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Abstract

Interactions of individuals in complex social systems give rise to emergent behaviors
at the group level. Identifying the functional role that individuals take in the group
at a specific time facilitates understanding the dynamics of these emergent processes.
An individual’s behavior at a given time can be partially inferred by common factors,
such as age, but internal and external factors also substantially influence behavior,
making it difficult to disentangle common development from individuality. Here we
show that such dependencies on common factors can be used as an implicit bias to
learn a temporally consistent representation of a functional role from social interaction
networks. Using a unique dataset containing lifetime trajectories of multiple generations
of individually-marked honey bees in two colonies, we propose a new temporal matrix
factorization model that jointly learns the average developmental path and structured
variations of individuals in the social network over their entire lives. Our method yields
inherently interpretable embeddings that are biologically relevant and consistent over
time, allowing one to compare individuals’ functional roles regardless of when or in which
colony they lived. Our method provides a quantitative framework for understanding
behavioral heterogeneity in complex social systems, and is applicable to fields such as
behavioral biology, social sciences, neuroscience, and information science.

Author summary

Group-level emergent behaviors are the result of interactions between individual group
members. To understand these social dynamics, one must objectively measure the
function of an individual in their group at any given time. Ideally, one would also like to
compare individuals from different groups, for example, to measure how specific environ-
mental conditions or other external factors influence group behavior. Unfortunately, such
an objective measure is hard to obtain because the group and its dynamics constantly
change, making it challenging to define an individual’s role in the group as a function of
its actions and interactions. We propose a principled approach to model individuals in
complex social systems by considering that function often depends, at least partially, on
common factors such as age. The model learns a meaningful and interpretable descriptor
for all individuals, and can be used to understand how complex social systems function
and the emergence of group behavior.
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1 Introduction 1

Animals living in groups often coordinate their behavior, resulting in emergent properties 2

at the group level. The dynamics of the inter-individual interactions produce, for 3

example, the coherent motion patterns of flocking birds and shoaling fish, or the results 4

of democratic elections in human societies. In many social systems, individuals differ 5

consistently in how, when, and with whom they interact. The way an individual 6

participates in social interactions and therefore contributes to the emergence of group- 7

level properties can be understood as its functional role within the collective [1–4]. 8

Technological advances have made it possible to track all individuals and their 9

interactions, ranging from social insects to primate groups [5–10]. These methods 10

produce datasets that have unprecedented scale and complexity, but identifying and 11

understanding the functional roles of the individuals within their groups has emerged as 12

a new and challenging problem in itself. Social network analysis of interaction networks 13

has proven to be a promising approach because interaction networks are comparatively 14

straightforward to obtain from tracking data, and the networks represent each individual 15

in the global context of the group [2, 3, 11,12]. 16

In most social systems, the way individuals interact changes over time, due to new 17

experiences, environmental changes, or physiological conditions. Furthermore, groups 18

themselves also tend to change, both in size and composition [13–18]. Despite these 19

changes over time, an objective measure of the functional role should identify individuals 20

that serve a similar function (e.g. a guard versus a forager). Unfortunately, we are 21

now facing a recursive definition of function: We are trying to derive the function of an 22

individual from the network, but the network itself is also a function of the individuals’ 23

behavior (and other factors). Still, consider a group-living species in which only a subset 24

of individuals engage in nursing duties. If we analyze the networks of different groups of 25

the same species in different environmental conditions and group sizes, we still expect 26

an objective measure of function to be shared among individuals engaged in nursing, 27

regardless of these confounding factors. How can we extract such an objective measure 28

from a constantly changing network of interactions without a fixed frame of reference? 29

In many social systems, individuals share common factors that partially determine the 30

roles they take. For example, an individual’s age can have a strong influence on behavior. 31

In humans, factors such as socioeconomic status are comparatively easy to measure yet 32

determine behavior and, therefore, interactions to a large extent. If individuals take on 33

roles partially determined by a common factor, can we use this dependency to learn an 34

objective measure of function? Here, we show that such common factors are a powerful 35

inductive bias to learn semantically consistent functional descriptors of individuals over 36

time, even in highly dynamic social systems. 37

In recent years, methods that automatically learn semantic embeddings from high- 38

dimensional data have become popular. These methods map entities into a learned 39

vector space. For example, in natural language models, a word can be represented as 40

a vector, such that specific regions in the manifold of learned embeddings correspond 41

to words with similar meaning. Similarly, recommender systems can learn meaningful 42

embeddings of users and items, for example, movies, such that similar entities cluster in 43

the manifold of learned embeddings [19–22]. 44

Such embeddings are usually learned from the data without additional supervision. 45

