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Neural mass models such as the Jansen-Rit or Wendling systems provide a practical framework for representing and interpreting electro-
physiological activity (1–6) in both local and global brain models (7, 8). However, they are only partly derived from first principles. While the
post-synaptic potential dynamics are inferred from data and can be grounded on diffusion physics (9–11), Freeman’s “wave to pulse” (W2P)
sigmoid function (12–14), used to transduce mean population membrane potential into firing rate, rests on a weaker theoretical standing.
On the other hand, Montbrió et al (15, 16) derive an exact mean-field theory (MPR) from a quadratic integrate and fire neuron model under
some simplifying assumptions, thereby connecting microscale neural mechanisms and meso/macroscopic phenomena. The MPR model
can be seen to replace Freeman’s W2P sigmoid function with a pair of differential equations for the mean membrane potential and firing
rate variables—a dynamical relation between firing rate and membrane potential—, providing a more fundamental interpretation of the semi-
empirical NMM sigmoid parameters. In doing so, we show it sheds light on the mechanisms behind enhanced network response to weak but
uniform perturbations. In the exact mean-field theory, intrinsic population connectivity modulates the steady-state firing rate W2P relation in
a monotonic manner, with increasing self-connectivity leading to higher firing rates. This provides a plausible mechanism for the enhanced
response of densely connected networks to weak, uniform inputs such as the electric fields produced by non-invasive brain stimulation. This
new, dynamic W2P relation also endows the neural mass model with a form of “inertia”, an intrinsic delay to external inputs that depends
on, e.g., self-coupling strength and state of the system. Next, we complete the MPR model by adding the second-order equations for delayed
post-synaptic currents and the coupling term with an external electric field, bringing together the MPR and the usual NMM formalisms into
a unified exact mean-field theory (NMM2) displaying rich dynamical features. In the single population model, we show that the resonant
sensitivity to weak alternating electric field is enhanced by increased self-connectivity and slow synapses.

mean-field theory | Neural mass model | Brain stimulation | tES

1. Introduction

In their seminal paper, Montbrió et al (15) provide a rigorous derivation of population dynamics from
first principles using statistical mechanics methods. Their framework (MPR) provides a derivation of the

neuron equations of state relating membrane potential and firing rate, in contrast to the prescription of a
sigmoid function representation of the firing rate-membrane potential relation (W2P function) as is done
in earlier work. This allows to properly interpret the meaning and limitations of the effective theory. In
particular, it can help define effective electrical interaction models of neural masses with weak external

Significance

Several decades of research suggest that weak electric fields influence neural processing. A long-standing
question in the field is how networks of neurons process spatially uniform weak inputs that barely affect a
single neuron but that produce measurable effects in networks. Answering this can help implement electric
field coupling mechanisms in neural mass models of the whole brain, and better represent the impact of
electrical stimulation or ephaptic communication. This issue can be studied using local detailed computational
models, but the use of statistical mechanics methods can deliver “mean-field models” to simplify the analysis.
Following the steps of Montbrió et al (15, 16), we show that the sensitivity to inputs such a weak alternating
electric field can be modulated by the intrinsic self-connectivity of a neural population, and produce a more
grounded set of equations for neural mass modeling to guide further work.
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fields. The new W2P function is dynamic, and as a result endows the model with new properties, such as
delayed response to inputs.

In their derivation, Montbrió et al made several assumptions, some by necessity and others for simplicity.
In particular, they use instantaneous synaptic currents, which makes the model easier to analyze but also
unrealistic and hard to relate to neural mass modeling, where synaptic delays play a key role. This has
been recently expanded to include first-order synapse equations in (17, 18). We complement here the MPR
equations with second-order post-synaptic kinetics equations as used in NMM (4, 9–11, 19) to represent
post-synaptic potentials (PSPs). By bringing these theories together, a new, extended model emerges
(NMM2) providing a strong link between microscopic mechanisms and parameters and the mesoscopic
population phenomena described by semi-empirical neural mass models.

