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Abstract

Inbreeding depression is the reduction in fitness and vigor resulting from mating of close relatives 
observed in many plant and animal species. The extent to which the genetic load of mutations 
contributing to inbreeding depression is due to rare large-effect variation versus potentially more 
common variants with very small individual effects is unknown and may be affected by population 
history. We compared the effects of outcrossing and self-fertilization on 18 traits in a landrace 
population of maize, which underwent a population bottleneck during domestication, and a neighboring 
population of its wild relative teosinte. Inbreeding depression was greater in maize than teosinte for 15 
of 18 traits, congruent with the greater segregating genetic load predicted from sequence data in the 
maize population. For many traits - and more commonly in maize - genetic variation among self-
fertilized families was less than expected based on additive and dominance variance estimated in 
outcrossed families, suggesting that a negative covariance between additive and homozygous 
dominance effects limits the variation available to selection under partial inbreeding. We identified 
quantitative trait loci (QTL) representing large-effect rare variants carried by only a single parent, which 
were more important in teosinte than maize. Teosinte also carried more putative juvenile-acting lethal 
variants identified by segregation distortion. These results suggest a mixture of mostly polygenic, small-
effect recessive variation underlying inbreeding depression, with an additional contribution from rare 
larger-effect variants that was more important in teosinte but depleted in maize following to the 
domestication bottleneck. Purging associated with the maize domestication bottleneck may have 
selected against large effect variants, but polygenic load is harder to purge and segregating mutational 
burden increased in maize compared to teosinte. 
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Introduction

Darwin (1876) demonstrated experimentally the detrimental effect of self-fertilization in 
numerous plant species, including an average reduction of 17% in the height of adult maize (Zea mays 
ssp. mays) plants derived from self-fertilization compared to outcrossing.  The reduction in vigor and 
fitness of plants due to self-fertilization is an extreme example of inbreeding depression observed across 
many species, including humans, resulting from matings of close relatives. The genetic basis for 
inbreeding depression is largely due to at least partially recessive deleterious variants whose effects are 
expressed when homozygous (Charlesworth and Charlesworth 1999). Inbreeding depression depends on 
the level and direction of genetic dominance as well as the frequency of deleterious variants, being 
maximum when these variants are at equal frequency to favorable variants (Falconer and Mackay 1996). 
Partial dominance of favorable alleles appears to be the primary gene action affecting fitness in wild 
species and yield in maize (Charlesworth and Willis 2009; Yang et al. 2017a), although overdominance at 
a subset of loci contributing a small amount of variation cannot be ruled out. Repulsion-phase linkage 
and low recombination between recessive deleterious mutations can generate pseudo-overdominance 
or associative overdominance at the level of haplotypes, contributing to the retention of deleterious 
mutations (Becher et al. 2020; Gilbert et al. 2020). 

A wide range of susceptibility to inbreeding depression is observed among plant species, with 
some species having evolved mating systems with high levels of self-fertilization accompanied by little 
inbreeding depression (Charlesworth and Charlesworth 1987, 1999; Husband and Schemske 1996). The 
ability of some species to tolerate high levels of self-fertilization is evidence for purging of recessive 
deleterious alleles during their evolution (Charlesworth and Charlesworth 1999). Variation for 
inbreeding depression also exists within species, from the sub-population to the level of individual 
parents (Schultz and Willis 1995; Fowler and Whitlock 1999; Waller et al. 2008; Escobar et al. 2008). 
Intraspecific variation for inbreeding depression impacts the evolution of mating systems (Kelly 2005a) 
and the response to selection in populations with mixed outcrossing and selfing (Edwards 2008). 

Recent research has begun to identify the genomic basis underpinning inbreeding depression, 
revealing some large-effect recessive variants segregating in natural and breeding populations (Howard 
et al. 2017; Zhang et al. 2019), substantial loss of transposable elements in some lineages (Roessler et al. 
2019), and genome-wide alterations in gene expression due to inbreeding (Paige 2010; Swanson-
Wagner et al. 2012). Some important questions about inbreeding depression remain unresolved, 
however. How much inbreeding depression is due to lethal or large-effect recessive mutations vs. 
polygenic small effect variants distributed widely throughout the genome (Charlesworth and Willis 
2009)? Although directional selection is expected to be sufficiently strong to eliminate much of the 
recessive genetic load from outcrossing populations, why is inbreeding depression for fitness-related 
traits so severe in many outcrossing species (Charlesworth and Charlesworth 1999; Charlesworth and 
Willis 2009; Troth et al. 2018)? How much inbreeding depression is expressed as lethality early in 
development vs. reduced adult vigor and fitness (Husband and Schemske 1996)? Do the additional 
components of covariances among relatives introduced by inbreeding limit the effectiveness of selection 
in mixed outcrossing and selfing species like maize (Cockerham and Weir 1984; Shaw et al. 1998; 
Edwards and Lamkey 2002; Moorad and Wade 2005)?
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The responses of genetic load and inbreeding depression to population bottlenecks are complex 
(Simons et al. 2014). Reduced population size and genetic drift can increase the frequency of some rare 
variants to fixation, resulting in an increase in the fixed genetic load, which reduces the mean fitness of 
populations independently of their level of inbreeding. In contrast, inbreeding depression due to 
segregating genetic load is expected to be reduced following bottlenecks due to the enhanced efficiency 
of purging selection in small populations (Lande and Schemske 1985; Kirkpatrick and Jarne 2000). The 
different demographic histories of maize landraces and teosinte are expected to result in differences in 
their genetic load of deleterious alleles. Wang et al. (2017) and Lozano et al. (2021) reported that maize 
has higher predicted deleterious genomic burden than teosinte, estimated based on evolutionary 
conservation (Davydov et al. 2010) or the predicted effects of amino acid substitutions (Vaser et al. 
2016) of SNPs. Importantly, Wang et al. (2017) demonstrated that maize has more fixed putative 
deleterious sites than teosinte, but such fixed deleterious variants reduce the fitness of both outbred 
and inbred progenies equally, thus they do not contribute to inbreeding depression. In contrast, maize 
has fewer segregating predicted deleterious sites than teosinte (Wang et al. 2017), leading to the 
expectation that maize should exhibit less inbreeding depression than teosinte (Waller 2021). Evidence 
for the functional importance of this predicted segregating load in maize is that hybrid vigor in crosses 
between elite maize inbred lines can be largely attributed to complementation of the predicted SNP 
burdens of different inbred parents (Yang et al. 2017a).

Large effect variants that reduce fitness are selected against, but may be maintained in 
populations at low frequency if they are recessive, masked in heterozygotes by more favorable 
dominant alleles (Charlesworth and Willis 2009). This hinders the study of genes underlying inbreeding 
depression, as large-effect deleterious variants occur at low frequency, and variants at higher frequency 
have only small effects, limiting power of detection and estimation of their effects by genome-wide 
association study (Gibson 2012). An alternative approach to the detection of specific variants is to test 
the effects of groups of variants classified by population genetic or evolutionary signatures associated 
with deleterious effects (Karczewski et al. 2020). For example, Brown and Kelly (2020) demonstrated 
that the proportion of rare alleles (the “rare allele load”) carried by inbred Mimulus lines was correlated 
to reduced fitness. In maize inbreds, rare alleles tend to have dysregulated gene expression, which is 
correlated with lower seed yield (Kremling et al. 2018). Variants in evolutionarily conserved sites tend to 
be rare in maize inbreds and complementation of such variants by common alleles in hybrids is 
associated with higher yield (Yang et al. 2017a).

Maize was domesticated from the wild grass teosinte (Zea mays ssp. parviglumis) in 
southwestern Mexico about 9,000 years ago (Matsuoka et al. 2002; Piperno et al. 2009), and the extant 
ranges of the two subspecies overlap in Mexico and Central America (Sánchez González et al. 2018). 
Following domestication, maize experienced a population bottleneck (Eyre-Walker et al. 1998; 
Beissinger et al. 2016), human selection for traits associated with easier harvest and consumption 
(Hernández Xolocotzi 1985; Yang et al. 2019), and introgression from a weedy relative, (Zea mays ssp. 
mexicana)(Hufford et al. 2013; Yang et al. 2017b). The shared evolutionary lineage and environmental 
adaptation of maize and teosinte populations that still inhabit a common range permit a comparison of 
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the evolution of inbreeding depression in response to their distinct post-domestication selection 
pressures and demographies. 

Maize and teosinte are both predominantly outcrossing species that also naturally self-fertilize 
at a low rate (Hufford et al. 2011, 2012b). Modern maize hybrids are created by first selecting highly 
homozygous inbred lines, followed by crossing unrelated to restore heterozygosity across much of the 
genome, resulting in hybrid vigor (Holland 2009). Selection during inbreeding and among resulting 
inbred lines provides ample opportunity for purging large effect deleterious variants as well as polygenic 
genetic load, since commercial inbreds are selected for relatively high levels of pollen or seed 
production (Goodman et al. 2014). The rate of genetic gain for yield in maize hybrids was greater than in 
maize inbreds, resulting in an increase in the amount of inbreeding depression over generations of yield 
selection in modern maize (Meghji et al. 1984; Lamkey and Smith 1987). In contrast to commercial 
hybrids, maize landraces are maintained as open-pollinated populations selected for local adaptation as 
well as for ear and kernel type, although migration among populations arising from seed exchange 
among farmers is also common (Bellon and Brush 1994; Pressoir and Berthaud 2004; Bellon et al. 2018; 
Samayoa et al. 2018). Similarly, teosinte populations are predominantly outcrossing; however, 
reductions in teosinte habitat area may result in inbreeding due to small effective population sizes 
(Pyhäjärvi et al. 2013; Sánchez González et al. 2018). 

In this study we investigated the genetic architecture of inbreeding depression in maize and 
teosinte by self- and cross-mating samples of 40 and 49 outbred plants sampled from a maize landrace 
and a teosinte population, respectively, collected from nearby locations. The resulting large family sizes 
provide good power for estimating phenotypic effects of variants carried by those parents, even if the 
variants are rare in the larger populations from which the parents were sampled. We documented the 
magnitude of inbreeding depression and changes in genetic variance under inbreeding for a range of 
traits in both teosinte and maize. We compared the two populations for predicted segregating genetic 
load based on evolutionary conservation of SNP variants. We mapped the effects of rare alleles private 
to individual founders, measured the relative importance of polygenes versus detectable QTL using a 
novel mapping strategy (Figure S1), identified putative juvenile-stage lethal alleles based on linked 
segregation distortion, and estimated the phenotypic effects of parental rare allele burden in the maize 
and teosinte populations to understand how domestication and the different histories of these 
populations influenced inbreeding depression and its genetic architecture. 