In recommender systems, a movie’s genre is usually not given in a dataset of user ratings, 46

yet the genre can be identified given the learned embeddings [23]. This capability of 47

learning embeddings from raw data and using them in downstream tasks is desirable in 48

datasets of social interactions, where raw data is often abundant but labels are hard to 49

acquire. Furthermore, embeddings are interpretable. For example, vector arithmetic of 50

word embeddings can be used to understand how semantic concepts the natural language 51

model has learned from the data relate to each other [24]. For entities that change 52
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over time, trajectories of embeddings can be analyzed, i.e., how one entity changes 53

within the learned manifold of embeddings. Such analyses can, for example, reveal how 54

environmental conditions such as resource availability affect behavioral changes within 55

the group [25,26]. 56

Most real-world networks have a hierarchical organization with overlapping communi- 57

ties, and thus soft community detection algorithms are often used to group and describe 58

entities [26–28]. Non-negative matrix factorization (NMF) is a principled and scalable 59

method to learn embeddings from data that can be represented in matrix form, such as 60

interaction networks. NMF has an inherent soft clustering property and is therefore well 61

suited to derive embeddings from social interaction networks [29]. If the embeddings 62

allow us to predict relevant behavioral properties, they serve our understanding as 63

semantic representations. 64

In symmetric non-negative matrix factorization (SymNMF), the dot products of any 65

two individuals’ embeddings (factor vectors) reconstruct their interaction affinity [30,31], 66

see Figure 1 a and b). However, this algorithm has no straightforward extension in tem- 67

poral settings where the interaction matrices change over time. The interaction matrices 68

at different time points can be factorized individually, but there is no guarantee that 69

the embeddings stay semantically consistent over time. The dot product is permutation 70

invariant, therefore factorization can result in different embeddings depending on the 71

optimization method being used, or noise in the data. Consider the hypothetical case of 72

two groups of animals of the same species with two tasks, guards and nurses. Factorizing 73

the interaction matrices of both groups will likely reveal two clusters, but there is no 74

guarantee that the same cluster will be assigned to the same task for both groups. The 75

same problem can occur in the case of only one group with new animals emerging and 76

some dying over time without any changes in the distribution of tasks on the group level. 77

In this case, the embeddings are not semantically consistent over time. The prediction of 78

relevant behavioral properties will deteriorate, and individuals cannot be meaningfully 79

compared against each other. 80

Several approaches to extend NMF to temporal settings have been proposed in a 81

variety of problem settings. Previous work proposed factorization methods for time 82

series analysis [32, 33], while others focus on the analysis of communities that are 83

determined by their temporal activity patterns [34]. Jiao and coworkers consider the 84

case of communities from graphs over time and enforce temporal consistency with an 85

additional loss term [35]. Several previous works represent network embeddings as a 86

function of time [36] and [37], but the meaning of these embeddings can still shift over 87

time. Temporal matrix factorization is similar to the tensor decomposition problem, 88

which has many proposed solutions, see review by [38]. In particular, time-shifted tensor 89

decomposition methods have been used in multi-neuronal spike train analysis, when 90

recordings of multiple trials from a population of neurons are available [39,40]. 91

We approach this problem in the honey bee, a popular model system for studying 92

individual and collective behavior [41]. Honey bees allocate tasks across thousands of 93

individuals without central control, using an age-based system: young bees care for 94

brood, middle-aged bees perform within-nest labor, and old bees forage outside [42, 43]. 95

While age is a good predictor for the task of an average bee, individuals often deviate 96

drastically from this common developmental trajectory due to internal and external 97

factors. Honey bee colonies are also organized spatially: brood is reared in the center, 98

honey and pollen are stored at the periphery, and foragers offload nectar near the exit. 99

Therefore, an individual’s role is partially reflected in its location, which provides the 100

unique opportunity to evaluate whether learned embeddings based on the interaction 101

data alone are meaningful. 102

A recent work proposes a method based on spectral decomposition to extract a 103

semantic embedding (Network age) from honey bee interaction matrices and shows that 104
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Figure 1. For a daily snapshot of a temporal social network, symmetric NMF is able to extract
meaningful factor representations of the individuals. Colors represent the interaction frequencies of all
individuals (a). The age-based division of labor in a honey bee colony is clearly reflected in the two
factors - same-aged individuals are likely to interact with each other (b). For long observation windows
spanning several weeks, the social network changes drastically as individuals are born, die, and switch
tasks (c). Here, we investigate how a representation of temporal networks can be extracted, such that
the factors representing individuals can be meaningfully compared over time, and even across datasets.

these embeddings can be used to predict task allocation, survival, activity patterns, 105

and future behavior [12]. The method proposed here is conceptually similar but solves 106

several remaining challenges. Here, we introduce Temporal NMF (TNMF), which yields 107

consistent semantic embeddings even for individuals from disjoint datasets, for example, 108

data from different colonies, or for long-duration recordings that contain multiple lifetime 109

generations. 110

TNMF jointly learns a) a functional form of the average trajectory of embeddings along 111

the common factor, b) a set of possible functional deviations from the average trajectory, 112

and c) for each individual, a soft-clustering assignment (individuality embedding) to 113

these deviations. We show that these representations can be learned in an unsupervised 114

fashion, using only interaction matrices of the individuals over time. We analyze how 115

well the model is able to disentangle common development from individuality using 116

a synthetic dataset. Furthermore, we introduce a unique dataset containing lifetime 117

trajectories of multiple generations of individually-marked honey bees in two colonies. 118