In the next sections, we summarize the NMM formalism and analyze its linearized version to show that
the effective coupling to external inputs is modulated by several terms, including connectivity and sigmoid
baseline rate. We then review the MPR model, add to it dimensional constants, and extend it to include
second-order synapse dynamics, multiple interacting populations (NMM2 model) and interaction with a
uniform external electric field. We show (v. SI section A) that the interaction is of dipole form if the neuron
is far from threshold (in a linear regime or the field is very weak).

We then show that the single population model W2P function, which replaces the usual sigmoid in
NMM, is a function of self-connectivity or quenched noise parameters (excitability), and that changing
either modulates the sensitivity of the mass to external inputs and modulates the resonant frequency and
amplitude to weak perturbations. Moreover, the dynamics of the new firing rate-membrane potential
relation (W2P function) lead to a delayed response of the mass to external inputs (which we call mass
“inertia”), with the delay a function of self-connectivity. We show that a self-inhibitory model can oscillate.
Finally, we produce a two population model (Excitation-Inhibition or E-I), and present some of its dynamics,
which are far richer than the classical analog neural mass model.

Neural mass models.Neural mass (semi-empirical) models (NMM), first developed in the early seventies
by W. Freeman (20) and F. Lopez de Silva (2), provide a physiologically grounded description of the
average synaptic activity and firing rate of a neural population (1–5, 8). NMMs are increasingly used for
local and whole-brain modeling in neurology (e.g., epilepsy (6, 21) or Alzheimer’s disease (22)) and for
understanding and optimizing the effects of transcranial electrical brain stimulation (tES) (7, 8, 23, 24).
The central conceptual elements in this framework are the synapse, which is seen to transduce incoming
activity (quantified by firing rate) into a mean membrane potential perturbation in the receiving neuron
population, and the sigmoid function transforming population membrane potential to output (mean) firing
rate with due account for threshold and saturation effects (see (19) for a nice introduction to the Jansen-Rit
model). The synaptic filter is instantiated by a second-order system coupling the mean firing rate of arriving
signals ϕ to the mean post-synaptic voltage perturbation u,

L[u] = Cϕ [1]

L[ ] = 1
γa

(1
a

d2

dt2
+ 2 d

dt
+ a

)
[2]

or, in the equivalent first-order form,

u̇ = z [3]
ż = Cγa2ϕ− 2az − a2u [4]

where u(t) is the mean post-synaptic voltage perturbation produced by the synapse, ϕ(t) is the mean input
firing rate and C is the dimensionless connectivity constant quantifying the mean number of synapses per
neuron in the receiving population. The action of the L operator can also be represented by its inverse, a
convolution with its Green’s function h(t) = H(t)γa2te−at (with H(t) the Heaviside step function) (19).
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These linear ordinary differential equations can be generalized to account for different rising and decay
times (9, 11). The parameters a and γ describe the delay time scale 1/a in seconds and the amplification
factor in V/Hz (traditionally (19), the parameter A (V) is used instead of γ, with A = γa). The parameter
C is dimensionless and quantifies the average number of synapses per neuron in the receiving population.

The synaptic transmission equations need to be complemented by a relationship between the membrane
potential of the neuron and its firing rate (the neuron W2P function). Freeman proposed the sigmoid as
a simple model capturing essential properties of the response of neuron populations from inputs (12–14),
based on modeling insights and empirical observations. Note this is a static relation between membrane
potential and firing rate. Each neuronal population Pn converts the sum vn of the membrane perturbations
from each of the incoming synapses or external perturbations (e.g., an external electric field) to an output
firing rate (ϕn) in a non-linear manner using Freeman’s sigmoid function,

vn(t) = λn · E(t) +
∑
s Pn

us(t)

ϕn(t) = σn(vn(t)) = 2ϕ0
1 + er(v0−vn(t))

[5]

where ϕ0 is half of the maximum firing rate of each neuronal population, v0 is the value of the potential
when the firing rate is ϕ0 and r determines the slope of the sigmoid at the central symmetry point (v0, ϕ0)
(we have omitted an n subscript in these population dependent parameters for simplicity). The sum is over
synapses onto population Pn, which we express as

∑
s Pn . The effect of an electric field is represented by a

membrane potential perturbation, δvn = λn · E, with λn an effective, semi-empirical vector parameter that
represents the first-order dipole coupling of field and neuron.