We also compared the effects of self-fertilization on the trait genotypic variance among selfed 
families in maize and teosinte. Although genotypic variance in outbred populations is composed of 
additive, dominant, and epistatic genetic variances (Falconer and Mackay 1996), additional genetic 
covariances impact the genotypic variance under inbreeding (Cockerham and Weir 1984; Walsh and 
Lynch 2018). These additional components can impact the response to natural or artificial selection in 
populations with mixed outcrossing and selfing, such as maize and teosinte. Our mating design 
permitted estimation of additive and dominance variances in outbred individuals. Using these estimates, 
quantitative genetic theory permits prediction of the total genotypic variance among selfed family 
means under the assumption that the additive and dominance components are the only meaningful 
contributors to the inbred family genotypic variance. Deviations between the observed and predicted 
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variation among selfed family means indicate the extent to which selection among outbred individuals 
contributes to reduction or increase in inbreeding depression (Edwards 2008). 
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RESULTS AND DISCUSSION

Maize exhibits more inbreeding depression than teosinte

We evaluated 4,455 teosinte plants grouped into 49 selfed and 377 outcross full-sib families, and 4,398 
maize landrace plants grouped into 34 selfed and 89 outcross full-sib families for 18 traits related to 
domestication (Tables S1 and S2; Yang et al. 2019). The 18 measured traits were grouped into 
vegetative/flowering time, environmental response, and reproductive categories (Table 1; Yang et al. 
2019). The selfed and outcrossed progeny means were estimated while accounting for parental 
relationships and non-genetic effects using a diallel model. The coefficient of inbreeding depression 
measured as the absolute proportional change in population mean from a single generation of selfing 
was higher on average for environmental response traits within both subspecies, 21% (in teosinte) and 
36% (in maize; (Figure 1; Figure S2; Table S3). The absolute value of population mean change due to 
selfing averaged about 10% in both populations for vegetative traits and 11% in teosinte and 32% in 
maize for reproductive traits. However, the high level of inbreeding depression for environmental 
response traits was strongly affected by tiller number (TILN), which had a mean value near zero in 
outbred maize (and very little variation), such that the small numeric change in TILN due to selfing 
corresponds to a large percentage change. Removing TILN from the mean inbreeding depression effect 
calculations reduces the mean selfing effect on environmental response traits to 19% in teosinte and to 
20% in maize, which is less than the mean inbreeding depression for reproductive traits (Table S3).  
Maize had greater inbreeding depression than teosinte for 15 of 18 traits, for each trait category mean, 
and had about twice as much inbreeding depression for reproductive traits. 

The higher inbreeding depression in maize for reproductive traits is initially surprising given the 
lower number of segregating deleterious variants in maize predicted on the basis of evolutionary 
conservation by Wang et al. (2017). To investigate patterns of deleterious variation predicted  from 
sequence conservation alone, we used Genomic Evolutionary Rate Profiling (GERP) scores  calculated by 
Kistler et al. (2018) to identify putatively deleterious SNPs in our populations. Congruent with Wang et 
al. (2017) and with the higher diversity within teosinte, we identified a total of 293,720 vs. 362,145 
variants with GERP scores segregating within maize and teosinte, respectively. The number of 
segregating deleterious sites is not the sole determinant of inbreeding depression, however, because 
mutations vary for their predicted effects on fitness and for allele frequency. While the total number of 
deleterious SNPs in the population is higher in teosinte, the number of sites at which a given parent 
carries a predicted deleterious variant is higher in maize (Figure 2A; Figure S3; Table S4). Taking into 
account the predicted magnitude and zygosity of each variant, the mean burden of each of these sites is 
slightly lower in maize (Figure 2B).  Combined, the total predicted mutational burden per parent, which 
depends on both the number and effect of deleterious alleles carried by each parent, is higher in maize 
than in teosinte (Figure 2C; Figure S2, Table S4), congruent with the generally greater inbreeding 
depression observed in maize. Taken together, these observations suggest that individual maize plants 
tend to carry a larger number of more weakly deleterious variants. Consistent with this, the average 
frequency of derived alleles is higher in maize compared to teosinte (Figure 2D). 

The 15% decrease in height and the increase in days to flowering resulting from selfing in the 
maize landrace is very similar to that reported by Hallauer and Sears (1973) and Cornelius and Dudley 
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(1974) using open-pollinated populations in the North Central corn belt region of the USA. The more 
than 50% decrease in total grain weight per plant (TGWP) due to selfing observed here is greater than 
the about 40% decrease reported in the earlier studies, however. The population studied by Hallauer 
and Sears (1973) was founded by inbred lines, thus excluding the possibility of segregating recessive 
lethal alleles. It is likely that landrace populations of maize are segregating for more deleterious variants 
than are breeding populations that have been selected for productivity using randomized and replicated 
family-based breeding evaluations. Landrace maize is often selected for very specific ear and kernel 
forms and culinary uses (Hernández Xolocotzi 1985; Bellon and Brush 1994), and this may also reduce 
selection on traits related to productivity and yield in landraces. 

Linear and non-linear responses to inbreeding

As an alternative to the comparison of selfed and outcrossed progeny means from the diallel 
analysis, we also regressed trait values on the genomic inbreeding coefficient (βF) estimated from 
markers while accounting for relatedness among the individuals with genomic relationship matrices 
(Yang et al. 2019). This estimate accounts for the fine-scale variation in realized inbreeding values 
among progenies (Figure S4). The linear regression coefficients were highly correlated with (r = 0.99 in 
teosinte and 0.94 in maize) and almost exactly twice the coefficient of inbreeding (Figure 1; Table S3). 
This accords with expectation, because one generation of selfing is expected to cause inbreeding to 50% 
of complete homozygosity.  The proportion of genetic variance due to dominance estimated from 
realized relationship matrices by Yang et al. (2019) was also positively correlated with βF for each trait (r 
= 0.68 in teosinte, r = 0.63 in maize; Figure 1, Tables S5 and S6).

We also tested for quadratic regression of trait values on inbreeding coefficients in this 
framework as a test for epistasis underlying inbreeding depression (Falconer and Mackay 1996; Lynch 
and Walsh 1998). The quadratic regression coefficient was significant (p < 0.05) for plant height (PLHT), 
leaf width (LFWD), lateral branch length (LBLN), and lateral branch internode length (LBIL) in teosinte 
but not for any trait in maize. We infer that epistasis was not an important component of the genetic 
architecture of inbreeding depression for most traits in teosinte and all traits in maize. For the four traits 
where epistasis appears to be an important component of inbreeding depression, the regression slopes 
for the quadratic terms were all negative (in the same direction as the linear term), indicating that 
inbreeding depression accelerated with increasing homozygosity. This is evidence of synergistic effects 
among deleterious mutations, which may arise due to genetic complementation (Crow and Kimura 
1970; Kelly 2005b). For example, a deleterious mutation at one locus may be masked by functional 
alleles at complementary loci, so that genomic duplication buffers against the early generations of 
inbreeding, but this buffering can break down as the probability of simultaneous homozygosity at 
complementarily interacting loci increases at higher levels of inbreeding. The loss of epistasis as a 
component of inbreeding depression for PLHT, LFWD, LBLN, and LBIL in maize could be the result of the 
domestication bottleneck. Yang et al. (2019) previously demonstrated a widespread reduction in 
additive genetic variance when comparing the maize and teosinte populations studied here. The 
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reduced effective population size associated with the domestication bottleneck is expected to decrease 
epistatic variance even more strongly than additive variance (Walsh and Lynch 2018).

Reciprocal genetic effects and changes in residual variances associated with inbreeding

The diallel model employed in this study allows estimation of quantitative genetic parameters 
beyond the coefficient of inbreeding, including additive and dominance genetic variances, reciprocal 
genetic variances, separate estimates of the micro-environmental residual variances for the selfed and 
outcrossed progenies, and correlations between parental breeding values in the selfed and outcrossed 
progenies. Narrow-sense heritability estimates based on additive genetic variances were highly 
correlated (r = 0.85 in teosinte and 0.83 maize) between the previous analysis of realized relationships 
and the current diallel model. 

Separate estimation of the residual non-genetic variation associated with selfed vs. outcrossed 
progenies permits a test of the hypothesis that outbred and inbred plants differ for environmental 
variance (Falconer and Mackay 1996; Whitlock and Fowler 1999). Our results demonstrate that 
environmental variance increased with inbreeding on average only for maize vegetative and 
reproductive traits (mean increases of 40% and 20%, respectively), whereas residual environmental 
variance decreased on average with inbreeding for maize environmental response traits (mean decrease 
of 39%) and all groups of teosinte traits (decreased from 3% to 29%). The cases of decreased 
environmental variance may occur due to reduced scale associated with inbreeding, whereas the 
increased environmental variance observed for maize vegetative and reproductive traits suggests that 
partially inbred maize plants have reduced capacity for homeostasis.

Reciprocal genetic effects can include cytoplasmic, maternal, and epigenetic parent-of-origin 
effects (Gonzalo et al. 2007), which have been proposed to impact the trajectory of evolution (Räsänen 
and Kruuk 2007; Lawson et al. 2013), including in plants (Galloway et al. 2009). Based on model fit 
criteria, we observed no evidence for reciprocal genetic variance for any trait in either population. This 
suggests that the potential for maternal and parent-of-origin effects to shape the response to selection 
within these populations is limited. 

A feature of our design is the ability to estimate the breeding values for each parent in both 
their outcross and inbred progenies (Table S7) and to include the covariance between these breeding 
values in the model. The covariance of parental breeding values measured in outcrossed versus selfed 
progenies involves additive variance and a covariance between additive effects and their homozygous 
dominance deviations, and the variance among selfed progenies includes both of these terms in 
addition to some of the dominance variance and other higher order covariances  (Cockerham and Weir 
1984; Walsh and Lynch 2018). Therefore, the correlation of a parent’s breeding value between 
outcrossed and selfed progenies is expected to equal 1 if all of the genetic variance is additive and less 
than 1 when dominance and other higher order covariances are important. The correlation between 
parental breeding values across outbred and inbred progenies was r > 0.90 for all traits except EL in 
maize and LBIL in teosinte (Figure 3). These results reflect the fact that even though dominance effects 
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are important for many of the traits measured (demonstrated by the significant inbreeding depression), 
most of the genetic variance is additive, which is true across a wide range of genetic architectures (Hill et 
al. 2008).

Parent-specific inbreeding depression is negatively correlated with parental outbred breeding value

We were also able to measure the inbreeding depression for each parent separately by 
comparing the mean values of their inbred and outbred offspring (correcting for the effects of the other 
parents on outbred progenies; Figure 3; Table S7). We find very strong negative correlations between 
the parental breeding value measured in outbred offspring and the family-specific inbreeding 
depression; except for TILN in maize all correlations were negative, with most less than -0.90 (Table S3). 
Thus, although the breeding value of a parent was generally highly correlated across progeny types, the 
amount of family-specific inbreeding depression is reduced for families with higher outbred mean values 
(Figure 3). These results suggest that most of the genetic load for most traits is due to partially recessive 
alleles, such that some of the genetic load is expressed in outbred progenies, but the effect of genetic 
load is exaggerated by inbreeding and increasing the level of homozygosity at loci with unfavorable 
variants.  

The very high correlations between outbred and inbred progeny breeding values measured here 
contrast with low to moderate correlations estimated for grain yield, plant height, and grain weight from 
breeding populations by Cornelius and Dudley (1974) and Coors (1988). These comparisons, along with 
much larger proportions of dominance variance estimated for yield in several maize breeding 
populations (Edwards and Lamkey 2002; Wardyn et al. 2007) suggest that intensive selection and 
coincident bottlenecking due to maize breeding in those populations depleted additive genetic 
variation, leading to relatively higher proportions of dominance variance while decreasing inbreeding 
depression at the same time. 

