






Fig. SI-20. Configuration with low self-connectivity and high synchronicity at Q = 800. The fixed point (stable) is in a topologically disconnected space (negative firing rate,
positive potential). An initial condition in the right space converges to fixed point (top), an initial condition on the other side orbits, reproducing QIF dynamics. W2P function
common to both is provided in the bottom plots. Fixed points with positive firing rate occur are stable but require lower inputs.
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H. Extension to gap junctions. We can extend the analysis to the model discussed in (16), including gap junctions
and asymmetric spikes. Let g denote conductance (units of 1/Ohm or [A/V]).

ϕ̇ = k

c

[
∆
πc

+ 2ϕv − g

c
ϕ

]
[51]

v̇ = k

c
v2 − π2 c

k
ϕ2 + 1

c

[
η̄ + Js+ I(t) + ln agc

k
ϕ
]

[52]

ṡ = z [53]
ż = a2ϕ− 2az − a2s [54]
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I. Dimensional reduction of single population model. The extended equations of the single population model are∗

ϕ̇ = k

c

[
∆
πc

+ 2ϕv
]

v̇ = k

c
v2 − π2 c

k
ϕ2 + 1

c
[η̄ + Js+ I(t)]

ṡ = z

ż = a2ϕ− 2az − a2s

with units [r, s]=Hz, [J ]=C, [v]=V, [k]=A/V2, [c]=C/V=A/(V Hz), [η̄,∆, Js(t), I] =A, and [k/c]=Hz/V, [a] = Hz.
Some natural units in NMM2 are

time = 1/a, c
2a

k∆ ,
c2a

kη̄
,
c2

kJ
(synapse and membrane times)

voltage = 1/γ = ca

k
,
J

c
,
η̄

ca
...

current = c2a2

k
,∆, η̄, Ja

The parameters in these equations are ∆, η̄, J, a, k, c and the dimensions in the problem are T, V,C. The associated
dimensional matrix is

M =


∆ η̄ J a k c

T : −1 −1 0 −1 −1 0
V : 0 0 0 0 −2 −1
C : 1 1 1 0 1 1


The fundamental dimensionless parameters (zero modes of the dimensional matrix) are

ε1 = ∆/η̄
ε2 = aJ/η̄

ε3 = ∆c2/(kJ2)

All dimensional quantities can be expressed as the product of an arbitrary one times a function of the dimensionless
parameters. E.g., all frequencies can be expressed as f = aF (ε1, ε2, ε3).

Let the a time variable be τ = at, with s̄ = s/a, z̄ = z/a2, and ϕ̄ = ϕ/a. Then, using a prime to denote derivative
w.r.t to τ ,

a2ϕ̄′ = k

c

[
∆
πc

+ 2aϕ̄v
]

[55]

av′ = k

c
v2 − π2a2 c

k
ϕ̄2 + 1

c
[η̄ + aJs̄+ I(t)] [56]

s̄′ = z̄ [57]
z̄′ = ϕ̄− 2z̄ − s̄ [58]

Define γ = k/(ca), with units [γ]= 1 /V and the dimensionless variable v̄ = γv, then

ϕ̄′ = ∆̃
π

+ 2ϕ̄v̄ [59]

v̄′ = v̄2 − π2ϕ̄2 + η̃ + J̃ s̄+ Ĩ(t) [60]
s̄′ = z̄ [61]
z̄′ = ϕ̄− 2z̄ − s̄ [62]

∗
One may be tempted to replace the last equation by z = a2βϕ − 2az − a2s, but this is redundant. The change of variables z = βz̃ and s = βs̃ then lead to z̃ = a2ϕ − 2az̃ − a2s̃, and the
β factor pops up in the second NMM2 equation, changing J → βJ . This is also clear from the point of view of the L operator.
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with the dimensionless current parameters

∆̃ = k

c2a2 ∆

η̃ = k

c2a2 η̄

J̃ = k

c2a2 aJ

Stability analysis. We analyze here the fixed points and their stability of the NMM2 single population model.We
start from the equations

