of precision oncology is to be able to translate accumulating –omics data 

into actionable treatments, personalized for individual patients (Schüssler-Fiorenza Rose et al., 

2019). Synthetic Lethality (SL) define as a type of genetic interaction where the co-occurrence 

of two (or more) genetic events results in cellular death, while the occurrence of either event on 

its own is compatible with cell viability represents a promising approach (Iglehart and Silver, 

2009). Given the underlying genetic variations in tumor cells, SL largely expands the number of 

possible drug targets and creates an opportunity for more selective therapies (Rehman et al., 

2010).

Extensive work has been done to predict SL in cancer using both experimental and 

computational approaches (Jerby-Arnon et al., 2014; Guo et al., 2016; McDonald et al., 2017; 

Carazo et al., 2019). These approaches have been mainly driven by the availability of large-

scale gene knockout screening data for an increasing number of cancer cell lines (Tsherniak et 

al., 2017; Ghandi et al., 2019). Importantly, they provide an experimental in vitro measure of 

cancer gene essentiality, which can be integrated with genomic and transcriptomic data in order 

to hypothesize SL and identify response biomarkers. 

Cancer metabolism is an ideal target to exploit the concept of synthetic lethality. Metabolic 

reprogramming of tumor cells leads to phenotypes that are substantially different from the ones 

observed in their healthy counterpart cells, and that can be potentially used to elucidate novel 

therapeutic strategies (Zecchini and Frezza, 2017). Outstanding works exploiting SL in cancer 

metabolism are reported in the literature (Frezza et al., 2011; Cardaci et al., 2015; Smestad et 

al., 2018), where different vulnerabilities were identified according to the underlying genetic 

context found in tumor cells. 

We previously developed a computational framework to predict synthetic lethality in cancer 

metabolism based on the concept of genetic Minimal Cut Sets (gMCSs) (Apaolaza et al., 2017). 

Given a reference human genome-scale metabolic network, such as Recon3D (Brunk et al., 

2018), gMCSs define combinations of gene knockout perturbations that block a particular 
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metabolic target, in our case metabolites that are essential for cellular growth, e.g. nucleotides 

for DNA, amino acids for protein, lipids for cell membranes, etc. Using gene expression data as 

a proxy for the activity of metabolic enzymes, identified gMCSs were used to predict metabolic 

vulnerabilities in cancer. Our in-silico (network-based) approach was validated using large-scale 

in vitro gene-knockout screening data and in vitro functional studies in multiple myeloma.

Despite these promising results, the application of SL to cancer metabolism has still different 

challenges. One of them is the integration of tumor environment in the prediction of SL 

(Rancati et al., 2018). Certainly, the presence/deprivation of certain nutrients in the environment 

could modify the metabolic landscape and explain tumor resistance or sensitivity to metabolic 

targets (Halbrook et al., 2019; Tajan et al., 2021). However, this topic has not been 

systematically explored in current approaches to SL in cancer metabolism. In this article, we 

propose a new definition of SL that integrates tumor environment and extend our previous 

computational gMCSs approach to search for this family of synthetic lethal interactions. A 

computational and experimental proof-of-concept is presented for predicting the lethality in 

different environments of a well-studied drug target in cancer metabolism, dihydrofolate 

reductase (DHFR) (Vander Heiden, 2011). Finally, our novel approach is applied to predict 

extracellular nutrient dependences of in vitro cancer cell lines. We identified cholesterol and 

myo-inositol depletion as promising vulnerabilities of different tumors.  

Results

Tumor nutrient environment and synthetic lethality

Figure 1 shows an example metabolic network under two different culture mediums 

(environmental contexts), CM1 and CM2, where metabolite C is essential for tumor growth. 

CM1 consists of a unique nutrient (M1) (Figure 1a). Under CM1, g1 and g2 form a synthetic 

lethal pair because their simultaneous inhibition blocks biomass production while individual 

inhibitions do not (Figure 1b). Note here that, if we consider a genetic context where g2 is not 

active (due to low expression, deletion or loss-of-function mutation, for example), g1 becomes 

an essential gene in this given context (Figure 1c).
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Figure 1. Synthetic Lethality in 2 different environmental contexts. (a) Example metabolic network 

under Culture Medium 1 (CM1). We have 5 reactions (rE1, r1, r2, r3, r4), 4 metabolites (M1, A, B, C) and 3 

genes (g1, g2, g3). rE1 is an input exchange reaction and represents the availability of M1. We have 2 

gMCSs; (b) g1 and g2 are synthetic lethals under CM1. (c) If g2 is not active (red dotted line), the 

inhibition of g1 is essential under CM1. (d) Example metabolic network under Culture Medium 2 (CM2). 