Negative covariances between additive and homozygous dominance deviations reduce the variance 
among selfed families

We can predict the expected genetic variance among selfed families based on the additive and 
dominance variances estimated from outbred individuals, ignoring higher-order genetic covariance 
components (Cockerham and Weir 1984). We observed less than 90% of the expected genetic variance 
among selfed families for all but three traits in maize and for half of the traits in teosinte (Figure S5; 
Table S3). Additive-by-additive epistatic variance (VAA) cannot account for this difference, since VAA is 
expected to contribute more to variance among selfed than outbred families (Cockerham and Weir 
1984). However, epistatic variances involving dominance contribute less to the variance among selfed 
families than to the outbred progenies. Ignoring these dominance epistatic variances could result in 
overestimation of the additive and dominance variances in the outcrossed progenies and, consequently, 
overprediction of the selfed family variance. In addition to ignoring epistatic variances, we also ignored 
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higher-order single-locus genetic covariance components that contribute to genetic variation under 
inbreeding. One of these single-locus components represents the covariance between additive and 
homozygous dominance deviations (D1) that, if negative, can contribute to reduced variance among the 
selfed families (Cockerham and Weir 1984). It is possible for this covariance component to be negative 
while also having a strongly positive correlation of breeding values measured in selfed versus outcrossed 
progenies, as mostly observed here. Our results suggest that this covariance parameter is negative for 
most traits in maize, but less commonly negative in teosinte.

 Negative estimates of this covariance parameter have been reported for yield or fitness-related 
traits in maize breeding populations and in wild species (Coors 1988; Edwards and Lamkey 2002; Kelly 
and Arathi 2003; Wardyn et al. 2007). For levels of dominance between 0 and a (equal to the additive 
gene action, i.e., complete dominance), this component can be only negative when recessive alleles 
contributing to inbreeding depression are predominantly the major alleles (Figure S6; Cornelius 1988; 
Lynch and Walsh 1998; Kelly 1999; Kelly and Willis 2001), which seems unlikely for wild and 
domesticated landrace populations, and even more unlikely for improved breeding populations. 
However, for overdominance, there is a range of minor allele frequencies for the unfavorable allele that 
will generate this negative value (Figure S6). Although true overdominance is rare in maize, pseudo-
overdominance generated by repulsion phase linkages among deleterious variants appears to be 
widespread (Graham et al. 1997; Garcia et al. 2008; Larièpe et al. 2012; Yang et al. 2017a), and could 
produce the negative covariances between additive and homozygous dominance deviations observed in 
this study. In addition, it is possible that genetic variance is not independent of the mean in general, 
such that the less than expected amount of genotypic variance observed is due to a reduction in scale of 
most traits under inbreeding (although we still observe less S1 variance than expected for flowering time 
traits in maize that have a higher mean value under inbreeding). 

Rare allele effects detected by linkage scan

The rare allele linkage scan is optimized to detect the effect of a private allele carried by a single parent 
with a contrasting effect to the common alleles carried by other parents. Thus, this linkage scan 
estimates local effects of each haplotype carried by each parent (Figure 4; Figure S1; Table S8). More 
than twice as many rare allele QTL were detected in teosinte (468) than maize (173; Figures S7, S8, and 
S9, Table S8). The relative proportion of QTL detected for different trait groups was nearly identical 
within maize (29 – 36% of QTL in each group), but within teosinte, most QTL were detected for 
reproductive traits (58%, compared to 16% for environmental response and 26% for 
vegetative/flowering time traits). Numerous QTL affecting multiple traits were detected (Tables S9 and 
S10), reflecting pleiotropic or linked QTL. For example, a QTL allele on chromosome 8 carried by maize 
parent 164_8 affected six reproductive traits: cupules per row (CUPR), ear diameter (ED), grains per ear 
(GE), ear internode length (EILN), total number of grains per plant (TGPP), and weight per grain (GW; 
Figure 4); the rare founder allele reduced the ear length (EL) and consequently reduced the number of 
cupules per row (CUPR), grains per ear (GE), and total grains per plant (TGPP), while increasing 
internode length (EILN) and weight of the fewer kernels produced per plant (GW; Table S9). The plants 
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inheriting the rare allele from teosinte founder PC_O51_ID2 at a QTL on chromosome 6 were shorter 
and later-flowering, having more but smaller ears, and produced fewer but heavier seeds (Table S10).

The mean size of 2-LOD support interval across all QTL was 38 cM for maize and 26 cM for 
teosinte, indicating generally low resolution of the parent-specific rare allele QTL, due to the reliance of 
the RAS on within-family linkage. There was no evidence for QTL tending to occur in low-recombination 
regions, but the low resolution of QTL positions precludes making strong inferences from this result. 

To check how the sample size of progenies (which varies among parents) influences the rare 
allele scan results, we estimated the correlation between the number of QTL detected and the number 
of progenies per parent, observing moderate correlations within each population (r = 0.38, p = 0.04 in 
maize, r = 0.45, p = 8.3 x10-04; Figure S10).  Nevertheless, more total QTL and more QTL per parent (10 
QTL per parent in teosinte vs 5 per parent in maize on average) were detected in teosinte despite fewer 
offspring per parent (231 on average in maize compared to 182 on average in teosinte). Therefore, 
differences in family size between maize and teosinte do not appear to account for the larger number of 
QTL detected in teosinte.

Relatively few traits exhibited evidence for shared QTL positions between maize and teosinte, 
suggesting that most private allele variants detected with the RAS were unique to each population 
(Figure S11). However, we found significant non-random overlaps between RAS QTL intervals and 
individual SNPs previously detected by Chen et al. (2020) with GWAS for most traits in teosinte and 
some traits in maize (Figures S11, S12, S13, S14, S15, S16, and S17; Tables S11 and S12). This suggests 
that there is some common part of the genetic architecture identified by both methods. Further 
evidence of this are the significant correlations between the standardized effects of rare allele QTL and 
minor alleles detected by GWAS within common QTL intervals (r = 0.49 and 0.60 for additive and 
dominance effects in maize; r = 0.32 and 0.57 for additive and dominance effects in teosinte, all p < 
0.0001; Figure S18). In particular, Chen et al. (2020) demonstrated that most large-effect QTL had low 
minor allele frequency, presumably due to selection against large effect variants; the largest of those 
large-effect SNP associations were also detected in our rare allele scan as QTL, for example the major 
plant height QTL on chromosome 7 in maize and the major grain weight QTL on chromosome 4 in 
teosinte (Figure 4). 

The additive and dominance effects of RAS QTL were also strongly correlated (r = 0.83 and 0.73 
in maize and teosinte, respectively, p < 0.0001; Figure S19), congruent with GWAS results (Chen et al. 
2020). Thus, the preponderance of QTL effects detected either by GWAS or by RAS had dominance 
effects in the same direction as the major allele and also were consistent with the direction of observed 
inbreeding depression for the trait (Figure S20). In contrast to the general trends of positive major allele 
effects on reproductive traits, we nevertheless observed one GWAS association each for TGWP in maize 
and GW in teosinte and two RAS QTL for ED in teosinte with standardized major allele additive effects 
less than -1.5, representing rare favorable alleles for these traits; the dominance effects in all of these 
cases were also negative, indicating that the rare favorable alleles were also recessive. These QTL cause 
effects counter to genome-wide trends for inbreeding depression.  
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Rare QTL allele effects are associated with a minority of genetic variation and inbreeding depression

Although we detected a large number of rare allele QTL effects, the total proportion of trait 
variation that can be attributed to these QTL is low for all traits (Figure 5). Most of the variation is due to 
polygenic background effects (modeled here using principal components of the marker data), with rare-
allele scan QTL contributing an average of 26% (range 9% to 54%) of the total genetic variance in maize 
and 30% (range 23% to 41%) in teosinte. Within both populations, the mean proportion of genetic 
variance due to rare allele scan QTL was lowest for reproductive traits (24% to 25%) and largest for 
environmental response traits (33% in maize and 35% in teosinte). This may reflect stronger selection 
pressure against large effect variants affecting reproductive traits due to their higher correlation with 
fitness.

In general, the amount of observed inbreeding depression that could be accounted for by RAS 
QTL was below 20%, and the predicted direction of inbreeding depression was wrong in a handful of 
cases (Figure S21). The best predictions were made for EILN in teosinte and TILN in maize, for which 
between 40 and 50% of the observed inbreeding depression was predicted by the RAS QTL. GWAS 
associations predicted a bit more of the observed inbreeding depression, but again this was a relatively 
small proportion of the total inbreeding depression for most traits. In general, the predicted inbreeding 
depression was greater for teosinte than maize, probably due mostly to the much larger number of QTL 
detected in teosinte. In summary, our results indicate that we can detect rare variants contributing to 
inbreeding depression, but most variation for inbreeding depression appears to be due to polygenic 
small effect variants that are difficult to detect with either GWAS or RAS, are not easily purged by 
natural selection, and have increased in importance in maize compared to teosinte. 

Early seedling lethal variants inferred from segregation distortion

We sampled leaf tissue about one month after sowing; during this time 15% of maize plants and 49% of 
teosinte plants did not germinate or survive the first month to be sampled for leaf tissue. Of the plants 
that survived the first month, an additional 10% of maize plants and 3% of teosinte plants died before 
maturity. Strongly deleterious alleles, therefore, may have been purged from our self-fertilized families 
before they could contribute to inbreeding depression of the traits we measured on adult plants. We 
should be able to detect such loci by testing for segregation distortion at each marker in the families we 
were able to genotype. We caution, however, that although we removed the seed coat, teosinte varies 
for seed dormancy, a trait adaptive in natural populations (Avendaño López et al. 2011), and it is 
possible that some seeds that did not germinate may have been alive but dormant. We identified 3 
significant segregation distortion regions (SDR) across three different chromosomes in 3 self-families in 
maize landraces and 16 significant SDR on seven different chromosomes in 11 self-families in teosinte 
(Figure 6; Table S13). We checked for correspondence between SDR and six QTL for germination rate in 
teosinte previously identified by Chen et al. (2020): three of the six QTL mapped to the same 
chromosomes as SDR, one of them inside an SDR (chromosome 1) and one near an SDR (chromosome 5; 
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Figure S24). These last two cases may represent SDR caused by seed dormancy rather than by selection 
against lethal recessives, leaving 14 SDR not closely linked to a seed dormancy QTL. 