ϕ̄′ = ∆̃
π

+ 2ϕ̄v̄ [63]

v̄′ = v̄2 − π2ϕ̄2 + η̃ + J̃ s̄+ Ĩ(t) [64]
s̄′ = z̄ [65]
z̄′ = ϕ̄− 2z̄ − s̄ [66]

Fixed points, as described in the methods section, Equation 33, are determined by

0 = v4 + η̃v2 − J̃∆̃
2π v −

∆̃2

4

The Jacobian is

J =


fϕ,ϕ fϕ,v fϕ,s fϕ,z
fv,ϕ fv,v fv,s fv,z
fs,ϕ fs,v fs,s fs,z
fz,ϕ fz,v fz,s fz,z

 =


2v̄ 2ϕ̄ 0 0
−2π2ϕ̄ 2v̄ J̃ 0

0 0 0 1
1 0 −1 −2


or, using the equilibrium condition ϕ̄ = −∆̃/(2πv̄),

J =


2v̄ − ∆̃

πv̄ 0 0
π ∆̃
v̄ 2v̄ J̃ 0

0 0 0 1
1 0 −1 −2


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J. Response to AC stimulation.

Fig. SI-21. Sample time-series of v with resonant frequency (around 10 Hz) stimulation starting from fixed points. The rise time to steady state can be very slow and is
proportional to the amplification factor of the amplitude.

Fig. SI-22. Sample Arnold tongues for AC stimulation with a weak E-field.
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Fig. SI-23. Frequency and amplitude as a function of J (bottom).
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Fig. SI-24. Response frequency (left) amplitude (right) as a function of J and ∆ (top) or J and a (bottom).
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K. Slow synapse/slow input limit and mapping of NMM2 to NMM parameters. What happens in the limit of “frozen
synapses”, i.e., a = 0+? As we have seen after nondimensionalization of these equations, if the dimensionless currents
are large (e.g., a→ 0), the first two equations have large derivatives (moving fast compared to the second two) and
can be evaluated at their equilibrium point (assuming they have a stable one, as we know they do from MPR), and
we are in the regime of slow synapse time (compared to membrane time). The equations become — if also the input
current is static or slowly varying so that the v, ϕ subsystem has time to reach equilibrium,

0 = ∆̃
π

+ 2ϕ̄v̄ [67]

0 = v̄2 − π2ϕ̄2 + η̃ + J̃ s̄+ Ĩ [68]
s̄′ = z̄ [69]
z̄′ = ϕ̄− 2z̄ − s̄ [70]

with the dimensionless current parameters

∆̃ = k

c2a2 ∆

η̃ = k

c2a2 η̄

J̃ = k

c2a2 aJ

We are thus led to a traditional NMM formulation with a fixed W2P function. The details of this follow.
But we should note that it is important that the input current I be static or very slowly varying. The first two

equations will then have time to stabilize going to a fixed point.
Assuming the above, we would like to obtain from this the wave2pulse (W2P) relation: firing rate from membrane

potential or current perturbation from baseline, that is, a relation of the form (we drop all bars and tildes for
simplicity)

ϕ = ϕ(Q; ∆)

with the total input Q = η + Js+ I(t).
Then the differential equations become

s′ = z [71]
z′ = ϕ(Q(s, η, I); ∆)− 2z − s [72]

Note that in this form, the NMM2 equations (in the limit of slow synapses compared to other timescales) look very
much like NMM equations in a self-coupled population. The main difference is the fact that W2P is now replaced by
a different function, and that the fundamental dynamical variable is now synaptic current rather than the synaptic
potential alteration u.

This is actually advantageous, because to connect with physical measurements we are interested in synaptic
currents, and, in fact, in the NMM formalism we use a linear relation to transform u into s.

The main issue with the NMM2 formulation is the fact that the WP2 function does not saturate, a fact related to
the lack of refractory period in the QIF equations (the QIF neuron can increase its firing rate to infinity as a function
of input current).