With respect to the metabolic network in (a), we have 2 additional reactions (rE2, r5) and 1 additional 

metabolite (M2). rE2 is an input exchange reaction and represents the availability of M2. We have 1 

gMCS and 2 ngMCSs; (e) g1 and g2 are not synthetic lethal under CM2 due to the alternative pathway 

via M2 degradation (in green). (f) The inhibition of g1 and g2 and deprivation of M2 in the metabolic 

network from (d) renders cellular proliferation impossible. Gray dotted lines stand for not active/not 

present reactions/metabolites. 

On the other hand, when trying to translate these findings to the network in CM2, due to the 

additional presence of M2 with respect to CM1 (Figure 1d), the simultaneous knock-out of the 

two genes (g1 and g2) is not lethal anymore (Figure 1e). This example illustrates that SL is 

dependent on the environmental context and a more general definition of SL is necessary in 

cancer metabolism in order to consider it together with the underlying genetic context. Here, we 

propose to identify synthetic lethal interactions involving genes but also nutrients in the 

environment. 
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In our example, Figure 1f shows an example of synthetic lethal involving two genes and one 

nutrient: {g1, g2, M2}, i.e. the lack of activity of g1 and g2 and the deprivation of nutrient M2 

leads to cellular death. In a particular context where M2 is not present in the environment and g2 

is not active, g1 remains essential. Similarly, in other context where g1 and g2 are not active, the 

depletion of M2 is lethal, i.e. cellular growth is dependent on M2 availability. Thus, this 

definition of SL is more general and allows us to identify both genetic and extracellular nutrient 

dependencies of tumor cells.    

In order to be able to systematically identify this novel family of synthetic lethals, we extend 

our previous network-based approach, based on the genetic Minimal Cut Sets (gMCSs), leading 

to the concept of nutrient-genetic Minimal Cut Sets (ngMCSs). While gMCSs define minimal 

subsets of gene knockouts perturbations that lead to cellular death, ngMCSs incorporate nutrient 

deprivations as part of the predicted synthetic lethal interactions. Figure 1a,d show the list of 

gMCSs and ngMCSs for the 2 environments considered. 

In genome-scale metabolic networks, nutrient deprivations can be modelled as the knockout of 

input exchange reactions, which represent the uptake of nutrients. In Figure 1, rE1 and rE2 are the 

input exchange reactions associated with the uptake of M1 and M2, respectively. Thus, ngMCSs 

involve gene knockouts but also input exchange reaction knockouts. For example, ngMCS2:{g1, 

g2, M2} involves the gene knockouts of g1 and g2 and the reaction knockout of rE2, which is 

equivalent to the deprivation of M2. Our previously developed tool for the calculation of 

gMCSs, implemented in the COBRA toolbox (Heirendt et al., 2019), was amended to include 

the knockout of input exchange reaction in the solution space and calculate ngMCSs. Full 

details can be found in Methods section and Supplementary Data 1.

Lethality of DHFR inhibition in different environments 

As a proof-of-concept of our ngMCSs approach, we investigated a well-known metabolic target 

in cancer: dihydrofolate reductase (DHFR) (Luengo et al., 2017). The inhibition of DHFR has 

been proven lethal in different cancer cell lines under standard growth medium conditions 

(Zheng et al., 2018). Similarly, when we applied our gMCS approach to Recon3D (Brunk et al., 
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2018), a high-quality reference human genome-scale metabolic network, under RPMI growth 

medium conditions, the same result regarding DHFR essentiality was obtained (see Methods 

section). On the other hand, in a more complex tumor environment where all input nutrients 

annotated in Recon3D were available, we determined 17 gMCSs and 291 ngMCSs involving 

DHFR (Supplementary Data 2). We identified 2 ngMCSs that involve DHFR and exclusively 

nutrients not included in standard RPMI growth medium (ngMCS5 and ngMCS289 detailed in 

Supplementary Data 2). For illustration, one of them involves {DHFR, thymidine, 

dihydrothymine, thymine}. Since thymidine, dihydrothymine and thymine are not part of the 

RPMI growth medium, this ngMCS indicates the essentiality of DHFR under these in vitro 

conditions and support our ngMCS approach in a general context.  

Figure 2. Predicted synthetic lethals involving DHFR with thymidine and hypoxanthine in the 

growth medium. (a) 4 genetic Minimal Cut Sets (gMCSs) and 2 nutrient-genetic Minimal Cut Sets 

(ngMCSs) involving DHFR. They were derived from Recon3D under the RPMI1640 growth medium 

plus thymidine and hypoxanthine; (b) Simplified network of metabolites and enzymes implied in the 

synthesis of purines and pyrimidines, emphasizing the role of DHFR, Thymidine and Hypoxanthine. 