Segregation distortion was mostly observed against either one or two homozygous classes in 
both populations (Figure S22), consistent with the expectation that lethal or strongly deleterious alleles 
are recessive and maintained only in heterozygotes. Some SDRs exhibited a deficit of both homozygous 
classes, consistent with multiple deleterious recessive variants carried in repulsion phase linkage in the 
parent of the affected family. An exception to this expected pattern was observed in five of the 16 SDRs 
identified in teosinte, where the heterozygote class was deficient (Figure S22). Some of these cases 
could represent deleterious alleles that are not recessive (such as the SDR allele on chromosome 7 
carried by parent PC_I05_ID1 which is completely absent in its selfed progenies). We also noted that 
three of the SDR detected in teosinte corresponded with the three best characterized gametophyte 
factor loci (Ga1, Ga2, and Tcb1) known to control preferential fertilization (Lu et al. 2020) and to exist in 
teosinte (Kermicle et al. 2006; Kermicle and Evans 2010). These loci may contribute to reproductive 
isolation between populations and could be polymorphic in some populations due to complex balancing 
selection (Kermicle et al. 2006; Kermicle 2006). Self-fertilization of individuals heterozygous at these loci 
is expected to result in reduced frequency of one allele due to selection against pollen carrying one of 
the two alleles, with no selection occurring on the female gametes. The observed patterns of 
segregation distortion at these loci did not match this pattern (Figure S25), however, suggesting that 
they are not the direct result of gametophyte factors, but instead due to accumulation of deleterious 
alleles linked to ‘selfish’ gametophyte alleles. 

All but five of the 19 SDRs across both populations were detected in regions with lower 
recombination rates than their respective chromosome average (Table S13 and Figure S23). The 
observed correspondence between low recombination rates and regions carrying strongly deleterious 
alleles that are eliminated before the adult life stage is consistent with the prediction that selection is 
less effective in lower recombination regions (Hill and Robertson 1966; Waller 2021) and previous 
observations in maize inbred lines (McMullen et al. 2009). This result contrasts with the lack of a 
relationship between recombination rate and RAS QTL, perhaps because the individual QTL effects on 
fitness are smaller than the SDR effects, and these QTL are under weaker selection. 

Parental rare allele load is not consistently related to inbreeding depression

We compared the genome-wide rare allele load of each parent to its percent inbreeding depression for 
each trait, measured based on its selfed progenies. No relationship was observed for most traits, but 
significant (P < 0.05) positive correlations between the proportion of loci carrying rare alleles in a parent 
and the inbreeding depression measured in its offspring was observed for days to silk (DTS) and GW in 
maize (r = 0.37 and 0.41, respectively; Figure 7; Table S14). Rare allele load was negatively correlated 
with inbreeding depression for CUPR and EILN in maize (r = -0.37, r = -0.36, respectively), indicating that 
parents with more rare alleles overall had less difference between their outbred and inbred progeny, 
counter to the hypothesis that rare alleles tend to contribute to inbreeding depression for these traits. 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.09.01.458502doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458502


15

We also measured relationships between inbreeding depression and proportions of rare alleles 
within RAS QTL intervals for the tested trait. In this case, we found significant positive correlations only 
for GW in maize (r = 0.35, p = 0.048) and total grain weight per plant (TGWP) in teosinte (r =0.30, p = 
0.037; Figure 7; Table S15). Thus, we found a relationship between rare allele load within QTL intervals 
and parent-specific inbreeding depression only for one reproductive trait in teosinte only, and the 
correlation value was not very strong. Our inbreeding depression QTL are detected with limited genomic 
resolution, such that the QTL intervals used to define regions in which to measure rare allele load 
probably contain too many neutral variants for us to detect any relationships. 

Summary

The domestication bottleneck has resulted in reduced genetic diversity and a higher load of 
segregating predicted deleterious mutations in the global maize gene pool compared to teosinte 
(Hufford et al. 2012a; Wang et al. 2017; Lozano et al. 2021). Consistent with the reduced diversity of 
worldwide maize, we find that this particular pair of teosinte and maize populations shares 4.2 M 
segregating SNPs, with the maize population exhibiting 84.8% of the nucleotide diversity found in 
teosinte (Chen et al. 2020). The site frequency spectra of the two populations reveal that maize is 
enriched for intermediate frequency derived alleles compared to teosinte (Figure 2). However, we 
detected fewer rare allele scan QTL and regions of significant segregation distortion in maize than in 
teosinte. The higher mean GERP score per site observed in teosinte presents an explanation: teosinte 
has more mutations of larger effect with lower allele frequencies, which would result in detecting more 
rare allele scan QTL in teosinte. In contrast, it appears that maize carries more common, smaller-effect 
mutations that cumulatively result in more inbreeding depression, of which a lower proportion can be 
attributed to detectable QTL.

The maize landrace studied here has a higher segregating genetic load predicted from 
evolutionary conservation of sequence variants, a higher frequency of derived alleles, and suffers more 
from inbreeding depression than its counterpart wild teosinte population collected from a nearby 
location. The genetic architecture of inbreeding depression in both maize and teosinte appears to be 
dominated by polygenic, small-effect recessive variants that individually are subjected to only limited 
selection pressure, but cumulatively contribute to substantial inbreeding depression (up to about 50% of 
seed yield in the maize population). In addition, rare larger-effect variants distributed among the 
parents of our study sample contribute a smaller but still substantial amount of genetic variation, as 
documented here as rare allele QTL effects, and these are more important in teosinte than in maize. 
Finally, an even rarer group of variants appears to be associated with juvenile lethality and are more 
important in teosinte than in maize. The more polygenic architecture of the segregating genetic load of 
our maize population renders it more recalcitrant to purging selection and poses a hindrance to modern 
breeding with landrace populations. 
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Methods

Population sampling, field evaluation, genotyping, and parentage inference

A sample of 70 teosinte plants was collected from a single field from the near the town of Palmar Chico 
in the Balsas river drainage of Mexico and 55 maize plants (classified as landrace Tuxpeño) plants were 
sampled from a single field nearby. Teosinte plants were selfed and intermated; 49 of these parental 
plants produced sufficient seed for progeny family evaluations (Tables S1 and S2). Similarly, maize 
landrace plants were selfed and crossed, and 40 of the parental plants produced sufficient seed for 
progeny evaluations (Tables S1 and S2). 

Progenies were evaluated over two winter seasons under short daylengths (<12 h) in 
Homestead, Florida; details of the field experimental methods are given in Yang et al. (2019). Separate 
but nearby field blocks were used for teosinte and maize evaluations. Progenies were planted in 
randomized positions in the field blocks; at planting only the female parents of the progenies were 
known. Progenies and parents were genotyped using genotyping-by-sequencing (GBS) as described in 
Yang et al. (2019). The parentage of each progeny was determined using the GBS data of the parents 
and progeny plants, and this allowed us to distinguish selfed from outcrossed progeny.  Eighteen traits 
were scored on both the teosinte and landrace progeny, these data were previously reported in Yang et 
al. (Table 1; 2019). 

GBS data were filtered for missing call rates, minor allele frequency, and imputed to obtain a 
total of 34,899 SNPs called for teosinte and 40,255 SNPs for maize landrace. The imputation method 
accounted for the parentage of each individual and the relatively high error rates for calling 
heterozygous sites that can occur with low coverage sequence data, as detailed in Yang et al. (2019), 
and as implemented in ParentPhasingPlugin and ImputeProgenyStatesPlugin in TASSEL5 
(https://bitbucket.org/tasseladmin/tassel-5-
source/src/master/src/net/maizegenetics/analysis/imputation/; Bradbury et al. 2007). Briefly, the 
imputation involves phasing the parents using progeny information and inferring the parent state at 
each site using a hidden Markov model. In addition to the SNP calls at each site, therefore, this 
imputation method calls the most likely parental haplotype inherited by each progeny at each site, using 
an arbitrary coding for parental haplotypes that is consistent across all selfed and outcrossed progenies 
of a particular parent. Following quality control of trait and SNP data, we retained data on 4,455 
teosinte progeny and 4,398 maize progeny.

Quantitative genetic analysis of inbreeding depression: Diallel model

We fitted a sequence of four diallel linear mixed models to the data for each trait and population 
(Möhring et al. 2011; Isik et al. 2017). The simplest model (model 1) was:

Yijkl = Ei + Tj + ETij + 𝑥s𝑖𝑗𝛽𝑆 + 𝑥B𝑖𝑗B(E)𝑖 + 𝑥𝑅𝑖𝑗𝛽𝑅1𝑖 + 𝑥𝑅𝑖𝑗
2𝛽𝑅2𝑖 + 𝑥𝑅𝑖𝑗

3𝛽𝑅3𝑖 + 𝑥𝑅𝑖𝑗
4𝛽𝑅4𝑖 + 𝑥𝐶𝑖𝑗𝛽𝐶1𝑖 + 𝑥𝐶𝑖𝑗

2𝛽𝐶2𝑖 + 𝑥𝐶𝑖𝑗
3𝛽𝐶3𝑖 

+ 𝑥𝑅𝑖𝑗
4𝛽𝐶4𝑖 + MOjk + FOjl + MSjk + MFOjkl + MEOijk + FEOjl + MESijk + MFEOijkl + εijkl, where:

𝑌𝑖𝑗kl is the observed phenotype on individual j (with maternal parent k and paternal parent l) in 
environment i.
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Model 1 includes the following fixed effects:

Ei is the effect of environment (year) i

Tj is the effect of progeny type (selfed vs outcrossed) of individual j

ETij is the interaction of progeny type and environment

𝑥s𝑖𝑗 is the deviation of the shading measurement on the ijth individual from the overall average shading 
measurement, described in Yang et al. (2019)

𝛽𝑆 is the effect of shading of neighboring plants

𝑥𝐵𝑖𝑗 is a dummy variable indicating that individual j in year i is adjacent to a border row or a tractor tire 
track

B(E)𝑖 is the effect of border or tractor tire adjacent rows within year i

𝑥𝑅𝑖𝑗 and 𝑥𝐶𝑖𝑗
𝑝 are p= first to fourth order polynomials of the deviation in the row and column directions, 

respectively, of the ijth plant’s position from the center of the field in year i,

𝛽𝑅𝑝𝑖 and 𝛽𝐶𝑝𝑖 are the regression coefficients associated with the pth polynomials for row and column 
trend effects within year i, respectively.

Model 1 also includes the following random effects:

MOjk is the effect of the mother k of progeny j if j is outcrossed; MOjk ~ 𝑁(0, 𝐴𝑘𝜎2
𝐺𝐶𝐴), where Ak is the 

matrix of pedigree relationships among the parents (some of the teosinte parents were themselves half-
sibs), and 𝜎2

𝐺𝐶𝐴 is the general combining ability (GCA) variance of the parents.

FOjl is the effect of the father i of progeny j if j is outcrossed. The effect of a particular father is 
constrained to be equal to the effect of the same parent as a mother, so the distribution of father 
effects is equal to the mother GCA effects: FOjl = MOjk if k = i.

MSjk is the effect of the mother k of progeny j if j is selfed; MSj ~ 𝑁(0, 𝐴𝑘𝜎2
𝑆1), where 𝜎2

𝑆1 is the variance 
among selfed (S1) families.

MFOjkl is the interaction effect of the mother k and father l of progeny j if j is outcrossed; MFOjkl ~ 𝑁(0, 
𝜎2

𝑆𝐶𝐴), where 𝜎2
𝑆𝐶𝐴 is the specific combining ability (SCA) variation.