To get closer to the NMM formulation, we write

v = − ∆
2ϕπ

and input this into the second equation above,

0 = ∆2

4ϕ2π2 − π
2ϕ2 +Q [73]

or
0 = π2ϕ4 −Qϕ2 − ∆2

4π2 [74]
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or

ϕ2 = Q

2π2 +
√

( Q

2π2 )2 + ∆2

4π4 [75]

or (since ϕ > 0),

ϕ =

√
Q

2π2 +
√

( Q

2π2 )2 + ∆2

4π4 [76]

Fixed point at I = 0. We start from ϕ∗ = s∗ and plug this into equation 73 to get

0 = ∆2

4s∗2π2 − π
2s∗2 + η + Js∗ [77]

Derivative. We can compute the derivative
∂Qϕ(Q; ∆)

differentiating equation 75 to get
∂Qϕ = ϕ

4π2ϕ2 − 2Q [78]

and evaluating at the fixed point

K∗(J, η,∆) ≡ ∂Qϕ|s∗ = s∗

4π2s∗2 − 2(η + Js∗)
[79]

We can use equation 75 above with ϕ∗ = s∗ to get

s∗2 = Q∗

2π2 +
√

( Q
∗

2π2 )2 + ∆2

4π4

From this we see that 4πs∗2 > 2Q∗2, so K∗ ≥ 0. More explicitly,

K∗(J, η,∆) ≡ ∂Qϕ|s∗ =

√
Q∗

2π2 +
√

( Q∗

2π2 )2 + ∆2

4π4

4π2
√

( Q∗

2π2 )2 + ∆2

4π4

≥ 0 ∈ R

Since Q∗ = η + Js∗ + I, from equatio 78 we see that the derivative ϕ′(s) at the fixed point is

ϕ′(s∗) = JK∗ [80]

and therefore has the same sign as J .

Linearized equations. We can then linearize these equations about their equilibrium points (s∗, z = 0), ϕ(s∗)− s∗ = 0
and for small I, and defining t = s− s∗ write

t′ = z

z′ = (∂sϕ− 1)|s∗,I=0 t− 2z + ∂Iϕ|s∗,I=0 δI [81]

or

t′ = z

z′ = (JK∗ − 1) t− 2z +K∗ δI [82]

In second order form
t′′ − 2t′ + (1− JK∗)t = K∗ δI

The eigenvalues of this ODEs are (recall K∗ ≥ 0),

λ = −1±
√
JK∗

We note here that for J > 0 the eigenvalues are real (no resonance possible), but recall that the slow synapse
approximation is applicable only if the dynamic external input to the population is slowly varying w.r.t. QIF
dynamics.
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Resonance for small perturbations. If J < 0, The eigenvalues of this ODEs are

λ = −1± i
√
|J |K∗ = −β + iω0

The resonance peak over amplitude is of the form

χ∗ = Ain
βω0

=
√
K∗√
J

Plots for fixed point, K∗ and χ∗ as a function of J are provided in Figure SI-25.

Relation to NMM sigmoid. The NMM sigmoid is given by

ϕ = σ(v) = 2ϕ0
1 + er(v0−v)

How similar are the two transfer/W2P functions? Some examples of fitting are provided in Figure SI-25.
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Fig. SI-25. NMM2 slow limit. Fitting of a sigmoid to the transfer function for some parameters (top) and fit sigmoid parameters for a range of J values (middle). The most
important change is for the firing rate. Bottom: fixed point (s∗ = ϕ∗), derivative K∗ and resonant peak for various values of J (there is no resonance for positive J values).
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L. Slow synapse/fast input limit. In the limit of slow synapses (a = 0+) but fast input, we have that we need to treat
the synaptic input as a constant s∗ (it does not change at all compared to the the other time scales and we take it as
frozen in time). The equations become (we drop bars and tildes),

ϕ′ = ∆
π

+ 2ϕv [83]

v′ = v2 − π2ϕ2 + η + Js∗ + I(t) [84]

The Jacobian to be evaluated at the fixed point v∗, ϕ∗ is

J =
(

2v − ∆
πv

π∆
v 2v

)
and the eigenvalues are

λ = 2v ± i∆
v

The resonant peak in the linear regime is χ = 1
2∆ .
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M. Formal relation between NMM2∗ and NMM. The formal relationship between NMM2 and NMM occurs in the
limit of slow Q = η +

∑
Js+ I(t), that is, when all the inputs to the population are slow compared to MPR/QIF

dynamics (we can call this the NMM2∗ regime). In that case we can formally related the two theories through their
transfer functions as summarized in Figure SI-26.