We evaluate how well the embeddings learned by TNMF capture the semantic differences 119

of individual honey bee development by evaluating their predictiveness for different 120

tasks and behaviorally relevant metrics compared to several baseline models proposed in 121

previous works. 122
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Figure 2. Overview of the method: We learn a parametric function describing the mean life trajectory
m(c(t, i)) and a set of basis functions of individual variation b(c(t, i)), where c(t, i) is the age of individual
i at time t (a). For each individual, an embedding is learned consisting of one scalar per basis function that
scales the contribution of the respective basis function - this vector of weights makes up the individuality
embedding of an individual (b). The mean trajectory m(c(t, i)) plus a weighted sum of the basis functions
b(c(t, i)) constitute the lifetime trajectory of each individual (c). At each time point, factors can be
extracted from the individual lifetime trajectories (d) to reconstruct the interaction affinity between
individuals (e). Note that the lifetime trajectories are functions of the individuals’ ages, while interactions
can occur at any time t.

2 Materials and Methods 123

2.1 Temporal NMF algorithm 124

SymNMF factorizes a matrix A ∈ RN×N
+ such that it can be approximated by the

product FF T , where F ∈ RN×M
+ and M � N :

F̂ = argmin
F≥0

∥∥∥A− FF T
∥∥∥2 Ai,j ≈ f(i) · f(j)

T
f(i) = Fi,: f(i) ∈ RM+ (1)

When applied to social networks, f(i) can represent the role of an entity within the 125

social network A [30, 31] - however, in temporal settings, factorizing the matrices for 126

different times separately will result in semantically inconsistent factors. 127

Here we present a novel temporal NMF algorithm (TNMF ) which extends SymNMF
to temporal settings in which A ∈ RT×N×N

+ changes over time t. We assume that the
entities i ∈ {0, 1, . . . , N} follow to some extent a common trajectory depending on an
observable property (for example the age of an individual). We represent an entity at a
specific point in time t using a factor vector f+(t, i) such that

Ât,i,j = f+(t, i) · f+(t, j)T Â ∈ RT×N×N
+ f+(t, i) ∈ RM+ (2)
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In contrast to SymNMF, we do not directly factorize At to find the optimal factors
that reconstruct the matrices. Instead, we decompose the problem into learning an
average trajectory of factors m(c(t, i)) and structured variations from this trajectory
o(t, i) that depend on the observable property c(t, i):

f(t, i) = m(c(t, i)) + o(t, i) f+(t, i) = max(0,f(t, i)) (3)

c : NT×N → N m : N→ RM+ o : NT×N → RM 128

This decomposition is an inductive bias that allows the model to learn semantically 129

consistent factors for entities, even if they do not share any data points (e.g., there is 130

no overlap in their interaction partners), as long as the relationship between functional 131

role and c(t, i) is stable. Note that in the simplest case c(t, i) = t, TNMF can be seen 132

as a tensor decomposition model, i.e. the trajectory of all entities is aligned with the 133

temporal dimension t of A. In our case, c(t, i) maps to the age of individual i at time t. 134

While many parameterizations for the function o(t, i) are possible, we only consider
one particular case in this work: We learn a set of individuality basis functions b(c(t, i))
(shared among all entities) that define a coordinate system of possible individual variations
and the individuality embeddings φ, which capture to what extent each basis function
applies to an entity:

o(t, i) =
K∑
k=0

φi,k · bk(c(t, i)) φ : RN×K bk : NT → R (4)

where K is the number of learned basis functions. This parameterization allows us to 135

disentangle the forms of individual variability (individuality basis functions) and the 136

distribution of this variability (individuality embeddings) in the data. 137

We implement the functions m(c(t, i)) and b(c(t, i)) with small fully connected neural
networks with non-linearities and several hidden layers. The parameters θ of these
functions and the entities’ embeddings φ are learned jointly using minibatch stochastic
gradient descent:

θ̂, φ̂ = argmin
θ,φ

∥∥∥A− Â
∥∥∥2 (5)