MEOijk, FEOijl, MESijk, and MFEOijkl are interactions between environment (year) and the previously defined 
mother and father effects. MEOijk and FEOijk ~ 𝑁(0, 𝐴𝑘 ⊗ 𝐼𝜎2

𝐺𝐶𝐴∗𝐸), where 𝐴𝑘 ⊗ 𝐼 is Kronecker product of 
the matrix of pedigree relationships among the parents (𝐴𝑘) and I is a 2 × 2 identity matrix, and 𝜎2

𝐺𝐶𝐴∗𝐸 is 
the GCA-by-environment interaction variance. MESijk ~ 𝑁(0, 𝐴𝑘 ⊗ 𝐼𝜎2

𝑆1∗𝐸), where 𝜎2
𝑆1∗𝐸 is the S1 family-

by-environment interaction variance. MFEOijkl ~ 𝑁(0, 𝜎2
𝑆𝐶𝐴∗𝐸), where 𝜎2

𝑆𝐶𝐴∗𝐸 is SCA-by-environment 
variation.
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εijkl is the residual effect; εijkl ~ 𝑁(0, 𝜎2
𝜀𝑖), where 𝜎2

𝜀𝑖 is the residual variance for year i (separate residual 
variances were fit for each year).

Model 2 includes all the same effects as model 1, but separates the residual variance for outcrossed and 
selfed progenies, so that four distinct residual variances were estimated: 𝜎2

𝜀𝑂1 is the residual variance for 
outcross progeny in the first year, 𝜎2

𝜀𝑂2 is the residual variance for outcross progeny in the second year, 
𝜎2

𝜀𝑆1 is the residual variance for selfed progeny in the first year, and 𝜎2
𝜀𝑆2 is the residual variance for 

selfed progeny in the second year.

Model 3 includes all the same effects as model 2 and adds a covariance between the effects of a parent 
on outcrossed and selfed progenies:

MOjk and MSjk are jointly distributed as 𝑁(0, 𝑨 ⊗ ∑), where ∑ = [ 𝜎2
𝐺𝐶𝐴   𝜎𝐺𝐶𝐴,𝑆1

𝜎𝐺𝐶𝐴,𝑆1 𝜎2
𝑆1

 ] and 𝜎𝐺𝐶𝐴,𝑆1 is the 

covariance between parent effects on outcrossed progeny (GCA) and selfed progeny.

Model 4 includes all the same effects as model 3 but adds reciprocal parental genetic effects:

MORjk is the reciprocal effect of the mother k of progeny j if j is outcrossed, it measures the difference 
between the effect of parent k when used as female vs male. MORjk ~ 𝑁(0, 𝜎2

𝑅𝐺𝐶𝐴), where 𝜎2
𝑅𝐺𝐶𝐴 is the 

reciprocal general combining ability (GCA) variance of the parents.

FORjl is the reciprocal effect of the father l of progeny j if j is outcrossed. 

MFORjkl is the reciprocal effect that distinguishes the interaction of the mother k and father l progeny j vs 
that interaction effect for the reciprocal cross if j is outcrossed; MFORjkl ~ 𝑁(0, 𝜎2

𝑅𝑆𝐶𝐴), where 𝜎2
𝑅𝑆𝐶𝐴 is the 

reciprocal SCA variation.

MFEORjkl is the interaction between environment (year) and the reciprocal SCA effect. MFEORjkl ~ 𝑁(0, 
𝜎2

𝑅𝑆𝐶𝐴∗𝐸), 𝜎2
𝑅𝑆𝐶𝐴∗𝐸 is the reciprocal SCA-by-environment variation.

For every trait and population, all four models were fit using ASReml version 4.2 (Gilmour et al. 
2021). To obtain convergence with models 3 and 4, the covariance between GCA and S1 progeny effects 
was unconstrained, such that resulting estimates could correspond to correlations outside of the bounds 
of -1 to + 1. Models were compared using Bayesian Information Criteria (BIC). From selected models, the 
following parameters were estimated (Hallauer and Miranda Filho 1988; Falconer and Mackay 1996):

𝜎2
𝐴 = 4𝜎2

𝐺𝐶𝐴

𝜎2
𝐷 = 4𝜎2

𝑆𝐶𝐴
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ℎ2 =
𝜎2

𝐴

0.5𝜎2
𝐴 +  0.25𝜎2

𝐷  +  2𝜎2
𝐺𝐶𝐴∗𝐸 + 𝜎2

𝑆𝐶𝐴∗𝐸 + 𝜎2
𝜀0

, where 𝜎2
𝜀0 is the average residual variance for outcross 

progenies from each year. The residual variance includes both within-full-sib-family genetic variance (0.5
𝜎2

𝐴 +  0.75𝜎2
𝐷) and experimental error variance.

The marginal mean values of each progeny type (outcrossed and selfed) were predicted at common 
values of the fixed effects. The coefficient of inbreeding depression was estimated as the proportional 

change in population mean between outcrossed and selfed progenies: 𝛿 = 1 ―  𝑜𝑢𝑡𝑐𝑟𝑜𝑠𝑠𝑒𝑑 𝑚𝑒𝑎𝑛
selfed mean  (Roff 

1997).

The genetic variance among selfed (S0:1) families is expected to be 𝜎2
𝐴 +0.25𝜎2

𝐷 + 𝐷1 +0.125𝐷2, 
ignoring epistatic variances, where D1 is the covariance between additive and homozygous dominance 
deviations and D2 is the variance of homozygous dominance deviations (Cockerham 1983). Assuming 
that D1 and D2 are negligible, we can predict the selfed family variance to be 𝜎2

𝐴 +0.25𝜎2
𝐷, using 

estimates of additive and dominance variance components from the outbred progenies. If the ratio of 
observed selfed family variance to this predicted value is greater than one, it is evidence for the 
importance of epistatic or D2 variances, or a positive D1 covariance. In contrast, if the ratio of the 
observed to predicted selfed family variance is less than one, it is evidence for a negative D1 covariance.

Regression of trait values on genomic inbreeding coefficient estimate

The genomic realized estimate of the inbreeding coefficient (F) of each individual was obtained from the 
realized additive genomic relationship matrix as 1 minus the diagonal elements (Endelman and Jannink 
2012). This estimate of the inbreeding coefficient was included in a separate linear mixed model that 
contained the same fixed covariates (except for Tj + ETij) and the same residual effects distribution as 
diallel model 1 and adding the genomic estimated inbreeding coefficient and its interaction with 
environments as fixed covariates. In addition, the model included these random effects:

𝐴𝑖𝑗, the polygenic additive effect of the ijth plant, with distribution 𝐴𝑖𝑗 ∼ 𝑁(0, 𝐴𝜎2
𝐴), where A is the 

realized additive genomic relationship matrix and 𝜎2
𝐴 is the additive genetic variance, 

𝐷𝑖𝑗, is the polygenic dominance effect of the ijth plant, with distribution D𝑖𝑗 ∼ 𝑁(0, 𝐷𝜎2
𝐷), where D is the 

realized additive genomic relationship matrix and 𝜎2
𝐷 is the dominance genetic variance,

𝐺×𝐸𝑖𝑗 is the interaction of polygenic effect of the jth plant in environment i, with distribution 𝐺×𝐸𝑖𝑗 ∼ 
𝑁(0, 𝐴1 ⊕ 𝐴2𝜎2

𝐴𝐸), where 𝑨𝒊 is the realized additive relationship matrix for individuals grown in year i 
and (𝐴1 ⊕ 𝐴2) is a block-diagonal structure that includes non-zero covariances between plants grown in 
the same year, but zero covariance between plants grown in different years.

This model was fit with ASReml version 4.2, and the regression effect of the inbreeding coefficient was 
tested for significance using a conditional F-test. The slope of regression on the inbreeding coefficient 
was estimated as its main effect plus the average of its interactions with years.
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The influence of epistasis on inbreeding depression can be tested by including the squared 
inbreeding coefficient as an additional regression variable (Falconer and Mackay 1996; Lynch and Walsh 
1998). We computed the square of the genomic estimated inbreeding coefficient (fixing the squared 
value of the slightly negative estimates for some individuals as zero) and fit this coefficient and its 
interaction with years in a second model otherwise identical to the previous model.

Rare allele scan (RAS) to detect private haplotype effects

To detect large-effect rare variants that are carried by only one parent, we developed a novel linkage 
scan that tests each genetic map position for the effect of one parental allele compared to all other 
parental alleles (Figure S1). This analysis relies on progeny genotype calls that represent identity-by-
descent parental allele calls that were generated during the imputation and phasing of the GBS data 
described in detail in Yang et al. (2019). These genotype calls reflect the phased parent haplotypes 
inherited by each individual progeny at each SNP. 

The first step of the rare allele scan (RAS) was to create separate linkage maps for each 
population. Recombinations of parental haplotyes observed in the progeny were used to estimate 
linkage distances between SNPs. Within each interval of 1 cM we expect to observe that 1% of the 
progeny haplotypes have recombined compared to their parents. We selected SNP markers at 1 cM 
intervals to represent the linkage maps by identifying marker pairs separated by 0.01*(2N) 
recombinations, where N is the genotyped progeny sample size. The resulting linkage maps had total 
distances of 1371 and 1426 cM for teosinte and maize, respectively.

In a second step, were created a new data set for each parental haplotype, in which the progeny 
haplotype calls were recoded to the number of copies of one parental haplotype carried by each 
progeny at each of the linkage map markers (Figure S1). Then, we fit a linear model for each 
combination of parental haplotype and linkage marker:

Yij = Ei + Fij𝛽Fi + 𝑥s𝑖𝑗𝛽𝑆 + 𝑥B𝑖𝑗B(E)𝑖 + 𝑥𝑅𝑖𝑗𝛽𝑅1𝑖 + 𝑥𝑅𝑖𝑗
2𝛽𝑅2𝑖 + 𝑥𝑅𝑖𝑗

3𝛽𝑅3𝑖 + 𝑥𝑅𝑖𝑗
4𝛽𝑅4𝑖 + 𝑥𝐶𝑖𝑗𝛽𝐶1𝑖 + 𝑥𝐶𝑖𝑗

2𝛽𝐶2𝑖 + 𝑥𝐶𝑖𝑗
3𝛽𝐶3𝑖 + 

𝑥𝑅𝑖𝑗
4𝛽𝐶4𝑖 + PC1ij + PC2ij + … + PC50ij + 𝑥ha𝑖𝑗a + 𝑥hd𝑖𝑗d + εij, where:

Ei is the effect of environment (year) i

Fij is the genomic estimated inbreeding coefficient of individual j within year i

𝛽Fi is the effect of inbreeding within year i

PC1ij + PC2ij + … + PC50ij are the scores for individual j within year i on each of the first 50 principal 
components of the genome-wide SNP data, previously computed by Chen et al. (2020)

𝑥ha𝑖𝑗 is the number of the parental haplotype alleles carried individual j within year i at the tested map 
position

a is the additive effect of the parental allele at the tested map position
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𝑥hd𝑖𝑗 is an indicator for heterozygosity for the current parental haplotype allele in individual j within year 
i at the tested map position

d is the dominance effect of the parental allele at the tested map position

Ei, 𝑥s𝑖𝑗, 𝛽𝑆, 𝑥𝐵𝑖𝑗, B(E)𝑖, 𝑥𝑅𝑖𝑗
𝑝, 𝑥𝐶𝑖𝑗

𝑝, 𝛽𝑅𝑝𝑖, and 𝛽𝐶𝑝𝑖 are as defined in the diallel model previously.