Fig. SI-26. Relationship of NMM2∗ and NMM.

N. Further notes on the relation with the Devalle et al formulation (17). Devalle et al (17) start from the QIF equation

c ˙̃V = gL
(Ṽ − Vt)(Ṽ − Vr)

(Vt − Vr)
+ Ĩ

Here we have the proper physical units: [V ] = V, [Ĩ] = A, [gL] = A/V, etc.
Aside: Note that the dynamic quantity

1
R(Ṽ )

= gL
Ṽ − Vt
Vt − Vr

has units of conductance (Ω−1), and with it we can rewrite the differential equation in an intuitive form (RC circuit),

c
d

dt
(Ṽ − Vr) = Ṽ − Vr

R(Ṽ )
+ Ĩ

The time “constant” associated to this RC circuit would be

τ(Ṽ ) = c(Vt − Vr)
gL(Ṽ − Vt)

Connection with our notation. We define

k = gL/(Vt − Vr)
v = Ṽ − (Vt + Vr)/2
I = Ĩ − gL(Vt − Vr)2/4

then we obtain
cv̇ = kv2 + I

This is the formulation we start from here. Here we preserve units of all the variables, with [v]=V, [I] =A, [k]=A/V2,
[c]=C/V=A/(V Hz), and [k/c]=Hz/V.

Again, we can refer here to a dynamical time scale if we want to think in terms of an RC circuit,

τ(v) = c

k

1
v
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Devalle time scale. In order to get a time scale in the system we need to use other constants — the threshold or rest
voltage. Here we use V̄ = Vt − Vr as is the case in Devalle.

Dimensional analysis shows that [cnkmV̄ q] = Cn+mVq−n−2mHzm, and using m = 1, n = −1, q = 1 we find the
desired timescale,

τm = c

kV̄
= c/gL

Devalle also rescale v → v/V̄ and I → I/(gLV̄ ) to end up with the almost adimensional equation (adimensional
except for time) τ v̇ = v2 + I. Rescaling the time variable then leads to v̇ = v2 + I.

Other time scales. More generally, the dimensional analysis can include the input I:

[cnkmV̄ qIp] = Cn+mVq−n−2mHzmCpHzp = Cn+m+pVq−n−2mHzm+p

Setting m+ p = −1, or p = −1−m

[cnkmV̄ qI−1−m] = Cn−1Vq−n−2mHz−1 = s

thus we need n = 1, q − 1− 2m = 0, or
[ckmV̄ 2m+1I−1−m] = s

E.g., setting m = 0, we get the time scale
[τ ′m] = [cV̄ I−1] = s

Setting m = −1/2,
[τ∗m] = [ c√

kI
] = s

What does this all mean? That we can rewrite the DE in multiple ways. E.g., start from

cv̇ = kv2 + I

And multiply it by V̄ /I,

τ ′mv̇ = kV̄

I
v2 + V̄

We can now rescale v = αv′,

τ ′mv̇
′ = α

kV̄

I
v′

2 + V̄

α

or with αkV̄I = 1
τ ′mv̇

′ = v′
2 + I ′′

with I ′′ = kV̄ 2

I . So, as we can see, there are different transformations that lead to the same form τ v̇ = v2 + I, but
with different time scales. This may be relevant for fast-time slow-time analysis.

From the point of view of connecting to physiology, though, the version that makes most sense to work with is the
Devalle one: time constant of the membrane (which is what is related to PSC measurements) is not related to input
current.
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O. Units systems in QIF, MPR and NMM2.