The presence of semi-empirical “lumped” quantities such as ϕ0 and λ highlight the fact that NMMs
are not currently derived from microscopic models, but bring together a mix of theory and observational
relations. This means, for example, that even if we have access to a detailed single neuron compartment
model providing an electric dipole coupling constant, it is not obvious how to use it in an NMM. To better
understand the effective coupling to external inputs, we consider a small perturbation of the population
mean membrane potential around an equilibrium point us(t) = u0

s + δus(t), that is, vn = v0
n + δvn +λn ·E(t)

with λn · E(t) a weak field perturbation and v0
n =

∑
s Pn u

0
s, δvn =

∑
s Pn δus. Then, we can linearize

the sigmoid around the fixed point (Taylor expansion to first order) to obtain

L̂s
[
δus(t)

]
= Cm←nΓn

λn · E(t) +
∑

s′ Pn
δus′

 [6]

where Cm←n is connectivity matrix from population n to m and Γn = 2rϕ0/(1 + er(vo−v
0
n))2. In the regime

of small perturbations around an equilibrium point, the effective electric coupling impact is given by the
product of λnCm←n Γn. However, it is not obvious how the parameters involved should be changed as a
function of the neural mass properties (e.g, cortical path size it represents or self-connectivity), because in
NMM they are semi-empirical quantities.

2. Extended MPR framework (NMM2)

MPR model. In their uniform, mean-field derivation for a population of N quadratic integrate and fire (QIF)
neurons, Monbrió et al (15) start from the equations for the neuron membrane potential perturbation from
baseline,

V̇j = V 2
j + ηj + Js(t) + I(t), if Vj ≥ Vp, then Vr ← Vj [7]

In this equation, the total input current in neuron j is Ij = ηj + Js(t) + I(t) and includes a quenched
noise constant component ηj , the input from other neurons s(t) per connection received (the mean synaptic
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Fig. 1. NMM2 diagrams. (A): Diagram for self-coupled population with connectivity J receiving and external input Q. (B): generalization for multiple populations. (C):
A generic two population model.

activation) with uniform coupling J and a common input I(t). The common input I(t) can represent both
a common external input or the effect of an electric field, i.e.,

I(t) = p(t) + P · E(t) [8]

Here p(t) is an external uniform current, and P is the dipole conductance term in the spherical harmonic
expansion of the response of the neuron to an external, uniform electric field. This is a good approximation
if the neuron is in its subthreshold, linear regime (see SI section A), and can be computed using realistic
compartment models of the (see, e.g., (25) and (26)).

The mean synaptic activation is given by

s(t) = 1
N

N∑
j=1

∑
k|tkj<t

∫ t

−∞
dt′ aτ (t− t′) δ(t′ − tkj ) [9]

where tkj is the arrival time of the kth spike from the jth neuron, and a(t) the synaptic activation function,
e.g., a(t) = e−t/τ/τ . Note that we can write J = j ·N , where j is the synapse coupling strength (charge
delivered to the neuron per action potential at the synapse) of each synapse the cell receives from the
network (there are N of them in a fully connected architecture with N neurons).

We assume here for simplicity that all neurons are equally oriented with respect to the electric field. If
the electric field is constant, variations in orientation can be absorbed by the quenched noise term. The
total input p(t) + P · E(t) + Js(t) is thus homogeneous across the population (does not depend on the
neuron).