Note that non-negativity is not strictly necessary, but we only consider the non- 138

negative case in this work for consistency with prior work [30,31]. Furthermore, instead 139

of one common property with discrete time steps, the factors could depend on multiple 140

continuous properties, i.e. c : RT×N → RP , e.g. the day and time in a intraday analysis 141

of social networks. 142

We find that the model’s interpretability can be improved using additional regular- 143

ization terms without significantly affecting its performance. We encourage sparsity in 144

both the number of used factors and individuality basis functions by adding L1 penalties 145

of the mean absolute magnitude of the factors f(t, i) and basis functions b(c(t, i)) to the 146

objective. We encourage individuals’ lifetimes to be represented with a sparse embedding 147

using an L1 penalty of the learned individuality embeddings φ. 148

We also introduce an optional adversarial loss term to encourage the model to learn 149

embeddings that are semantically consistent over time, i.e. to only represent two entities 150

that were present in the dataset at different times with different embeddings if this is 151

strictly necessary to factorize the matrices A. We jointly train a discriminative network 152

d(φi) that tries to classify the time of the first occurrence of all entities based on their 153

individuality embeddings φ. The negative cross-entropy loss of this model is added as a 154

regularization term to equation 5 in a training regime similar to generative adversarial 155

networks [44]. Note that a high cross-entropy loss of the discriminative network d(φi) 156
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implies that the distribution of individuality embeddings φ is consistent over time. See 157

appendix S1.1 for more details and S2 for an ablation study of the effect the individual 158

regularization terms have on the results of the model. 159

We implemented the model using PyTorch [45] and trained it in minibatches of 160

256 individuals for 200 000 iterations with the Adam optimizer [46]. We calculate the 161

reconstruction loss
∥∥∥At − Ât

∥∥∥2 only for valid entries, i.e., we mask out all matrix elements 162

where one of the individuals is not alive at the given time t. See appendix S1.3 for the 163

architecture of the learned functions, a precise description of the regularization losses, 164

and further hyperparameters. The code of our reference implementation is publicly 165

available: https://github.com/nebw/temporal_nmf. 166

2.2 Data 167

2.2.1 Synthetic data 168
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Figure 3. Example of one synthetic dataset. a) Common lifetime trajectory of all
entities. b) The lifetime trajectory of one latent group. c) The factors of one individual
in the dataset of the latent group visualized in b. d) Generated interaction matrix for
one day.

We created synthetic datasets using a generative model of interactions based on a 169

common latent trajectory of factors and groups with structured variations from this 170

trajectory. We compute the number of interactions between two individuals as the dot 171

product of their latent factors and additive Gaussian noise. Using these datasets we 172

can evaluate whether the model successfully converges and is able to correctly identify 173

which individual belongs to which latent group, even in the presence on high amounts of 174

observational noise. While we believe that such a latent structure exists in most complex 175

social systems, it is not directly observable, and thus, for data from a real system, we 176

can only evaluate the model on proxy measures (see section 2.3) that are observable. 177

We model a common lifetime trajectory of factors using a smoothed Gaussian random 178

walk in R+ with σwalk = 1 for the steps of the random walk and σsmoothing = 10 179

for the Gaussian smoothing kernel. See Figure 3 a) for one example of a generated 180

lifetime trajectory with three factors. We then randomly create latent groups by creating 181

smoothed Gaussian random walks that define how these groups differ from the common 182

lifetime trajectory. See Figure 3 b) for the lifetime trajectory of one latent group. For 183

each group, we also define different expected mean lifetimes. We set the average lifetime 184

of an entity to 30 days with a standard deviation of 10 days. We then randomly assign 185

1024 individuals to those latent groups and also assign random dates of emergence and 186

disappearance of these individuals in the dataset. We then compute the individual factor 187

trajectories for each individual, as can be seen in Figure 3 c). Finally, for 100 days of 188
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simulated data, we generate interaction matrices by computing the dot products of the 189

factors of all individuals (Figure 3 d). 190

We then measure how well the individuality embeddings φ of a fitted model match 191

the true latent groups from the generative model using the adjusted mutual information 192

score [47]. Furthermore, we measure the mean squared error between the ground 193

truth factors and the best permutation of the factors f+. We evaluate the model on 194

128 different random synthetic datasets with increasing Gaussian noise levels in the 195

interaction tensor. 196

2.2.2 Honey bee data 197

Honey bees are an ideal model system with a complex and highly dynamic social structure. 198

The entire colony is observable most of the time. In recent years, technological advances 199

have made it possible to automatically track individuals in entire colonies of honey bees 200

over long periods of time [6,10,48]. We analyze a dataset obtained by tracking thousands 201

of individually marked honey bees at high temporal and spatial resolution, covering 202

entire lifespans and multiple generations. 203

Two colonies of honey bees were continuously recorded over a total of 155 days. Each 204

individual was manually tagged at emergence, so the date of birth is known for each 205

bee. Timestamps, positions, and unique identifiers of all (N=9286) individuals from 206

these colonies were obtained using the BeesBook tracking system [10,12,48]. See Table 1 207

for dates and number of individuals. Temporal affinity matrices were derived from this 208

data as follows: For each day, counts of proximity contact events were extracted. Two 209

individuals were defined to be in proximity if their markers’ positions had an euclidean 210

distance of less than 2 cm for at least 0.9 seconds. The daily affinity between two 211

individuals i and j based on their counts of proximity events pt,i,j at day t was then 212

computed as: At,i,j = log(1 + pt,i,j), A ∈ RNt×Ni×Ni , where Nt is the number of days 213

and Ni the number of individuals in the dataset. 214

The datasets also contains labels that can be used in proxy tasks (see section 2.3) 215

to quantify if the learned embeddings and factors are semantically meaningful and 216

temporally consistent. 217

The datasets are open access and available under the Creative Commons Attribution 218