QIF. Consider a population of fully and uniformly connected quadratic integrate and fire (QIF) neurons indexed by
j = 1, ..., N . To make a direct connection with experimental work, we start from the equation for the membrane
potential of a single neuron V j in a population of interest as in (17),

c ˙̃V j = gL
(Ṽ j − Vt)(Ṽ j − Vr)

(Vt − Vr)
+ Ĩj , if V j ≥ Va, then reset V j → Vr [85]

where Vr and Vt represent the resting potential and threshold of the neuron (in Volts), and Va is a limit reset potential
(apex), Ṽ is the membrane voltage, Ĩ the input current, c the membrane capacitance, gL is the leak conductance,
with units [c] =C/V, [Ṽ ] = V, [Ĩ] = A and [gL] = A/V. In this equation, the total input current to neuron j is
Ĩj = η̃j + J̃s(t) + Ĩ(t) and includes a quenched (constant) noise input component η̃j with mean ˜̄η and variance ∆̃
, the input from other neurons s(t) per connection received (the mean synaptic activation) with uniform coupling
J̃ (with units of charge) and a common input Ĩ(t). The common input Ĩ(t) can represent both a common external
current input or the effect of an electric field.

Natural units. To simplify the analysis (completing the square), we define

k = gL/(Vt − Vr)
v′ = Ṽ − (Vt + Vr)/2
I ′ = Ĩ − gL(Vt − Vr)/4

which, through Ĩ, also affects J̃ , η̃ and p̃(t), to obtain

cv̇′ = kv′
2 + I ′, and if v′ ≥ va, then reset v′ → −(Vt − Vr)/2 [86]

with units [k]= A/V2 and voltage and current in proper units (V and A, respectively). Defining v = v′/(Vt − Vr) and
I = I ′/(gL(Vt − Vr)) results in

τmv̇ = v2 + I, if v ≥ va, then reset v → −1/2 [87]

with τm = c/gL and v, I, η and p(t) dimensionless variables, and J with units of time (as s is in Hz). If we work in
time units defined by the timescale τm, the equation becomes

v̇ = v2 + I, if v ≥ va, then reset v → −1/2 [88]

What we have done by the above transformations is essentially work in natural units of time (τm = c/gL), voltage
(Vt − Vr) and current (gL(Vt − Vr)). It is important to keep in mind these changes of variables when dealing with
multiple interacting populations involving different parameters. The coupling parameters across populations as well
with electric field are affected by the above transformations.

Thus, the above operations are essentially equivalent to working in a system of units where

Vt − Vr = 1 (potential) [89]
gL(Vt − Vr) = 1 (current) [90]
τm = c/gL = 1 (time) [91]

gL(Vt − Vr)τm = 1 (charge) [92]

MPR. Following the derivation of the mean-field equations in (15) we get

ϕ̇ = k

c

[
∆̃
πc

+ 2ϕv′
]

[93]

v̇′ = k

c
v′

2 − π2 c

k
ϕ2 + 1

c

[˜̄η + J̃ s(t) + I ′(t)
]

with units [r, s]=Hz, [J̃ ]=C, [v]=V, [k]=A/V2, [c]=C/V=A/(V Hz), [˜̄η, ∆̃, I] =A, and [k/c]=Hz/V. To close these
equations, we write s = L̂[ϕ] for some differential operator representing a causal, linear filter representing synaptic

48 | www.neuroelectrics.com Ruffini

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2022. ; https://doi.org/10.1101/2021.09.01.458563doi: bioRxiv preprint 

www.neuroelectrics.com
https://doi.org/10.1101/2021.09.01.458563
http://creativecommons.org/licenses/by-nc-nd/4.0/


dynamics. The cases of first and second order filtering are discussed below. In the limit of instantaneous synaptic
transmission, τ → 0 or aτ (t− t′)→ δ(t− t′), which implies s→ ϕ, we obtain the closed, simple set of equations for
the single population model analyzed in (15).

In the reduced version with the variables and units as in Equation (87) — where Vt − Vr = 1 (potential) and
gL(Vt − Vr) = 1 (current) —, the MPR equations become (17)

τmϕ̇ = ∆
πτm

+ 2ϕv [94]

τmv̇ = v2 − π2τ2
mϕ

2 + η̄ + Jτms+ I(t)

The units are: voltage v is dimensionless, the rates ϕ and s have units of frequency (Hz), τm = c/gL has units of time
(seconds), and the charge J = J̃/(gL(Vt − Vr)τm) and current ∆ = ∆̃/(gL(Vt − Vr)) dimensionless.