Starting from these, Montbrió et al derive an effective theory in the large N limit (Eq 12 in (15)),

ϕ̇ = ∆/π + 2ϕv [10]
v̇ = v2 + η̄ + Js+ I(t)− π2ϕ2 [11]

Here v and ϕ are the population mean membrane potential and firing rate respectively. The new parameters
η̄ and ∆ refer to the mean and half-width of the quenched noise distribution of ηj . The analysis in (15)
hinges on the assumptions of all to all uniform connectivity (with synaptic weight J) and common input I(t).
In addition, a set of closed equations can be derived on the limit of instantaneous synaptic transmission
(τ → 0 or aτ (t− t′)→ δ(t− t′)), which implies s→ ϕ to produce a closed, simple set of equations for the
single population model,

ϕ̇ = ∆/π + 2ϕv [12]
v̇ = v2 + η̄ + Jϕ+ I(t)− π2ϕ2 [13]

This zero delay model is the one analyzed in (15). Figure 1 provides a diagram of the self-coupled population.
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Fig. 2. Dynamics of NMM2 single population model. Left: Fast synaptic dynamics (with rate constant a = 200) are equivalent to the original MPR model
where s = ϕ. Right: Slower dynamics (a = 20) with effect of synaptic filtering (J = 15, η = −5, ∆ = 1).

Adding dimensional constants. In order to dimensionalize the MPR model to make connection with
experimental work, we start from the full QIF formulation in (17),

c ˙̃V = gL
(Ṽ − Vt)(Ṽ − Vr)

(Vt − Vr)
+ Ĩ [14]

where Vr and Vt represent the resting potential and threshold of the neuron, Ṽ is the membrane voltage, Ĩ
the input current, c the membrane capacitance, gL is the leak conductance, with units [c] =C/V, [Ṽ ] = V,
[Ĩ] = A and [gL] = A/V. To simplify this (completing the square), we define

k = gL/(Vt − Vr)
v = Ṽ − (Vt + Vr)/2
I = Ĩ − gL(Vt − Vr)2/4

to obtain
cv̇ = kv2 + I

with k units [k]= A/V2 and voltage and current in proper units. Our starting point thus becomes the
simplified QIF equation,

cV̇j = kV 2
j + ηj + Js(t) + I(t), if Vj ≥ Vp, then Vr ← Vj [15]

Following the derivation of the mean-field equations in (15) from this QIF formulation now leads to

ϕ̇ = k

c

[∆
πc

+ 2ϕv
]

[16]

v̇ = k

c
v2 − π2 c

k
ϕ2 + 1

c
[η̄ + Js(t) + I(t)] [17]

with units [r, s]=Hz, [J ]=C, [v]=V, [k]=A/V2, [c]=C/V=A/(V Hz), [η̄,∆, Js(t), I] =A, and [k/c]=Hz/V.

Extended equations.Montbrió et al mention the use of an exponential decay function to relate firing rate
and synaptic activity but for simplicity set s = ϕ in their final derivation. We extend this analysis here to
make a connection with the neural mass modeling formalism.

When an action potential wave reaches the synapse, it is transformed into the influx of some ionic species
into the cell. This transforms the shape of the action potential signal, low-pass filtering it. This process
is governed by the Poisson-Nernst-Planck equation (see, e.g., (10)), but can be described in a simplified
manner by the dynamics of conductance g(t) through the underlying ohmic relation Is = g(t) (V − VR). As
with the membrane perturbation, the dynamics of conductance can be modeled by a second-order linear
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operator (2) or its generalization to different rise and decay times (9, 11). To include synaptic dynamics we
use a convolution operator as in (15), but redefine the synaptic activation function to include a Heaviside
function (implementing causality), hτ (t) = H(t)aτ (t). Then we can write (the convolution operator is
linear)

s(t) = 1
N

N∑
j=1

∑
k

∫ ∞
−∞

dt′ hτ (t− t′) δ(t′ − tkj )