Abbreviations: DHF: dihydrofolate; THF: tetrahydrofolate; IMP: inosinic acid; dTMP: 5-Thymidylic 

acid; DHFR: dihydrofolate reductase; PNP: purine nucleoside phosphorylase; HPRT1: hypoxanthine 

phosphoribosyltransferase 1; XDH: xanthine dehydrogenase; GMPS: Guanine Monophosphate Synthase; 

TK1: thymidine kinase 1; TK2: thymidine kinase 1; SLC29A2: solute carrier family 29 member 2.
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Among the list of ngMCSs mentioned above, we identified 2 nutrients which have been 

previously associated with resistance to DHFR inhibition, namely, thymidine and hypoxanthine 

(Zheng et al., 2018). In order to clarify our approach in a simpler environmental context, we re-

calculated gMCSs and ngMCSs under the RPMI growth medium plus thymidine and 

hypoxanthine. Under this scenario, the list of gMCSs and ngMCSs involving DHFR is shown in 

Figure 2a. We have 2 ngMCSs, namely {DHFR, Thymidine} and {DHFR, Hypoxanthine}, 

which implies that the deprivation of either thymidine or hypoxanthine makes DHFR essential, 

as observed under standard RPMI growth medium. From a different angle, since DHFR is 

required in the de novo synthesis pathway of purines and pyrimidines, both thymidine and 

hypoxanthine are required to rescue proliferation upon DHFR knockout (Figure 2b). In addition, 

we have 4 gMCSs (Figure 2a), which indicate that the alternative salvage pathways through 

thymidine and hypoxanthine requires 1) the presence of the transporter SLC29A2 and 2) key 

enzymes, namely TK1 or TK2 for thymidine degradation, while HPRT1 or PNP or (GMPS and 

XDH) for hypoxanthine degradation (Figure 2b).

To validate our hypothesis, we conducted experimental study in 3 different cancer cell lines: 

JVM2, HT29 and PF382. We used Methotrexate (MTX) for selective inhibition of DHFR. We 

first calculated GI50 for these cell lines and validated their sensitivity (IC50 < 50 nM) (Figure 

3a). Second, we showed that the decrease in proliferation mediated by MTX is rescued when 

both thymidine and hypoxanthine are added into the growth medium (Figure 3b), in line with 

our computational predictions described above. A similar result was found when thymidine and 

hypoxanthine was added following DHFR silencing (Figure 3c), except for one of the siRNAs 

in JVM2 where no effect was observed. Note here that both DHFR siRNAs efficiently 

decreased DHFR expression in the three cell lines analyzed as detected by qRT-PCR (Fig. 3d). 

Finally, coherent gene expression of SLC29A2, TK1 and HPRT1 was observed in the three cell 

lines considered, according to CCLE (Cancer Cell Line Encyclopedia) (Ghandi et al., 2019) (see 

Supplementary Table 1), which enable alternative salvage pathways for purine and pyrimidine 

synthesis through thymidine and hypoxanthine, respectively. 
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Figure 3. In-vitro experimental validation of DHFR inhibition with hypoxanthine and thymidine in 

the growth medium. a) GI50 values of MTX for PF-382, JVM-2 and HT-29 cell lines. b) Proliferation 

of PF-382, JVM-2 and HT-29 cell lines treated with different doses of MTX for 96h in presence or 

absence of Hypoxanthine-Thymidine. Data represent mean ± standard deviation of at least two 

experiments. c) Proliferation of PF-382, JVM-2 and HT-29 cell lines nucleofected with siRNAs targeted 

to DHFR gene in presence or absence of Hypoxanthine-Thymidine was studied by MTS at day 6 after 

nucleofection. The proliferation percentage refers to cells nucleofected with a negative control siRNA. 

Data represent mean ± standard deviation of at least two experiments. d) mRNA expression 

of DHFR gene 48 h after nucleofection with the specific siRNAs. Data are referred to GUS gene and an 

experimental group nucleofected with negative control siRNA. Data represent mean ± standard deviation 

of at least two experiments. MTX: methotrexate; HT: Hypoxanthine-Thymidine.

Considering the experimental data presented above, our ngMCSs approach was successful in 

determining in which environmental contexts DHFR inhibition is lethal in cancer. Based on our 

computational approach, the opposite case was explored below, i.e. which genetic context 

makes lethal an extracellular nutrient perturbation. 
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Extracellular nutrient dependences of tumor cells

Our ngMCS approach can also be used to systematically identify context-specific nutrient 

dependences of tumor cells, i.e. supply of extracellular metabolites that are essential for tumor 

proliferation in a particular genetic context. To illustrate this, we searched for ngMCSs in 

Recon3D under RPMI growth medium conditions (see Methods section). We identified 41 

ngMCSs (Supplementary Data 2), which involve 8 nutrients: L-asparagine, L-arginine, 

cholesterol, choline, D-glucose, L-glutamine, myo-Inositol and L-tyrosine. We discarded for 

further analysis choline and D-glucose because the associated genes in their ngMCSs show 

consistent and high expression and context-specific insights were not obtained. The opposite 

occurs with L-tyrosine, whose associated genes in the ngMCSs are lowly expressed in most cell 

lines.  Thus, we focus on the other 6 nutrients (Figure 4a). 