We can define time units measured by τm (so that in the new units τm = 1) by using a new times variable t̃, with
t = t̃τm. We use tildes to denote rates and their derivatives in the new time units thorough multiplication by τm.
Then the equations transform to (with tilde denoting rates measured in these units)

˙̃ϕ = ∆
π

+ 2ϕ̃v [95]

v̇ = v2 − π2ϕ̃2 + η̄ + Js̃+ I(t)

which is the formulation in (15). All variables and parameters are dimensionless and expressed in the natural units of
the problem, where τm = c/gL = 1 (time), Vt−Vr = 1 (voltage), gL(Vt−Vr)τm = 1 (charge) and hence gL(Vt−Vr) = 1
(current).

Formulation for the single and multiple population cases. The complete set of equations for a single population
becomes

ϕ̇ = k

c

[
∆
πc

+ 2ϕv
]

[96]

v̇ = k

c
v2 − π2 c

k
ϕ2 + 1

c
[η̄ + Js+ I(t)]

ṡ = z

ż = a2ϕ− 2az − a2s

with the input collecting external input and the influence of an external field, I(t) = p(t) + P · E(t).
The equations for the single population can be reduced to the simplified form in Equation (94) with dimensionless

voltage v and current I that brings to light the two main timescales in the problem,

τmϕ̇ = ∆
πτm

+ 2ϕv [97]

τmv̇ = v2 − π2τ2
mϕ

2 + η̄ + Jτms+ I(t)
τsṡ = w

τsẇ = ϕ− 2w − s

with τs = 1/a and and w = τsz. Here s and w have units of Hz, while v is dimensionless, ϕ and s are in Hz,
τm = c/gL has units of time (seconds), J = J̃/(gL(Vt − Vr)τm) is the dimensionless charge, and ∆ = ∆̃/(gL(Vt − Vr))
the dimensionless current.

As before, can transform the above equations to dimensionless units by using τm as the time unit (τm = 1),

ϕ̇ = ∆
π

+ 2ϕv [98]

v̇ = v2 − π2ϕ2 + η̄ + Js+ I(t)
ζṡ = w

ζẇ = ϕ− 2w − s

All variables are dimensionless and ζ = τs

τm
the synaptic time constant in membrane time units. The first two

equations are again the formulation in (15).
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Equivalently, we can multiply the last equation by a2, with a = ζ−1 = as/am (i.e, the synaptic rate in the τm unit
system),

ϕ̇ = ∆
π

+ 2ϕv [99]

v̇ = v2 − π2ϕ2 + η̄ + Js+ I(t)
ṡ = w

ẇ = ϕa2 − 2aw − sa2

In summary, we can write the NMM2 equations in units defined by τm = 1 (time), Vt − Vr = 1 (voltage) and
gL(Vt − Vr) = 1 (current), gL(Vt − Vr)τm = 1 (charge) in this simplified form.

Multiple populations. The single population case in Equation (96) is readily generalized for interacting populations.
Letting p denote the population index and pq denote a synapse from population p to q, the uniform input received by
population p by Ip(t) = pp(t) + Pp · Ep(t), the equations for interacting populations become

ϕ̇p = kp
cp

[
∆p

πcp
+ 2ϕpvp

]
[100]

v̇p = kp
cp
v2
p −

cp
kp
π2ϕ2

p + 1
c

[
η̄p + Ip(t) +

∑
m:n←m

Γpqspq

]
[101]

ṡpq = zpq [102]
żpq = a2

pqϕm − 2apqzpq − a2
pqspq [103]

Figure 1 provides a diagram of the self-coupled population and multiple population cases.
Finally, we can work with the form in Equations (97) by defining dimensionless voltage variables independently

in each population if need be (i.e., if Vt − Vr and gL(Vt − Vr) differ among them) and taking care of the coupling
between them and with external electric fields. Each population has its own unit system, so to speak.
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