4.0 International license: https://zenodo.org/record/3862966 [49]. 219

Dataset Dates Days Individuals Interaction pairs

BN16 2016-07-23 to 2016-09-17 56 2443 43 174 748
BN19 2019-07-25 to 2019-11-01 99 6843 167 366 381

Table 1. The honey bee datasets contain the number of proximity-inferred interactions
extracted from tracking data of all individuals in two long-term recordings spanning a
total of 155 days and 9286 individuals.

In both datasets, we define c(t, i) as the age in days of an individual i at time t. 220

2.3 Evaluation 221

Reconstruction: We measure how well the original interaction matrices A can be 222

reconstructed from the factors. We do not require the model to reconstruct the interaction 223

matrices as well as possible because we only use the reconstruction as a proxy objective 224

to learn a meaningful representation. Still, a high reconstruction loss could indicate 225

problems with the model, such as excessive regularization. 226

Consistency: We measure to what extent the individuality embeddings φ change over 227

time. For each model, we train a multinomial logistic regression model to predict the 228
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source cohort (date of birth) and calculate the area under the ROC curve (AUCcohort) 229

using a stratified 100-fold cross-validation with scikit-learn [50]. The baseline models 230

do not learn an individuality embedding; therefore we compute how well the model can 231

predict the cohort using the mean factor representation of the individuals over their 232

lives. We define consistency as 1−AUCcohort of this linear model. Note that a very low 233

temporal consistency would indicate that the development of individual bees changes 234

strongly between cohorts and colonies, which we know not to be true. 235

Mortality and Rhythmicity: We evaluate how well a linear regression model can 236

predict the mortality (number of days until death) and circadian rhythmicity of the 237

movement [12] (R2 score of a sine with a period of 24 h fitted to the velocity over a 238

three-day window). These metrics are strongly correlated with an individual’s behavior 239

(e.g. foragers exhibit strong circadian rhythms because they can only forage during the 240

daytime; foragers also have a high mortality). We follow the procedure given in [12] and 241

report the 100-fold cross-validated R2 scores for these regression tasks. 242

Time spent on different nest substrates: For a subset of the data, from 2016-08-01 243

to 2016-08-25, nest substrate usage information is also available. This data contains the 244

proportion of time each individual spends in the brood area, honey storage, and on the 245

dance floor. This data was previously published and analyzed [12,51]. The task of an 246

honey bee worker is strongly associated with her spatial distribution in the hive. We 247

therefore expect a good representation of the individuals’ functional role to correlate 248

with this distribution. 249

For this data, we expect the factors f+ and individuality embeddings φ to be seman- 250

tically meaningful and temporally consistent if they reflect an individual’s behavioral 251

metrics (mortality and rhythmicity) and if they do not change strongly over time 252

(measured in the consistency metric). 253

2.4 Baseline models 254

Biological Age: Task allocation in honey bee is partially determined by temporal 255

polyethism. Certain tasks are usually carried out by individuals of about the same age, 256

e.g. young bees are usually occupied with nursing tasks. We therefore use the age of an 257

individual as a baseline descriptor. 258

Symmetric NMF: We compute the factors that optimally reconstruct the original 259

interaction matrices using the standard symmetric NMF algorithm [31,52], for each day 260

separately, using the same number of factors as in the TNMF model. 261

Optimal permutation SymNMF: We consider a simple extension of the standard 262

SymNMF algorithm that aligns the factors to be more consistent over time. For each pair 263

of subsequent days, we consider all combinatorial reorderings of the factors computed for 264

the second day. For each reordering, we compute the mean L2 distance of all individuals 265

that were alive on both days. We then select the reordering that minimizes those pairwise 266

L2 distances and greedily continue with the next pair of days until all factors are aligned. 267

Furthermore, we align the factors across colonies (where individuals cannot overlap) as 268

follows: we run this algorithm for both datasets separately and align the resulting factors 269

by first computing the mean embedding for all individuals grouped by their ages. As 270

before, we now select from all combinatorial possibilities the reordering that minimizes 271

the L2 distance between the embeddings obtained from both datasets. See section S3.1 272

for pseudo code. 273

Tensor decomposition: We also compare against a constrained non-negative tensor
decomposition model with symmetric factors F ∈ RN×M

+ and temporal dynamics
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Figure 4. AMI score and mean squared error between true factors and the best permutation of learned
factors for increasing noise levels. The median values over 128 trial runs are shown.

constrained to the diagonals, i.e. D ∈ RT×M×M
+ and Dt = diag(dt), dt ∈ RM+ .