The dependency on extracellular L-asparagine in samples with loss of asparagine synthetase 

(ASNS) has been long studied in cancer research (Lazarus et al., 1969). In fact, L-asparagine 

depletion via asparaginase is an approved therapeutic strategy for acute lymphoblastic leukemia, 

and it is being investigated in solid tumors (Li et al., 2019). The dependence on extracellular L-

arginine and L-glutamine in samples with loss of glutamine synthetase (GLUL) and 

Argininosuccinate Synthase 1 (ASS1), respectively, has been validated with in vitro 

experiments of nutrient depletion and barcode genetic screens (Li et al., 2019). The clinical 

importance of the uptake of L-arginine and L-glutamine in different tumors has received much 

attention in the last years (Zhang et al., 2017; Chalishazar et al., 2019).

In the case of L-arginine, we also identified the role of Carbamoyl-Phosphate Synthase 1 

(CPS1), which is required for de novo biosynthesis of L-citrulline. L-citrulline is essential for de 

novo synthesis of L-arginine, but it is not present in the RPMI growth medium and, thus, its 

availability relies on de novo synthesis pathway via CPS1 and other genes (see Supplementary 

Data 2). CPS1 is a bottleneck in de novo synthesis of L-citrulline, being only expressed in 

intestinal epithelial cells and liver cells. Consequently, L-arginine is essential in most cases 

under RPMI growth medium unless L-citrulline is additionally supplemented, which was 
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precisely the strategy followed in Li et al., 2019 in order to demonstrate the lethal interaction 

between L-arginine depletion and loss of ASS1. This insight again reinforces the importance of 

the tumor environment to predict synthetic lethality. 

Figure 4. Extracellular nutrient dependences of in vitro cancer cell lines. a) Relevant ngMCSs 

involving L-Asparagine, L-Glutamine, L-Arginine, Myo-Inositol and Cholesterol. b) Expression levels of 

the most limiting gene in the ngMCSs associated with Cholesterol in 18 auxotrophic and 18 prototrophic 

cell lines. Auxotrophic cell lines were defined as those where the most limiting gene has an expression 

level below 1 TPM. For comparison, we took the same number of prototrophic cell lines; c) CERES 

scores for LDLR in the cell lines shown in b). The more negative CERES scores are, the more cellular 

proliferation will be decreased; d) Expression levels of the most limiting gene in the ngMCSs associated 

with Myo-Inositol in 45 auxotrophic and 45 prototrophic cell lines. e) CERES scores for SLC5A3 in the 

cell lines shown in d). Abbreviations: ‘Aux.’ refers to auxotrophic cell lines, e.g. Aux. ALL refers to 

auxotrophic ALL cell lines. 
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On the other hand, the dependence on extracellular cholesterol in tumors with loss of squalene 

monooxygenase (SQLE) was demonstrated in lymphoma (Garcia-Bermudez et al., 2019). They 

also showed that the inhibition of the low-density lipoprotein (LDL) receptor (LDLR) was a 

good proxy for cholesterol depletion. In addition to SQLE, our ngMCS approach in conjunction 

with RNA-seq data from CCLE (Ghandi et al., 2019), allow us to identify other genes implied 

in cholesterol auxotrophic cell lines: NSDHL, SC5D, FDFT1 and EBP. We identified 18 cell 

lines whose dependence on extracellular cholesterol was caused by the loss of one of these 5 

genes, assuming a threshold of expression of 1 TPM. In agreement with the work of Garcia-

Bermudez et al., 2019, 8 out of these 18 cholesterol auxotrophic cell lines are derived from 

lymphoma; however, we also detected 3 cell lines from endometrial adenocarcinoma (Figure 

4b). For comparison, Figure 4b also includes 18 cell lines that are not dependent on extracellular 

cholesterol (cholesterol prototrophic cell lines), particularly those with the highest expression of 

the genes involved in the ngMCs associated with cholesterol. Using large-scale silencing data 

from DepMap (Tsherniak et al., 2017), we observed a similar effect of LDLR down-regulation 

in both lymphoma and endometrium cholesterol auxotrophic cancer cell lines, substantially 

superior than the one found in cholesterol prototrophic cell lines (Figure 4c). 