=
∫ ∞
−∞

dt′ hτ (t− t′)

 1
N

N∑
j=1

∑
k

δ(t′ − tkj )


= L̂−1

 1
N

N∑
j=1

∑
k

δ(t′ − tkj )

 ≡ L̂−1 [ϕ(t)] [18]

with tkj the arrival time of the kth spike from the jth neuron, and ϕ(t) the instantaneous firing rate. Thus,
we have L̂[s(t)] = ϕ(t) to account for input gate delay. We will use the second-order operator discussed in
Equation 2 to represent post-synaptic current kinetics (the generalized version with different rise and decay
times can be equally used). The full set of equations for a single population becomes

ϕ̇ = k

c

[∆
πc

+ 2ϕv
]

[19]

v̇ = k

c
v2 − π2 c

k
ϕ2 + 1

c
[η̄ + Js+ I(t)] [20]

ṡ = z [21]
ż = a2ϕ− 2az − a2s [22]

with the input collecting external input and the influence of an external field, I(t) = p(t) + P · E(t) (see SI
section A and O). These equations can be reduced to a simplified form using dimensionless parameters (see
SI section I),

ϕ̄′ = ∆̃
π

+ 2ϕ̄v̄ [23]

v̄′ = v̄2 − π2ϕ̄2 + η̃ + J̃ s̄+ Ĩ(t) [24]
s̄′ = z̄ [25]
z̄′ = ϕ̄− 2z̄ − s̄ [26]

Multiple population equations.The single population case is readily generalized for interacting populations.
Letting n denote the population index and nm denote a synapse from population m to n, the uniform
input received by a population is

In(t) = pn(t) + Pn · En(t),

. The equations for interacting populations become

ϕ̇n = kn
cn

[∆n

πcn
+ 2ϕnvn

]
[27]

v̇n = kn
cn
v2
n −

cn
kn
π2ϕ2

n + 1
c

[
η̄n + In(t) +

∑
m:n←m

Γnmsnm

]
[28]

ṡnm = znm [29]
żnm = a2

nmϕm − 2anmznm − a2
nmsnm [30]
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Fig. 3. W2P function of single population model NMM2 as a function of connectivity J and ∆. Left: sample response to varying total input for
a specific value of J . We observe the initial sigmoidal response shape of the firing rate ϕ. Middle: Relation of mean firing rate and membrane potential for a set of total input
values Q ∈ (−4, 50), as a function of intrinsic connectivity J (different color traces). The underlying neuronal W2P remains the same, but changing J moves the working
point. NB: the traces for each value of J are sequentially slightly displaced upward for clarity, but they all lie on the same line, Equation 34. Right: same but as a function of
quenched noise half-width ∆ (without shifting the traces).

This can be further simplified by assuming that the synapses associated to a source neuron are all equivalent,
then snm = sm and anm = am. The fixed points of these equations are independent of anm and are
essentially the same for the “unextended” equations

0 = kn
cn

[∆n

πcn
+ 2ϕnvn

]
0 = kn

cn
v2
n −

cn
kn
π2ϕ2

n + 1
c

[
η̄n + In(t) +

∑
m:n←m

Γnmϕm

]
[31]

with znm = 0 and snm = ϕm. The stability properties of these fixed points do depend on anm, see, e.g.,
Figure 4 or Figure SI-12 and others in SI.

3. Analysis of single population NMM2 model

We consider here a single self-coupled population with constant input I and in steady state. Let Q represent
the total input, Q = I + η̄. Then, the fixed point equations become

0 = k

c

[∆
πc

+ 2ϕv
]
, 0 = k

c
v2 − π2 c

k
ϕ2 + 1

c
Jϕ+ 1

c
Q [32]