Ât = FDtF
T (6)

F̂ , D̂ = argmin
F ,D

T−1
T∑
t=0

∥∥∥At − Ât

∥∥∥2 (7)

Temporal NMF models: We evaluate variants of the temporal symmetric matrix 274

factorization algorithms proposed by [35] and [36]. 275

For the tensor decomposition and temporal NMF baselines, we follow the procedure 276

given above for the Optimal permutation SymNMF to find the optimal reordering to 277

align the factors obtained by applying models to the two datasets separately. 278

3 Results 279

3.1 Synthetic data 280

We factorize the interaction matrices of the 128 synthetic datasets with varying levels of 281

Gaussian noise. We confirmed that our model converges in all datasets and evaluate 282

whether we can distinguish the individuals’ ground truth group assignments. To that 283

end, we extract the individuality embeddings φ from the models and measure how well 284

they correspond to ground truth data using the adjusted mutual information (AMI) 285

score. Furthermore, we measure the mean squared error between the best permutation 286

of learned factors f+ and the ground truth factors. 287

We find that for low levels of noise, our model can identify the truth group assignments 288

with high accuracy, and are still significantly better than random assignments even at 289

very high levels of noise (see figure 4). Note that for this experiment, we evaluated a 290

model with the same hyperparameters as used in all plots in the results section (see 291

Table 2) and a variant without explicit regularization except the L1 penalty of the 292

learned individuality embeddings φ (λembeddings, because this regularization is required 293

to meaningfully extract clusters), which was set to 0.1. See appendix 2.2.1 for more 294

details on the synthetic datasets. 295

3.2 Honey bees 296

Mean lifetime model: The model learns a sparse representation of the developmental 297

trajectory of a honey bee in the space of social interactions. Only two factors are 298
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Figure 5. a) Mean lifetime trajectories according to m(c(t, i)). The model learns a sparse representation
of the functional position of the individuals in the social network. f0 (blue) mostly corresponds to middle-
aged and older bees, and f1 (orange) predominantly describes young bees. Only factors with a mean
magnitude of at least 0.01 are shown. b) Even though the model uses only these two factors, it is still
expressive enough to capture individual variability, as can be seen in randomly sampled individuals’
lifetime trajectories. c) The individual factors f+ and the proportion of time the individuals spent
on different nest substrates. The strong correlation indicates that the learned factors are a good
representation of the individuals’ roles in the colonies. Note that the factors have been divided by their
standard deviation here for ease of comparability.

effectively used (they exceed the threshold value of 0.01). These factors show a clear 299

trend over the life of a bee, indicating that the model captures the temporal aspects of 300

the honey bee division of labor (See Figure 5). 301

Interpretability of factors: To understand the relationship between the factors and 302

division of labor, we calculate how the factors map to the fraction of time an individual 303

spent on the brood area, honey storage, or dance floor (where foragers aggregate). Time 304

spent on these different substrates is a strong indicator of an individual’s task. The 305

factor f1, which peaks at young age (Figure 5), correlates with the proportion of time 306

spent in the brood area, while a high f0 indicates increased time spent on the dance 307

floor. Therefore, the model learned to map biologically relevant processes. 308

Individuality basis functions and individuality embeddings: Due to the regu- 309

larization of the embeddings, the model learns a sparse set of individuality basis functions. 310

As encouraged by the model, most individuals can predominantly be described by a 311

single basis function. That means that while each honey bee can collect a unique set of 312

experiences, most can be described with a few common individuality embeddings which 313

are consistent across cohorts and colonies. In the context of honey bee division of labor, 314

the basis functions are interpretable because the factors correspond to different task 315

groups. For example, b12(c(t, i)) (accounting for ≈ 10.7% of the individuals) describes 316

workers that occupy nursing tasks much longer than most bees. As the individuality 317

embeddings φ only scale the magnitude of the basis functions, they can be interpreted 318

in the same way. Individual lifetime trajectories in the factor space can be computed 319

based on the mean lifetime trajectories (m), individuality basis functions (b(c(t, i))) and 320

individuality embeddings (φ). See figure 6 for examples of individual lifetime trajecto- 321

ries from workers that most strongly corresponded to the common individuality basis 322

functions. 323

Evaluation: We verify that the learned representations of the individuals are mean- 324

ingful (i.e., they relate to other properties of the individuals, not just their interaction 325

matrices) and semantically consistent over time and across datasets using the metrics 326

described in the section Evaluation. We compare variants of our model with different 327

adversarial loss scaling factors and factor L1 regularizations, the baseline models, and 328
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Figure 6. a) Magnitude of factor offsets for the five most common individuality basis functions over age
bk(c(t, i)). The percentage of individuals that most strongly correspond to the individual basis functions
is shown in the column titles. More than 60% of the individuals strongly correspond to one of the five
basis functions shown here. b) Because the basis functions describe individuality offsets from the mean
lifetime trajectory, it may be easier to interpret them by visualizing individual examples. For each of the
basis functions (top row), we show a lifetime trajectory of an individual that corresponds to that basis
function (bottom row). Note that individuals can die or disappear at any time (solid lines). The mean
lifetime trajectories are shown as dotted lines in the background.