In addition, patients with AML and loss of inositol-3-phosphate synthase 1 (ISYNA1) have 

shown a dependency on extracellular myo-Inositol (Wei et al., 2020). In this study, the 

inhibition of the myo-Inositol transporter SLC5A3 was presented as a good proxy for myo-

Inositol depletion. Again, using RNA-seq data from CCLE, we identified 45 myo-Inositol 

auxotrophic cell lines, assuming a threshold of expression of 1 TPM for ISYNA1. Two of these 

cell lines are derived from AML; however, 5 and 6 of these cell lines correspond to acute 

lymphoblastic leukemia (ALL) and colorectal adenocarcinoma (CA) (Figure 4d). For 

comparison, Figure 4d also includes 45 cell lines that are not dependent on extracellular myo-

Inositol, particularly those with the highest expression of ISYNA1. Using DepMap data, we 

observed that the most extreme effect of SLC5A3 down-regulation was found in ALL cell lines; 

however, we could not demonstrate a similar performance in colorectal cancer (Figure 4e).
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Discussion

There is an increasing body of literature evidencing that in-vivo resistance to metabolic 

vulnerabilities identified in-vitro could be mediated by alternative pathways driven by nutrients 

typically not included in standard growth media. This is illustrated here with our study about 

DHFR inhibition, whose anti-proliferative effect under RPMI growth medium is compensated 

with the addition of thymidine and hypoxanthine. There are other relevant cases in the literature. 

For example, it was recently reported that the supplementation of uridine rescues the anti-

leukemic effect of dihydroorotate dehydrogenase inhibition (Sykes et al., 2016). A similar result 

was found in pancreatic ductal adenocarcinoma, where tumor-associated macrophages release 

pyrimidines to the extracellular medium which confer resistance to gemcitabine (Halbrook et 

al., 2019). On the other hand, restricting the availability of certain nutrients for tumor cells is an 

emergent strategy in cancer research. The dependence on L-asparagine in ALL is one 

paradigmatic example that is used clinically in patients with acute lymphoblastic leukemia. 

Other ongoing works include cholesterol depletion in lymphoma (Garcia-Bermudez et al., 2019) 

and myo-inositol depletion in AML (Wei et al., 2020), which illustrate that this therapeutic 

strategy could be exploited in wider settings. All together emphasizes the importance of 

systematically considering the nutrient environment to target cancer metabolism via synthetic 

lethality approaches (Muir and Vander Heiden, 2018). 

Here, we propose a novel family of metabolic synthetic lethal interactions, which include genes 

but also nutrients in the environment, going beyond existing definitions in the literature. For 

their calculation, we extend our previously developed computational approach to identify 

synthetic lethal interactions in cancer metabolism (Apaolaza et al., 2017). In particular, we 

move from genetic Minimal Cut Sets, gMCSs, to nutrient-genetic Minimal Cut Sets, ngMCSs. 

While gMCSs define minimal subsets of gene knockouts perturbations that lead to cellular 

death, ngMCSs incorporate extracellular nutrient deprivation as part of the predicted synthetic 

lethal interactions. The ngMCS approach is a more flexible framework that allows us to predict 

context-specific genetic and nutritional perturbations that lead to cellular death. 
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Our computational tool could help to assess previously identified synthetic lethal interactions in 

more complex environmental scenarios and identify combinatorial therapies that additionally 

target alternative metabolic pathways. For example, based on the gMCSs shown in Figure 2, 

DHFR inhibition could be combined with SLC29A2 inhibition to avoid the uptake of 

hypoxanthine and disrupt the salvage pathway for purines biosynthesis. Our ngMCS approach 

could also predict nutrient restriction strategies that strengthen the efficacy of metabolic targets 

identified in vitro. This was illustrated in Figure 2, where restricting the availability of 

thymidine or hypoxanthine makes more effective the inhibition of DHFR in tumor cells. From 

another perspective, our approach opens new avenues to systematically identify novel response 

biomarkers to existing metabolic treatments, beyond frequently used genomic biomarkers 

(Setton et al., 2021). 

In addition, based on RNA-seq data, the ngMCS approach can be used to predict extracellular 

nutrient dependences of tumor cells. In our analysis, summarized in Figure 4, we found that the 

lethality of cholesterol depletion previously reported in lymphoma can be extended to a 

subgroup of endometrial adenocarcinoma cell lines. Similarly, we pose the relevance of myo-

Inositol depletion in acute lymphoblastic leukemia, going beyond previous results in acute 

myeloid leukemia. Although further work is required to assess the clinical relevance of these 

results, they illustrate the importance of studying more systematically the role of tumor 

environment in order to identify metabolic vulnerabilities.  