Models were fit using ordinary least squares, implemented in the statsmodels package of Python 
(Seabold and Perktold 2010). The LOD score for each marker-parent haplotype combination was 
calculated as: 

LOD = (n/2)log10(RSS0/RSSmark), where n is the progeny sample size, RSSmark is the residual sum of 
squares of the full model shown above, and RSS0 is the residual sum of squares from a model all of the 
effects in the full model except for the marker additive and dominance effects.

This model is equivalent to the genome-wide association test implemented by Chen et al (2020) 
except that it tests the additive and dominance effects of a single parental allele defined by identity-by-
descent instead of the usual additive and dominance effects of SNP alleles defined by identity-in-state 
(Figure S1).

Initial putative RAS quantitative trait loci (QTL) positions were declared at marker-haplotype 
combinations with LOD scores greater than or equal to 4.0. LOD-2 support intervals for the initial QTL 
scans for each parental haplotype were defined based on the results of the initial linkage scan as 
contiguous regions of the genetic map LOD scores within 2 LOD of the largest effect in the region.

The final step of this analysis was a forward stepwise regression fitting the model above for the 
most significant marker-haplotype and then adding each initially declared QTL to the model, one at a 
time. The QTL that improved (decreased) the Bayesian Information Criterion (BIC) of the model most 
was added to the model. This process was repeated until no more QTL improved the model BIC. Only 
QTL remaining in the final model were reported as significant QTL. QTL number, effects, individual 
variances, and combined variances were estimated from this final model.

Testing for non-random clustering of RAS QTL and GWAS association positions

Physical positions of linkage map markers were located on the maize B73 AGP version 4 reference 
sequence (Jiao et al. 2017), as were SNP markers used for GWAS previously by Chen et al. (2020). This 
allowed estimation of the physical sequence size and local recombination rate (cM per Mbp) for RAS 
QTL and identification of previously-identified trait-associated SNPs inside of QTL for the same trait. For 
each trait, the proportion of RAS QTL containing associated SNPs identified by GWAS, the proportion of 
QTL overlapping within a population (because they were detected in different parents), and the 
proportion overlapping between populations were computed using the 2-LOD support intervals to 
define QTL windows. The distributions of the proportion of QTL containing GWAS associations or QTL 
overlapping within or between populations by chance were simulated by a permutation test. A single 
permutation of QTL positions was made by randomly assigning windows corresponding to the cM size of 
the observed QTL support intervals for a trait to the linkage map. The proportion of GWAS associations 
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within these permuted windows represents one realization of the proportion of overlap between GWAS 
and QTL positions under the null hypothesis of random QTL positions with respect to GWAS 
associations. Similarly, the proportion of QTL positions overlapping within a population within one 
permuted data set represented the proportion of overlapping QTL among parents under the null 
hypothesis of random distribution of QTL positions among parents. Finally, to estimate the proportion of 
overlapping QTL between maize and teosinte for a common trait, QTL window positions were permuted 
within each population and compared. We repeated this process 5000 times for each set of 
comparisons. This provided an empirical estimate of the distribution of the proportion of overlaps under 
the null hypothesis of random QTL positions. Two-sided empirical p-values for the observed proportion 
of QTL overlaps were estimated based on the percentile of the permuted distribution corresponding to 
the observed proportion of overlaps for a given comparison.

Estimation of inbreeding depression associated with rare allele scan QTL and genome-wide associated 
SNPs

We predicted the amount of population inbreeding depression expected to be caused by a single RAS 
QTL as 2Fpqd (Falconer and Mackay 1996), where F is the inbreeding coefficient, and p and q are the 
major and minor allele frequencies. W set F = 0.5 for the one generation of selfing used in this 
experiments, and q = 1/2N for N parents because we model the RAS QTL alleles as carried on only one 
haplotype of one parent, and d is the estimated dominance effect of the QTL scaled to the outcross 
progeny mean rather than to the phenotypic standard deviation so that we can compare this to the 
observed percent inbreeding depression observed in selfed versus outcrossed progeny means computed 
from the diallel analysis. The predicted amount of inbreeding depression associated with each RAS QTL 
was summed over QTL for a given trait and population and compared to the observed inbreeding 
depression. A similar comparison was made for GWAS associations, using the minor allele frequency at 
each QTL observed in the parents as q.

Linkage Scan for Segregation Distortion

For both maize LR and teosinte, we used the same consensus linkage maps used in the private haplotype 
test described above to identify genomic regions exhibiting segregation distortion. Selfed families with 
20 or more progenies were included in this analysis. We analyzed 24 and 42 selfed families for maize 
landraces and for teosinte, respectively. The number of progenies per selfed family analyzed ranged 
from 20 to 125 (mean 52.9) in maize and from 20 to 95 (mean 45.2) in teosinte. In total, 1,271 selfed 
progenies were included in this analysis in maize and 1,899 in teosinte. Chi-square tests of goodness of 
fit of the observed segregation ratios at each linkage map marker to the expected 1:2:1 proportions 
were performed with the R package OneMap (Margarido et al. 2007).

Multiple test correction for the purpose of declaring genome-wide significance thresholds is 
challenging in genetic studies because of the complex correlation structure among marker tests. We 
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inferred the effective number of independent tests (ENT) based on the pairwise LD between SNPs (Gao 
et al. 2008). Matrices of correlation coefficients between each pair of SNPs in the consensus linkage map 
of each chromosome were used to compute ENT for each chromosome using the R package poolR (Cinar 
and Viechtbauer 2021). The chromosome-specific ENTs were summed to obtain a genome-wide ENT, 
and the significance threshold for segregation distortion was set as 0.05/𝐸𝑁𝑇𝑡𝑜𝑡𝑎𝑙. Significance 
thresholds were computed separately for maize and teosinte. Furthermore, we required a contiguous 
group of at least three consecutive markers passing the whole genome threshold to declare a significant 
segregation distortion region (SDR). 

Finally, to ensure that putative significant SDR were not an artefact of the imputation and 
phasing procedure, we performed a check on the segregation ratios of genotype calls in the raw GBS 
data. The first step was to delimit windows corresponding to each SDR. In a second step, we selected 
the raw GBS markers that passed the quality control filters imposed before imputation described by 
Yang et al. (2019) within the SDR windows for the specific parent of the family where segregation 
distortion was observed and that were heterozygous in the parent. Then we obtained the P-values for 
the chi-square tests for goodness of fit to the expected 1:2:1 segregation ratio in the progenies of the 
affected family.  We required more than half of the informative raw GBS markers to have significant P-
values (P < 0.05) for these chi-square tests to confirm the SDR originally identified with the imputed 
data. We calculated the recombination rate in each significant SDR as cM length of the region divided by 
the physical length of the region in Mbp. For comparison, we computed both the genome-wide average 
recombination rate per Mbp and also the average recombination rate specific to the chromosome on 
which the SDR was located. 

The relationship between parent-specific rare allele load and inbreeding depression

Genotypes at 20,631,107 and 17,819,152 SNPs were obtained for each parent of the maize and teosinte, 
populations, respectively (Chen et al. 2020). To compute the genome-wide rare allele load of each 
parent, we first subset the complete set of SNPs to include only those with minor allele frequencies < 
0.05 (considered rare in our study). After this filter 9,444,274 and 9,823,305 markers were retained for 
maize and teosinte, respectively. Each parent’s rare allele load was the mean frequency of rare alleles 
across these loci. We computed the correlation between each parent’s rare allele load and parent-
specific percent inbreeding depression for each trait within each population. We included both 
homozygous and heterozygous rare allele calls in this computation (with homozygous calls given double 
weight) because inbreeding depression was measured as the difference between each parent’s outbred 
and inbred progeny values, not as the difference between the parent itself and its selfed progeny. Thus, 
although homozygous recessive deleterious alleles in the parent do not contribute to a difference 
between the parent and its inbred progeny, they do contribute to a difference between inbred progeny 
and the outbred progenies of that parent (as they will be almost entirely complemented by common 
alleles from other parents in outbred progenies). Next, we computed the rare allele load carried by each 
parent at the subset of genomic positions within the support intervals of all rare allele scan QTL for a 
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given trait. For each trait, correlations were estimated between the proportion of inbreeding depression 
exhibited by each parent and the parent-specific QTL rare allele load.  

Estimation of mutational burden per parent

Genetic load for each parent was estimated from genomic evolutionary rate profiling (GERP) 
scores using GERP scores computed by Kistler et al. (2018) from whole genome sequence data. Only 
sites segregating in the respective population (maize or teosinte) with an allele call in sorghum as 
outgroup, and a positive GERP score were included. Using the sorghum allele as ancestral allele, per 
individual burden was calculated under a partially recessive model with a per site burden equal to the 
GERP score for that site for homozygous derived genotypes, 0.25 × GERP for heterozygous genotypes 
and 0 for homozygous ancestral genotypes. From this, the total and mean GERP effects across loci were 
computed per individual. 
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Figures

Figure 1. Percent inbreeding depression, regression coefficient of individual trait values on individual 
genomic inbreeding estimates, and ratio of dominance to total genetic variance for 18 traits measured 
in maize and teosinte.

Figure 2. Predicted segregating mutational burden per parent in the parents of maize and teosinte 
populations. (A) Total number of sites heterozygous or homozygous for segregating deleterious alleles 
per individual parent, (B) Mean burden per site per parent based on genomic evolutionary rate profiling 
(GERP) score under a model of partial recessivity, including only sites segregating within the parent’s 
population, (C) Total burden per parent based on GERP scores, (D) Derived allele frequency spectrum for 
maize and teosinte populations. A total of 293,720 and 362,145 variants with GERP scores are 
segregating within maize and teosinte, respectively.

Figure 3. Variation in outbred and selfed progeny breeding values among parents in teosinte and maize. 
Mean values for self-fertilized S1 progenies (Y-axis) and outbred progenies (X-axis) scaled to the outbred 
population mean for each parent. Each trait is plotted in a different color. The 1:1 line is plotted in black, 
deviations from this line in the vertical direction correspond to the inbreeding depression for a single 
parent’s selfed prognies compared to their outcrossed siblings.

Figure 4. Rare allele linkage scan for five traits in maize landrace and teosinte populations. Each column 
represents one chromosome; linkage map cM positions are displayed on the x-axis. Each row represents 
LOD scores of linkage scan for one trait. Each founder parent is represented by a different color and the 
two different haplotypes of each parent are distinguished by solid vs. dashed lines. Red solid line 
indicates the whole-genome LOD significance threshold.

Figure 5. The proportion of trait variance due to rare allele scan QTL (red color) and polygenic 
background effects (blue color) for each of 18 traits measured in maize and teosinte populations. The 
number of rare allele scan QTL detected for each population and trait is indicated on top of bars.