the individuals’ ages. We expect a good model to be temporally consistent and seman- 329

tically meaningful. All variants of our model outperform the baselines in terms of the 330

semantic metrics Mortality and Rhythmicity, except for the [36] model, which performs 331

comparably well in the Mortality metric. The adversarial loss term further increases 332

the Consistency metric without negatively affecting the other metrics. A very strong 333

adversarial regularization (see row with λadv = 1 in Table 2) prevents the model from 334

learning a good representation of the data. See Table 2 for an overview of the results. 335

We also evaluate the tradeoff between the different metrics using a grid search over the 336

hyperparameters (see appendix 3.2). 337

Scalability: The functions m(c(t, i)) and b(c(t, i)) are learned neural networks with 338

non-linearities. The objective is non-convex and we learn the model parameters using 339

stochastic gradient descent. Optimization is therefore slower than the standard NMF 340

algorithms that can be fitted using algorithms such as Alternating Least Squares [53]. 341

We found that the model converges faster if the reconstruction loss of the age based 342

model m(c(t, i)) is additionally minimized with the main objective in equation 5. Due 343

to the minibatch training regime, our method should scale well in larger datasets. Small 344

neural networks were sufficient to learn the functions m(c(t, i)) and b(c(t, i)) in our 345

experiments. Most of the runtime during training is spent on the matrix multiplication 346

f+(t, i) · f+(t, j)T and the corresponding backwards pass. 347

Tradeoff between temporal consistency and semantic meaningfulness: We 348

performed a grid search over the hyperparameters λf, λadv, λbasis, and λembeddings (see 349

Table 1) to evaluate whether models can only be either semantically meaningful or 350

temporally consistent. For this analysis, we define Semantic meaningfulness as the sum 351

of the Rhythmicity and Mortality metrics introduced in section 2.3. We find that models 352

that are very temporally consistent fail to learn semantically meaningful information. 353

Interestingly, the models with the best tradeoff between the two metrics are almost as 354

semantically meaningful as those models with low temporal consistency and the highest 355

semantic meaningfulness. This analysis suggests that regularization encourages the 356

model to only represent different individuals differently if this is strictly necessary to 357

factorize the data. See Figure 5. 358
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Model

Method Variant
∥∥∥A− Â

∥∥∥2

↓ Consistency ↑ Mortality ↑ Rhythmicity ↑

Age - - - 0.02 0.20
SymNMF Vanilla 0.9 0.18 0.01 0.02
SymNMF Optimal permutation 0.9 0.12 0.09 0.35
Tensor decomposition - 1.36 0.03 0.06 0.09
DNMF [35] γ = 0.1 0.9 0.19 0.02 0.05
DNMF [35] γ = 1 1.15 0.15 0.01 0.04
s-TMF [36] β = 0.01, d = 5 1.59 0.03 0.17 0.06

TNMF No regularization 1.21 0.17 0.30 0.48
TNMF λadv = 0, λf = 0.01 1.26 0.18 0.10 0.40
TNMF λadv = 0.1, λf = 0.01 1.28 0.35 0.20 0.42
TNMF λadv = 1, λf = 0.01 1.88 0.5 0.03 0.25
TNMF λadv = 0, λf = 0.1 1.31 0.19 0.09 0.38
TNMF λadv = 0.1, λf = 0.1 1.33 0.37 0.10 0.42

Table 2. The evaluation metrics for TNMF and the baseline models described in section 2.3. See
appendix S1.3 and S3 for descriptions of the hyperparameters used. Note that the SymNMF model
reconstruction loss can be seen as a lower bound for the matrix factorization models considered here, and
imposing a temporal structure or regularization causes all models to explain less variance in the data.
However, for all models except TNMF this does not result in a significant increase of the other metrics.
The underlined model is used in all plots in the results section.