The study of tumor environment and nutrient availability requires the use of metabolomic 

approaches. Availability of metabolomics data in different biofluids is growing day-by-day in 

cancer studies (Schraw et al., 2019); however, metabolomics studies in tumor extracellular 

microenvironment are less frequent but crucial to understand metabolic activity and  identify 

metabolic vulnerabilities (Sullivan et al., 2019; García-Canaveras et al., 2019). Once this 

information becomes available for different tumors, our ngMCSs approach constitutes an 

elegant strategy to integrate genomics, transcriptomics and metabolomic data with genome-

scale metabolic networks and predict synthetic lethals and metabolic vulnerabilities in cancer. 
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Methods   

Metabolic Model

For the results presented above, we use Recon3D_3.01 as reference human genome-scale 

metabolic network (Brunk et al., 2018), which is available in https://www.vmh.life/. 

Recon3D_3.01 involves 13,543 reactions, where collectively participate 4,138 metabolites and 

3,695 genes. Among them, we have a biomass reaction, which integrates essential metabolic 

requirements for cellular proliferation. The flux through the biomass reaction represents the 

proliferation rate, an important metabolic task in cancer studies. Note here that we corrected 

annotation errors previously identified in Recon 2 (Apaolaza et al., 2017; Pey et al., 2017) and 

inherited in Recon3D_3.01. In addition, we deleted HMR_9797 reaction, since adenine 

deaminase function has not been reported in human cells (Ribard et al., 2003). All corrections 

are summarized in Supplementary Table 2.

In the Results section, we used three different growth medium conditions. First, we simulated 

the RPMI1640 culture medium following the nutrient availability provided by the formulation 

of  RPMI1640 with L-Glutamine (Lonza, Basel, Switzerland), similar to the one reported in 

Folger et al., 2011. Second, we simulated the most general growth medium conditions by 

enabling all input exchange fluxes of nutrients available in Recon3D_3.01. Finally, we 

simulated the RPMI1640 culture medium, as described above, plus thymidine and 

hypoxanthine, as discussed in Figure 2 and Figure 3. 

Genome-scale metabolic networks can be used to predict metabolic synthetic lethals. In this 

approach, a synthetic lethal is defined as a subset of genes whoso simultaneous removal disrupts 

the flux through the biomass reaction. The identification of synthetic lethals was done through 

our previously developed approach termed genetic Minimal Cut Sets (gMCSs) (Apaolaza et al., 

2017). gMCS define minimal subsets of gene knockouts perturbations that disrupt the flux 

through the biomass reaction. Here, we extend this concept in order to integrate the 

environmental context and nutrients availability. We described below how our previous 
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formulation is amended to incorporate nutrient deprivation in the identification of synthetic 

lethal interactions, leading to nutrient-genetic Minimal Cut Sets (ngMCSs).

Computation of nutrient-genetic Minimal Cut Sets

A central part of our gMCSs approach is the construction of the binary G matrix, where each 

row defines the reactions deleted by a minimal subset of gene knockouts. Then, based on duality 

theory and mixed-integer linear programming, we can identify minimal combinations of rows of 

G that blocks the biomass reaction. Full details can be found in Apaolaza et al. 2019 (Apaolaza 

et al., 2019). 

In genome-scale metabolic reconstructions, input exchange reactions represent the availability 

of different nutrients in the environment. These reactions do not include any genetic association 

and, consequently, they cannot be blocked through any gene knockout, being their associated 

columns in G always zero. In order to consider their removal, which enables us to model the 

deprivation of nutrients in the environment, the G matrix must be amended. In particular, we 

need a new row for each nutrient in the environment with all entries equal to ‘0’ except for the 

column associated with its input exchange reaction. With this simple extension of G, ngMCSs, 

which are minimal strategies to block the biomass reaction through gene knockouts and/or 

nutrient deprivations, can be determined using our previously developed algorithms for gMCSs. 

More specifically, in order to amend G matrix for the calculation of ngMCSs, we created an 

artificial gene for each different input exchange reaction present in the environment, e.g. 

gene_Ex_thymidine for the input exchange reaction of thymidine. This updated metabolic 

model was introduced as input data to our previously developed MATLAB function to calculate 

gMCSs (CalculateGeneMCS), freely available in the COBRA Toolbox (Heirendt et al., 2019), 

which requires IBM ILOG CPLEX to solve the underlying mixed-integer linear programming 

models. In this setting, the result could be both gMCSs and ngMCSs. We modified our 

MATLAB function to allow the user to calculate ngMCSs in the COBRA Toolbox (code 

available in Supplementary Data 1).
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For the study of the lethality of DHFR, we followed two different strategies to calculate 

ngMCSs in the most complex environment with all nutrients present in Recon3D_3.01 

available. First, we explored all possible combinations of gene knockouts and nutrient 

deprivations. Second, combinations of the DHFR knockout and nutrient deprivations were 

directly analyzed. Note here that CalculateGeneMCS function can restrict the search space 

among a predefined list of genes (gene_set optional parameter). The resulting gMCSs and 

ngMCSs are detailed in Supplementary Data 2. A similar analysis was done for the environment 

defined by the nutrients in the RPMI growth medium plus thymidine and hypoxanthine. The list 

of obtained gMCSs and ngMCSs are shown in Figure 2. For the study of extracellular nutrient 

dependencies of cancer cell lines, we considered all possible combinations of gene knockouts 

and deprivations of nutrients available in the RPMI growth medium. The list of ngMCSs can be 

also found in Supplementary Data 2. These results were computed with Intel(R) Xeon(R) Silver 

4110 CPU @ 2.10GHz processors, limiting to 8 cores and 8 GB of RAM. A time limit of 60 

seconds was set for each solution derived from the function CalculateGeneMCS.      