Figure 6.  Segregation distortion whole genome scan results plotted as -log10 p-value of the chi-square 
test for agreement to expected 1:2:1 segregation at each genome region (cM position) for (A) three 
selfed families in maize, and (B) eleven selfed families in teosinte; each family scan is plotted on a 
different row. Blue arrows indicate significant segregation distortion regions.

Figure 7. Percent inbreeding depression of individual families related to the parental rare allele load 
(RAL) measured genome-wide and within QTL CI for affected traits in maize and teosinte. Only traits for 
which a significant (P < 0.05) correlation was observed within one of the populations are displayed.
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Figure 1. Percent inbreeding depression, regression coefficient of individual trait values on individual 
genomic inbreeding estimates, and ratio of dominance to total genetic variance for 18 traits measured 
in maize and teosinte.
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Figure 2. Predicted segregating mutational burden per parent in the parents of maize and teosinte 
populations. (A) Total number of sites heterozygous or homozygous for segregating deleterious alleles 
per individual parent, (B) Mean burden per site per parent based on genomic evolutionary rate profiling 
(GERP) score under a model of partial recessivity, including only sites segregating within the parent’s 
population, (C) Total burden per parent based on GERP scores, (D) Derived allele frequency spectrum for 
maize and teosinte populations. A total of 293,720 and 362,145 variants with GERP scores are 
segregating within maize and teosinte, respectively.
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Figure 3. Variation in outbred and selfed progeny breeding values among parents in teosinte and maize. 
Mean values for self-fertilized S1 progenies (Y-axis) and outbred progenies (X-axis) scaled to the outbred 
population mean for each parent. Each trait is plotted in a different color. The 1:1 line is plotted in black, 
deviations from this line in the vertical direction correspond to the inbreeding depression for a single 
parent’s selfed progenies compared to their outcrossed siblings.
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Figure 4. Rare allele linkage scan for five traits in maize landrace and teosinte populations. Each column 
represents one chromosome; linkage map cM positions are displayed on the x-axis. Each row represents 
LOD scores of linkage scan for one trait. Each founder parent is represented by a different color and the 
two different haplotypes of each parent are distinguished by solid vs. dashed lines. Red solid line 
indicates the whole-genome LOD significance threshold.
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Figure 5. The proportion of trait variance due to rare allele scan QTL (red color) and polygenic 
background effects (blue color) for each of 18 traits measured in maize and teosinte populations. The 
number of rare allele scan QTL detected for each population and trait is indicated on top of bars.
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Figure 6.  Segregation distortion whole genome scan results plotted as -log10 p-value of the chi-square 
test for agreement to expected 1:2:1 segregation at each genome region (cM position) for (A) three 
selfed families in maize, and (B) eleven selfed families in teosinte; each family scan is plotted on a 
different row. Blue arrows indicate significant segregation distortion regions.
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Figure 7. Percent inbreeding depression of individual families related to the parental rare allele load 
(RAL) measured genome-wide and within QTL CI for affected traits in maize and teosinte. Only traits for 
which a significant (P < 0.05) correlation was observed within one of the populations are displayed.
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Tables

Table 1. Trait Abbreviations
List of 18 teosinte-maize landrace comparable traits and the corresponding acronyms, units 
and trait groups. From Yang et al. (2019).
Trait Acronym Units Trait Group
Days to Anthesis DTA days Veg/FT
Days to Silking DTS days Veg/FT
Plant Height PLHT cm Veg/FT
Leaf Length LFLN cm Veg/FT
Leaf Width LFWD cm Veg/FT
Tiller Number TILN count EnvRes
Prolificacy PROL count EnvRes
Lateral Branch Node Number LBNN count EnvRes
Lateral Branch Length LBLN mm EnvRes
Lateral Branch Internode Length LBIL mm EnvRes
Ear Length EL mm Rep
Cupules per Row CUPR count Rep
Ear Diameter ED mm Rep
Grains Per Ear GE count Rep
Ear Internode Length EILN mm Rep
Total Grain per Plant TGPP count Rep
Total Grain Weight per Plant TGWP g Rep
Grain Weight GW mg Rep
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Supplemental Figures

Figure S1. Diagram of key features of rare allele linkage scan compared to genome wide association 
study tests for quantitative trait loci.

Figure S2. Mean value of self-fertilized progenies as a proportion of outbred progeny means for 18 traits 
in teosinte and maize.

Figure S3. Predicted segregating mutational burden per parent in the parents of maize and teosinte 
populations. (A) Total segregating deleterious sites per individual parent, (B) homozygous deleterious 
sites per parent, (C) Heterozygous deleterious sites per parent, (D) Mean burden per site per parent 
based on genomic evolutionary rate profiling (GERP) score under a model of partial recessivity, including 
only sites segregating within the parent’s population, (E) Mean homozygous burden per parent, (F) 
Mean heterozygous burden per parent, (G) Total burden per parent based on GERP scores, (H) Total 
homozygous burden per parent based on GERP scores, (I) Total heterozygous burden per parent.

Figure S4. Distribution of genomic inbreeding coefficient estimates among individuals in maize and 
teosinte populations.

Figure S5. Ratio of observed variance among S1 families to the expected variance based on 𝜎2
𝐴 +0.25𝜎2

𝐷, 
using estimates of 𝜎2

𝐴 and 𝜎2
𝐷 from outbred progenies and ignoring additional non-additive components 

of covariance introduced under inbreeding. Values greater than one are evidence for the importance of 
epistatic or D2 variances, or a positive D1 covariance. In contrast, if the ratio of the observed to predicted 
S1 family variance is less than one, it is evidence for a negative D1 covariance.

Figure S6. Additive (Va) and dominance (Vd) variances and covariance between additive and 
homozygous dominance deviations (D1) for one locus with favorable allele gene action effect a = 1, 
dominance gene action of d = 0, 0.5, 1, or 2, and varying allele frequency (p). 

Figure S7. Proportion (R2) of variation associated with genetic background (parentage estimated by 
principal components of the genome-wide marker data) and rare allele scan QTL effects for vegetative 
and flowering traits in maize and teosinte. Full model includes parentage, QTL additive, and QTL 
dominance effects. The proportion of variance due specifically to parentage, additive plus dominance 
QTL effects, additive QTL effects only, or dominance QTL effects only was estimated by measuring the 
decrease in R2 after removing one of those factors from the full model.

Figure S8. Proportion (R2) of variation associated with genetic background (parentage estimated by 
principal components of the genome-wide marker data) and rare allele scan QTL effects for 
environmental response traits in maize and teosinte. Full model includes parentage, QTL additive, and 
QTL dominance effects. The proportion of variance due specifically to parentage, additive plus 
dominance QTL effects, additive QTL effects only, or dominance QTL effects only was estimated by 
measuring the decrease in R2 after removing one of those factors from the full model.

Figure S9. Proportion (R2) of variation associated with genetic background (parentage estimated by 
principal components of the genome-wide marker data) and rare allele scan QTL effects for reproductive 
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traits in maize and teosinte. Full model includes parentage, QTL additive, and QTL dominance effects. 
The proportion of variance due specifically to parentage, additive plus dominance QTL effects, additive 
QTL effects only, or dominance QTL effects only was estimated by measuring the decrease in R2 after 
removing one of those factors from the full model.

Figure S10. Relationships between the number of rare allele scan QTL detected per parent and the 
progeny sample size of each parent for teosinte and maize.

Figure S11. Proportion of traits with significant clustering of QTL between maize and teosinte 
populations, between QTL and significant GWAS associations, and between QTL detected in different 
parents within populations.

Figure S12. Rare allele scan results for vegetative and flowering traits in maize. Each row of figures 
corresponds to one trait. Each column corresponds to one of the ten chromosome pairs in maize. 
Logarithm of odds (LOD) scores for QTL models are plotted for the 2-LOD support interval for each QTL. 
LOD curves correspond to the effects of a single parental haplotype, and different parent effects are 
plotted with different colors. Blue dots represent the -log10 p-values of significant GWAS associations 
from Chen et al. (2020). 

Figure S13. Rare allele scan results for environmental response traits in maize. Each row of figures 
corresponds to one trait. Each column corresponds to one of the ten chromosome pairs in maize. 
Logarithm of odds (LOD) scores for QTL models are plotted for the 2-LOD support interval for each QTL. 
LOD curves correspond to the effects of a single parental haplotype, and different parent effects are 
plotted with different colors. Blue dots represent the -log10 p-values of significant GWAS associations 
from Chen et al. (2020). 

Figure S14. Rare allele scan results for reproductive traits in maize. Each row of figures corresponds to 
one trait. Each column corresponds to one of the ten chromosome pairs in maize. Logarithm of odds 
(LOD) scores for QTL models are plotted for the 2-LOD support interval for each QTL. LOD curves 
correspond to the effects of a single parental haplotype, and different parent effects are plotted with 
different colors. Blue dots represent the -log10 p-values of significant GWAS associations from Chen et 
al. (2020). 

Figure S15. Rare allele scan results for vegetative and flowering traits in teosinte. Each row of figures 
corresponds to one trait. Each column corresponds to one of the ten chromosome pairs in 
maize/teosinte. Logarithm of odds (LOD) scores for QTL models are plotted for the 2-LOD support 
interval for each QTL. LOD curves correspond to the effects of a single parental haplotype, and different 
parent effects are plotted with different colors. Blue dots represent the -log10 p-values of significant 
GWAS associations from Chen et al. (2020). 

Figure S16. Rare allele scan results for environmental response traits in teosinte. Each row of figures 
corresponds to one trait. Each column corresponds to one of the ten chromosome pairs in 
maize/teosinte. Logarithm of odds (LOD) scores for QTL models are plotted for the 2-LOD support 
interval for each QTL. LOD curves correspond to the effects of a single parental haplotype, and different 
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parent effects are plotted with different colors. Blue dots represent the -log10 p-values of significant 
GWAS associations from Chen et al. (2020). 

Figure S17. Rare allele scan results for reproductive traits in teosinte. Each row of figures corresponds to 
one trait. Each column corresponds to one of the ten chromosome pairs in maize/teosinte. Logarithm of 
odds (LOD) scores for QTL models are plotted for the 2-LOD support interval for each QTL. LOD curves 
correspond to the effects of a single parental haplotype, and different parent effects are plotted with 
different colors. Blue dots represent the -log10 p-values of significant GWAS associations from Chen et 
al. (2020). 

Figure S18. Relationship between additive (red) and dominance (blue) effect estimates associated with 
rare allele scan (RAS) QTL (X-axis) and corresponding GWAS associations inside the QTL intervals (Y-axis) 
in maize and teosinte. Effects are standardized to the phenotypic standard deviation for each trait and 
population. 

Figure S19. Relationship between standardized additive and dominance effect estimates of rare allele 
scan QTL. Effects are standardized to the phenotypic standard deviation for each trait and population.