4 Discussion 359

Temporal NMF factorizes temporal matrices with overlapping and even disjoint com- 360

munities by learning an embedding of individuals as a function of a common factor, 361

such as age, and a learned representation of the individuals’ individuality. This explicit 362

dependency on a common factor that partially determines the function of an individual 363

constitutes an inductive bias. We show that the model learns semantically consistent 364

representations of individuals, even in challenging cases, such as the datasets analyzed 365

in this work. 366

The individual components of the model are straightforward to visualize and interpret. 367

The learned individuality embeddings φ can be understood as soft-cluster assignments 368

relating to the whole lifetime of an individual, while the factor vectors f+(t, i) can be 369

interpreted as cluster assignments of the individuals at a specific point in time, i.e. two 370

individuals with similar factor vectors are likely to interact if they exist in the same 371

group at the same time. Furthermore, the model encourages sparsity, making the results 372

easier to interpret because the model only uses as many factors and clusters as necessary. 373

We identified a crucial trade-off that comes with temporal consistency: For a specific 374

point in time, the ability to predict behaviorally relevant attributes will likely be worse for 375

a model that learns temporally consistent representations compared to a non-consistent 376

model with the same capacity. Conversely, in more challenging cases, e.g. when taking 377

long periods of time or data from disjoint communities into consideration, temporally 378

consistency is indispensable for a good representation. Furthermore, we found that 379

models can be temporally consistent, semantically meaningful, or both; selecting the 380

correct model requires an inductive bias, but regularization of the model also influences 381

the results. 382

Previous works have demonstrated that biologically relevant findings can be obtained 383

using network analysis of social interaction networks [4, 5, 26,54–62]. A recent method, 384

Network Age [12], proposes using spectral decomposition of honey bee interaction 385

networks into succinct descriptors of the individual’s social network that can be used 386

2021-09-01 13/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.09.01.458538doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458538
http://creativecommons.org/licenses/by/4.0/


φ i
,7

φ i
,1
0

φ i
,1
2
φ i

,0
φ i

,9
φ i

,8
φ i

,3

φ i
,1
1

φ i
,1
5
φ i

,6
φ i

,4
φ i

,1

φ i
,1
4
φ i

,5

φ i
,1
3
φ i

,2

Individuality embedding dimension

In
d
iv
id
u
a
l

Individuality embeddings φ

Figure 7. Left: Hierarchical clustering of individuality embeddings: Most individuals strongly corre-
spond to a single individuality basis function, making it easy to cluster their lifetime social behavior
(i.e. each individual has a high value in a single dimension for their individuality embedding). Because
each cluster is strongly associated with a specific individuality basis function, and because each basis
function is interpretable (Figure 5), these blueprints of lifetime development can also be intuitively
understood and compared. Right: TSNE plots of the individuality embeddings colored by cluster (left)
and the maximum circadian rhythmicity of an individual during her lifetime (right), indicating that the
embeddings are semantically meaningful.

to predict task allocation, survival, activity patterns, and future behavior. Symmetric 387

nonnegative matrix factorization and Laplacian-based spectral clustering have been 388

shown to be equivalent [29]. Thus, TNMF can be understood as a further development 389

of Network Age. TNMF learns representations of individuals based on their social 390

interaction network that can facilitate the analysis of developmental trajectories, division 391

of labor, and individual variance in behavior. Furthermore, TNMF provides temporally 392

consistent embeddings and with that rectifies a remaining limitation of Network Age. 393

We confirmed that, on the honey bee dataset, TNMF obtains biologically meaningful 394

lifetime trajectories with promising prospects for experimental application. TNMF 395

may help advance our understanding of the colony function and the interplay between 396

environmental factors and individual and collective responses. The method presented 397

here offers a way to investigate the impact of stress factors, such as pesticides, parasitic 398

mites, and agricultural monoculture, on the social structure of colonies and therefore 399

may present an avenue to improve honeybee health. 400

We applied our method to the honey bee model, which has numerous individuals, 401

with an entangled and highly dynamic social structure. Our method, however, can be 402

applied to any setting in which matrix factorization is commonly used, such as recom- 403

mender systems, network analysis, audio processing, bioinformatics, etc. Interaction 404

matrices in networked systems have a broad class of use-cases. In any system with 405

dynamically interacting units, our model reduces high-dimensional interaction patterns 406

to low-dimensional embeddings. The only requirement is that the interactions follow 407

our generic model of an average path from which individual units can deviate. The 408

method could serve as a means to generate hypotheses: Clustering individuals in the 409

embedding space may reveal functional groups, and the basis functions can indicate 410

relevant time points in individual developments that can be investigated in follow-up 411

studies. Note that time in our model may be replaced by any variable along which one 412

wants to study the matrix dynamics. While we evaluate TNMF on honey bees, the 413

method may be used to study human social networks and their underlying dynamics. 414
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A deeper understanding of human interaction dynamics may benefit aspects of human 415

life, such as health, technology, and work. The method could, for example, be used to 416

identify individuals with a higher risk of contracting or transmitting a disease, or help 417

assess the effect of pandemics and potential interventions. 418

By publishing the honey bee dataset and our reference implementation of the TNMF 419

algorithm, we hope to encourage the scientific community to build upon our efforts. 420
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