Computational modelling of DHFR knockout

The knockout of DHFR (dihydrofolate reductase) leads to the accumulation of DHF 

(dihydrofolate), which blocks the enzyme AICART (aminoimidazole carboxamide 

ribonucleotide transformylase) (Funk et al., 2013). At the same time, the inhibition of AICART 

increases the levels of 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranosyl 5′-monophosphate 

(AICAR), which inhibits adenosine deaminase (ADA) and AMP deaminase (AMPDA) (Funk et 

al., 2013). In summary, in our presented analysis, the knockout of DHFR involves the removal 

of their associated reactions in Recon3D_3.01 and, indirectly, the reactions associated with 

AICART, ADA and AMPDA.

Computational modelling of extracellular nutrient dependences in cancer cell lines

We neglected 5 reactions in Recon3D_3.01 annotated to protein degradation, since the 

metabolism of macromolecules is not well represented, leading to unbalanced and meaningless 

cycles. For consistency, we also deleted the availability of albumin from our simulations under 
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the RPMI growth medium. This assumption does not affect the main results obtained for 

cholesterol and myo-Inositol.

Cell culture

The cell lines PF-382 and JVM-2 were maintained in culture in RPMI1640 medium (Gibco, 

Grand Island, NY) and HT-29 cells with McCoy’s 5a medium (Gibco, Grand Island, NY), all of 

them supplemented with 10% fetal bovine serum (Gibco, Grand Island, NY) and 

penicillin/streptomycin (BioWhitaker, Walkersvill, MD) at 37 °C in a humid atmosphere 

containing 5% CO2. Cell lines were obtained from the DSMZ or the American Type Culture 

Collection (ATCC). All cell lines were authenticated by performing a short tandem repeat allele 

profile and were tested for mycoplasma (MycoAlert Sample Kit, Cambrex), obtaining no 

positive results.

Cell proliferation assay

Cell proliferation was analyzed using the CellTiter 96 Aqueous One Solution Cell Proliferation 

Assay (Promega, Madison, W). This is a colorimetric method for determining the number of 

viable cells in proliferation. For the assay, cells were cultured by triplicate in 96-well plates, PF-

382 at a density of 1x106 cells/mL (100.000 cells/well, 100µL/well) and JVM-2 at a density of 

2x105 cells/mL (20.000 cells/well, 100µL/well). HT-29 cells were obtained from 80-90% 

confluent flasks and 100 µL of cells were seeded at a density of 5000 cells /well in 96-well 

plates by triplicate. Before addition of the compound, adherent cells were allowed to attach to 

the bottom of the wells for 12 hours. In all cases, only the 60 inner wells were used to avoid any 

border effects.

After 96 hours of treatment with different doses of methotrexate (MTX) (Selleckchem, TX, 

USA), plates with suspension cells were centrifuged at 800 g for 10 minutes and medium was 

removed. The plates with adherent cells were flicked to remove medium. Then, cells were 

incubated with 100 μL/well of medium and 20 μL/well of CellTiter 96 Aqueous One Solution 

reagent. After 1-3 hours of incubation at 37 ºC, the plates were incubated for 1-4 hours, 
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depending on the cell line at 37 ºC in a humidified, 5 % CO2 atmosphere. The absorbance was 

recorded at 490 nm and 640 nm as a reference wavelength, using 96-well plate readers until 

absorbance of control cells without treatment was around 0.8. The background absorbance was 

measured in wells with only cell line medium and solution reagent. First, the average of the 

absorbance from the control wells was subtracted from all other absorbance values. Data were 

calculated as the percentage of total absorbance of treated cells/absorbance of non-treated cells. 

The GI50 values of the different compounds were determined using non-linear regression plots 

with the GraphPad Prism v5 software.

MTX treatment

PF-382, JVM-2 and HT-29 cells were seeded by triplicate in 96-well plates at 100000, 20000 

and 5000 cells per well. HT-29 cells were plated 24 hours before treatment. Then, all cell lines 

were treated with 20, 50, 75 and 100nM of MTX (Selleckchem, TX, USA) in presence or 

absence of 100μM hypoxanthine and 16μM thymidine (HT) (ThermoFisher Scientific). The cell 

proliferation assay was performed 96 hours after as described above. First, the average of the 

absorbance from the control wells was subtracted from all other absorbance values. Data were 

calculated as the percentage of total absorbance of treated cells/absorbance of non-treated cells.