Figure S20. Standardized additive (a) and dominance (d) effects of rare allele scan QTL effects plotted by 
genome position within each of the ten chromosome pairs for both maize (A) and teosinte (B). Effects 
are standardized to the phenotypic standard deviation for each trait and population. Effects are plotted 
within trait categories. Right hand panels (“Eff_Direct”) show the proportion of QTL allele effects where 
the rare variant effect is favorable (against the direction of inbreeding depression) or unfavorable (in the 
same direction as inbreeding depression) within categories based on the level of dominance of the rare 
allele, summed over all traits. Favorable allele effects are (partially to fully) recessive when a > 0 and d < 
0, (partially to fully) dominant when a > 0 and d < 0, and overdominant when d > a > 0. Unfavorable 
allele are (partially to fully) recessive when a < 0 and d > 0, (partially to fully) dominant when a < 0 and d 
< 0 alleles, and overdominant when d < a < 0.  

Figure S21. Proportion of trait inbreeding depression predicted based on rare allele scan (RAS) or 
genome-wide association study (GWAS) QTL dominance effect estimates and allele frequencies (
∑𝑁

𝑖 𝑝𝑖(1 ―  𝑝𝑖)𝑑𝑖) for each trait in maize and teosinte.

Figure S22. Observed selfed progeny genotype frequencies at loci detected as segregation distortion 
regions in maize and teosinte. Genotypes aa and bb refer to homozygotes for one of the parental alleles, 
ab refers to heterozygotes. Shapes refer to particular families.

Figure S23. Segregation distortion regions (SDR) superimposed on physical linkage maps of maize (A) or 
teosinte (B). The local recombination rate (cM/Mb) is plotted as intensity of red color for each 1-cM 
window within either population. The positions of gametophyte factor 1 (Ga1), gametophyte factor 2 
(Ga2), and teosinte crossing barrier 1 (Tcb1) loci are indicated in purple 

Figure S24. Segregation distortion regions (SDR; blue bars) superimposed on physical linkage maps of 
teosinte chromosomes also carrying seed dormancy QTL (green diamonds) detected by Chen et al. 
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(2020). The local recombination rate (cM/Mb) is plotted as intensity of red color for each 1-cM window 
within either population. The position of gametophyte factor 2 (Ga2) locus is indicated in purple (this 
locus has not been finely mapped to date). 

Figure S25. Observed selfed progeny genotype frequencies at loci detected as segregation distortion 
regions and overlapping known gametophyte factors in teosinte. Genotypes aa and bb refer to 
homozygotes for one of the parental alleles, ab refers to heterozygotes. Shapes refer to particular 
families. Right hand bar indicates the position of SDR (blue bars) and gametophyte factors (purple) on 
chromosomes 4 and 5, with the specific parents giving rise to the SDR indicated within their SDR.

Figure S26. Minor allele frequency spectrum for SNPs derived from whole genome sequencing of maize 
(blue color bars) and teosinte (red color bars) parents.
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Supplemental Tables

Table S1. Teosinte mating design details. The number of progenies from each maternal parent are in 
rows, the number of progenies from each paternal parent are in columns. Values on the diagonal 
correspond to the number of selfed progenies per parent.

Table S2. Maize mating design details. The number of progenies from each maternal parent are in rows, 
the number of progenies from each paternal parent are in columns. Values on the diagonal correspond 
to the number of selfed progenies per parent.

Table S3. Inbreeding depression summary results from diallel analysis presented in this paper and 
realized relationship matrix analyses presented by Yang et al (2019) for both teosinte and maize. Overall 
outbred progeny mean values (S0_mean), selfed progeny mean values (S1_mean), scaled S1 progeny 
means as a proportion of the S0 mean value (S1_mean_scaled), percent inbreeding depression 
((S1_mean – S0_mean)/S0_mean; ID_perc), absolute value of percent inbreeding depression 
(ID_perc_abs), the slope of the regression of individual trait values on estimated genomic inbreeding 
coefficient (Beta), the absolute value of the regression slope as a proportion of outbred mean value 
(Beta_scaled), additive genetic variance estimated from diallel (Additive), additive genetic variance 
estimated from the realized relationship matrices (VA_realized), dominance genetic variance estimated 
from the diallel (Dominance), dominance genetic variance estimated from the realized relationship 
matrices (VD_realized), narrow-sense heritability estimated from the diallel (h2), narrow-sense 
heritability estimated from the realized relationship matrices (h2_realized), ratio of dominance to total 
genetic variation estimated from the diallel (D_G_ratio), ratio of dominance genetic variance to total 
phenotypic variance estimated from the diallel (D_P_ratio), ratio of dominance to total genetic variation 
estimated from the realized relationship matrices (D_G_ratio_realized), ratio of dominance genetic 
variance to total phenotypic variance estimated from the realized relationship matrices 
(D_P_ratio_realized), heritability of S1 family means (H_S1), error variance estimated from outbred 
progenies (ErrorS0), error variance estimated from selfed progenies (ErrorS1), ratio of S1 to S0 error 
variances (S1_S0_Resid), total phenotypic variance among outbred individuals (Pheno_out), total 
phenotypic variance among selfed individuals (Pheno_S1), genotypic variance among S1 families 
(S1_Var), ratio of observed S1 family genetic variance to expected S1 family variance estimated as 𝜎2

𝐴

+0.25𝜎2
𝐷, based on additive and dominance variances estimated from outbred progenies, correlation 

between outbred and selfed breeding values for each parent (rS0S1), correlation between outbred 
breeding value and inbreeding depression for each parent (rS0BV_ID), correlation between outbred 
breeding value and percent inbreeding depression for each parent (r_S0BV_IDperc).

Table S4. Genetic burden per parent by predicted deleterious genotypic class: parental code (individual), 
population, genotypic count at deleterious sites (anc_geno; 0 = homozygous for ancestral allele, 1 = 
heterozygous, 2 = homozygous for derived, putatively deleterious allele), number of sites within 
genotypic class (del_sites), mean burden score per site within genotypic class (mean_load), sum of load 
scores across sites within genotypic class (total_load).
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Table S5. Correlations among teosinte population parameter estimates. Matrix of correlation 
coefficients among the parameters in Table S3 across traits.

Table S6. Correlations among maize population parameter estimates. Matrix of correlation coefficients 
among the parameters in Table S3 across traits.

Table S7. Outbred and inbred progeny mean values, and family-specific inbreeding depression for 
individual parents within maize and teosinte populations. S0_effect and S1_effect are family effects 
scaled to the overall outbred population mean.

Table S8. Rare allele scan QTL effects in teosinte and maize. SNP, parent name, and haplotype number 
for QTL peak joined together (Marker), proportion of trait variance due to additive effect of this 
haplotype vs. all others (r2_A), proportion of trait variance due to dominance effect of this haplotype 
(r2_D), proportion of trait variance due to the combined additive and dominance effects of this 
haplotype vs. all others (r2_AD), additive effect of this haplotype allele vs. all others (a_effect), p-value 
associated with the additive effect (a_pval), t-value associated with the additive effect (a_tval), 
dominance effect of this haplotype (d_effect),  p-value associated with the dominance effect (d_pval), t-
value associated with the dominance effect (d_tval), number of heterozygotes for this haplotype 
(N_het), number of homozygotes for this haplotype (N_hom), peak SNP, parent, haplotype number, 
chromosome, physical position of SNP on AGP version 4 of the B73 reference sequence (pos_Agpv4), cM 
position of SNP, SNP defining left side of QTL interval (Pos_start), genetic position of SNP defining left 
side of QTL support interval (cM_start), physical position of SNP defining left side of QTL support interval 
(Pos_start), SNP defining right side of QTL interval (SNP_end), genetic position of SNP defining right side 
of QTL support interval (cM_end), physical position of SNP defining right side of QTL support interval 
(Pos_end), population, trait group, and number of GWAS associations identified by Chen et al. (2020) for 
same trait and population inside the support interval (N.GWAS.hits).

Table S9. Pleiotropic rare allele scan QTL in maize. Filtered version of Table S8 including only overlapping 
haplotype QTL positions with effects on more than one trait in maize.

Table S10. Pleiotropic rare allele scan QTL in teosinte. Filtered version of Table S8 including only 
overlapping haplotype QTL positions with effects on more than one trait in teosinte.

Table S11. Overlapping rare allele scan QTL and GWAS associations. GWAS associations detected by 
Chen et al (2020) encompassed by rare allele scan QTL for the same trait and population. SNP, parent 
name, and haplotype number for rare allele scan QTL peak joined together (QTL), marker identified by 
GWAS (SNP), chromosome (chrom_QTL and chrom_GWAS), additive effect of GWAS association 
(a_effect_SNP), dominance effect of GWAS association (d_effect_SNP), AgpV4 physical position of 
GWAS associated SNP (Position), Std. Dev of trait within the population, and proportion of trait variance 
associated with GWAS SNP (r2_GWAS). Other trait columns are the same as for Table S8.

Table S12. Summary of overlapping QTL and GWAS associations. Comparisons include QTL between 
populations, which are overlapping QTL for the same trait mapped in both maize and teosinte; QTL 
within populations, which are overlapping QTL for the same trait and population, but identified as the 
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contrast between different specific parental alleles and the rest of the population alleles; GWAS hits 
within QTL, which are GWAS SNPs that are encompassed by a QTL for the same trait and population; 
and QTL containing GWAS SNPs, which are QTL that encompass a GWAS SNP for the same trait and 
population. Each comparison is quantified by the mean number of overlaps per comparison 
(Mean.overlaps), the number of comparisons with zero overlaps (N.zero), the empirical permutation-
based p-value for mean overlaps (Means.overlaps.pval), the empirical permutation-based p-value for 
the number of comparisons with zero overlaps (N.zero.overlaps.pval), and the total number of QTL or 
GWAS associations that represent the ‘denominator’ of these comparisons (N.QTL.or.hits). In addition, a 
Boolean variable (Clustered) indicates whether the observed mean number of overlaps is greater than 
the mean number obtained from the permutation test; this is not a significance test, if the empirical p-
value indicates that the observed number of overlaps is significantly different than the random 
distribution, the variable Clustered indicates evidence of clustering (True) or overdispersion (False).

Table S13. Summary of segregation distortion analysis in maize and teosinte, indicating the parent of the 
self-fertilized family where segregation distortion was detected (Family); the chromosome (Chr); the 
SNP name (marker_start), cM position (cM_start), AgpV4 position (pos_start(bp) and pos_start(Mb)) of 
the SNP defining the left side of the segregation distortion region; the SNP name (marker_end), cM 
position (cM_end), AgpV4 position (pos_end(bp) and pos_end(Mb)) of the SNP defining the right side of 
the segregation distortion region; the length of the region in bases (Length(Mb)) and in cM 
(Length(cM)), the recombination rate within the region (cM/Mbp; SDR-RR), and the average 
recombination rate in the chromosome (CRR).

Table S14. Correlations between rare allele load across the whole genome and inbreeding depression 
for 18 traits in maize and teosinte.

Table S15. Correlations and p-values between rare allele load within QTL regions and inbreeding 
depression for 18 traits in maize and teosinte.

Table S16. Distribution of linkage disequilibrium correlation (r) values among parental gametes for minor 
alleles at adjacent marker pairs common between maize and teosinte with less than 10% missing values 
and less than 5% minor allele frequency (or between 5-10% minor allele frequency).
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