Substituting the first equation into the second we get

0 = k

c
v2 − π2 c

k
( ∆
2πcv )2 − J∆

2πc2v
+ 1
c
Q

Canceling factors and multiplying by v2 we end with

0 = kv4 +Qv2 − J∆
2πcv −

∆2

4k [33]

together with the supralinear neuron W2P function

ϕ = − ∆
2πcv [34]

which requires v < 0 since ϕ ≥ 0. Equation 34 is a direct relation between voltage and firing rate and
replaces the sigmoid in NMMs. Differentiating Equation 33 w.r.t. J , and using Equation 33 in the last
term in the denominator, we find (since v < 0)

v′(J) =
1∆
2πcv

2

kv4 +Qv2 + ∆2
4k

> 0 [35]
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Fig. 4. Sensitivity to input depends on J and rate constant in single population NMM2 model. Left: response to input with J = 1 for fast (top)
and slow (bottom) synaptic dynamics. Right: response with stronger self-connectivity J = 20 for fast (top) and slow (bottom) synaptic dynamics. In both cases η = −5,
∆ = 1. See Figures SI-4 and SI-6 for a more detailed analysis of changes in dynamics as a function of J .

since k > 0. This in turn implies, using Equation 34,

ϕ′(J) = ∆
2πc v2 v

′(J) > 0

that is, membrane potential and firing rate monotonically increase with intrinsic connectivity, all other
parameters being equal. Figure 3 displays the relation between firing rate and membrane potential as a
function of connectivity J for a set of inputs. As can be observed, intrinsic connectivity modulates the
operating point of the neuronal W2P function.

In summary, increasing connectivity leads to an increase of firing rate and membrane potential, all other
things being equal. Thus, the intrinsic connectivity J acts like a (nonlinear but monotonic) gain modulator
and affects the sensitivity of the population to external inputs. A J increases, so does the response of the
system to an input. Translating this into the NMM framework means the sigmoid parameters such as ϕ0
(Hz) in NMMs should be adjusted to reflect intrinsic connectivity. To wit, J , the signed (negative if the
population is inhibitory) average number of synapses per neuron in the population, is a scaling factor of the
firing rate. As a consequence of the above, the sensitivity of dynamics to input depends greatly on the
self-connectivity strength of each neural mass. Figure 4 displays this relationship. The impact on dynamics
of this change in operating point of the W2P function will depend, in general, on the state of the system.

Finally, the W2P function is also sensitive to the value of ∆, the half-width of the quenched noise
distribution.

We provide in Supplementary Information (section J) an analysis of the response of the system to weak
AC stimulation. Arnold tongues and plots of resonance frequency and amplitude of the system as a function
of J , ∆ and a show that the system is more sensitive for low values of a (slow synapses) and ∆, and for
increased self-coupling.

Stability properties.Although the fixed points of the extended model are the same as in the original MPR
(they are not affected by the addition of the rate constants, as discussed above), the stability properties of
fixed points are affected by the a parameter. For example, unlike with its traditional neural mass model
analog, depending on the value of a, the NMM2 model exhibits oscillations (a Hopf Bifurcation) when the
coupling constant is negative—an Interneuron Network Gamma (ING) interaction (see Figures SI-2 and
SI-3). This has also been shown using first-order synaptic dynamics in (18). Furthermore, the excitatory
network gamma version of the model (ENG) can also oscillate in the regime of low connectivity (small
J > 0) and low excitability dispersion (small ∆, high synchrony)—see Figure SI-20.

Resonance properties.We have carried out simulations of the response of the single population NMM2
model with excitatory self-coupling (J > 0) under the influence of a weak AC electric field perturbation,
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Fig. 5. Sensitivity to input depends on J and rate constant in single population NMM2 model. Left: Normalized power as function frequency
for different J values. Middle: Resonance frequency; Right: Bi-dimensional plot of resonant normalized peak power σ/A as a function of J and a.

with I(t) = P ·E = A sin(2πft). Simulations for c = k = 1 (which is equivalent working in the dimensionless
unit system in Equation 99 in SI) are initiated by placing the system in its fixed point and then applying a
weak perturbation,

ϕ̇ =
[∆
π

+ 2ϕv
]

[36]

v̇ = v2 − π2ϕ2 + [η̄ + Js+A sin(2πft)] [37]
ṡ = z [38]
ż = a2ϕ− 2az − a2s [39]

In this framework, a is the synaptic rate in membrane time units. Hence a ∼ 1 sets the system in a regime
where the membrane and synaptic time scales are close to each other.