Cell transfection

Cells were passaged 24 h before nucleofection and culture was divided into two parts. One 

continu. One continues growing under same conditions (absence of HT) while the other was 

supplemented with 100μM hypoxanthine and 16μM thymidine. The transfection of siRNAs was 

done with the Nucleofector II device (Amaxa GmbH, Köln, Germany) following the Amaxa 

guidelines. Briefly, 1 × 106 of PF-382 and JVM-2 cells were resuspended in 100 µL of 

supplemented culture medium, with our without HT, with 75 nM of DHFR siRNAs or Silencer 

Select Negative Control-1 siRNA (Ambion, Austin, TX) and nucleofected with the Amaxa 

nucleofector apparatus using programs C-009 and C-006, respectively. In the case of HT-29, 
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siRNAs were transfected using lipofectamine transfection reagent 2000 (Invitrogen, Carlsbad, 

CA) according to manufacturer’s protocol. Briefly, HT-29 cells (50,000 cells per well) were 

seeded in a six-well plate with antibiotic-free medium 24 h before transfection. Cells were then 

incubated with transfection mixtures containing 75 nM of siRNAs or Silencer Select Negative 

Control-1 siRNA (Ambion, Austin, TX) for 4 h. Then, medium was replaced with full culture 

medium. Transfection efficiency was determined by flow cytometry using the BLOCK IT 

Fluorescent Oligo (Invitrogen Life Technologies, Paisley, UK). We used four different siRNAs 

against DHFR target, two for the isoforms 1, 3 and 4 and another two for the isoform 2 

(siDHFR-134 A: AAGUCUAGAUGAUGCCUUA; siDHFR-134 B: 

AACCAGAAUUAGCAAAUAA; siDHFR-2 A: AGUACAAAUUUGAAGUAUA; siDHFR-2 

B: AAAUUGAUUUGGAGAAAUA) to demonstrate that the results obtained with DHFR 

siRNA nucleofection are not due to a combination of inconsistent silencing and sequence 

specific off-target effects. Silencer Select Negative Control-1 siRNA was used to demonstrate 

that the nucleofection did not induce non-specific effects on gene expression. Nucleofection was 

performed twice with a 24 h interval. After 48 h of the second nucleofection, the DHFR mRNA 

expression was analyzed by qRT-PCR (GUS was employed as the reference gene). Cell 

proliferation was analyzed 0, 2, 4 and 6 days after two repetitive transfections as described 

above. HT were refreshed every two days. First, the average of the absorbance from the control 

wells was subtracted from all other absorbance values. Data were calculated as the percentage 

of total absorbance of DHFR transfected cells/absorbance of control cells. 

Quantitative RT-PCR

The expression of DHFR was analyzed by qRT-PCR in PF-382, JVM-2 and HT-29 cell lines. 

First, total mRNA was extracted with Trizol Reagent 5791 (Life Technologies, Carlsbad, CA, 

USA) following the manufacturer instructions. RNA concentration was quantified using 

NanoDrop Specthophotometer (NanoDrop Technologies, USA). cDNA was synthesized from 

1 µg of total RNA using the PrimeScript RT reagent kit (Perfect Real Time) (cat. no. RR037A, 

TaKaRa) following the manufacturer’s instructions. The quality of cDNA was checked by a 
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multiplex PCR that amplifies PBGD, ABL, BCR, and β2-MG genes. qRT-PCR was performed in 

a 7300 Real-Time PCR System (Applied Biosystems), using 20 ng of cDNA in 2 µL, 1 µL of 

each primer at 5 µM (DHFR F:5ʹ-CCATTCCTGAGAAGAATCGAC-3ʹ; DHFR R:5ʹ- 

GGCATCATCTAGACTTCTGGAAA-3ʹ; GUS F: 5′-

GAAAATATGTGGTTGGAGAGCTCATT-3ʹ; GUS R:5ʹ-

CCGAGTGAAGATCCCCTTTTTA-3ʹ), 6 µL of SYBR Green PCR Master Mix 2X (cat. no. 

4334973, Applied Biosystems) in 12 µL reaction volume. The following program conditions 

were applied for qRT-PCR running: 50 °C for 2 min, 95 °C for 60 s following by 45 cycles at 

95 °C for 15 s and 60 °C for 60 s; melting program, one cycle at 95 °C for 15 s, 40 °C for 60 s 

and 95 °C for 15 s. The relative expression of each gene was quantified by the Log2(−ΔΔCt) 

method using the gene GUS as an endogenous control.
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