As we can see in Figure 5 and in the figures in supplementary material (section J), the system exhibits
resonant peaks and Arnold tongues that shift to higher frequency, higher amplitude and smaller bandwidth
as J increases for more details). The amplification factor at the resonant peak σ/A provides a normalized
measure of the response of the system, measured as the standard deviation of potential divided by the
input amplitude. The amplification factor weakens with increasing rate a, which corresponds to the system
getting closer to the MPR model.

This is seen in detail in Figure 5 and Figure SI-23, where resonance frequency fp and amplitude (standard
deviation σ) of the membrane potential are plotted as a function of J . Figure SI-24 displays further
examples of the response amplitude as a function of J and ∆ and as a function of J and a.

Finally, as the amplification factor increases, so does the transient time to reach steady state (both are
related to the real part of the eigenvalues at the fixed point).

4. Discussion

The extended, unified model NMM2 brings together descriptions of synaptic transmission and neuron
function based on mechanistic principles. This exact mean-field theory provides a physiologically robust
description with parameters that can be related to physiological features. NMM2 features a supra-linear
W2P function, exhibiting an increasing gain with growing inputs (and equivalently output firing rate).
This means that effective coupling increases with increasing network activation, and as we saw, also with
increasing self-coupling.

With regard to the self-coupling parameter J , note that in our formulation (following closely a biophysical
interpretation) it has units of charge (see Equation 93). This reflects the fact that J encodes the effective
connectivity of the average neuron to the rest of the network, i.e., the total number of connections/synapses
the cell receives times the charge deposited by each during an action potential.
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We have seen that in NMM2 the intrinsic population connectivity and other parameters play a key role
in modulating the response of the system to its inputs. Translating this into the context of NMMs, this
means that the lumped sigmoid parameters (ϕ0, v0 and r) should be adjusted to reflect the self-connectivity
J and intrinsic noise half-width ∆ of the cortical patch the mass model is representing. This is studied in
more detailed, in SI Section K, where we show how to fit sigmoid parameters as a function of coupling for
the case of slow synapses (the case most closely related to NMM). The most important change affects ϕ0,
which increases monotonically with J .

Moreover, we can also see that there can be a delay in response to the input that depends on J—see
Figure SI-4—or ∆ (Figure SI-5). That is, in the examples shown, a loosely self-coupled population takes
longer to react to the change input, and this delay is of a different nature than the postsynaptic delay: both
the rate parameter a and J,∆ play a role in modulating the response-to-input delay. We can thus talk
about a neural mass “inertia” that depends on these new parameters.

The analysis of the NMM2 framework also clarifies that the electrical coupling constant derived from
neuron compartment models (26) should be directly used in NMM2 as is, without any scaling. The effective
response of a single population to weak electric field perturbations will be modulated by the intrinsic
population connectivity J or excitability (∆, the quenched noise variance), as well as a, the rate constant.
This suggests that if one wishes to work with the simpler NMM equations, some parameters, such as the
sigmoid function parameters, may need to be adjusted, but we leave this analysis for further work.

The modulation of the effective coupling in NMM2 at the single population level provides a potential
mechanism for the surprising sensitivity of networks to weak electric fields generated by brain stimulation
or by neural tissue itself (ephaptic interaction (27)). It also highlights the fact that in the more general
setting of multi-population dynamics, connectivity within and across populations play an important role
in modulating the sensitivity to inputs. This may also explain why stronger electrics fields are needed to
induce measurable effects in in-vitro (low, disrupted connectivity) or small animal studies (smaller cortical
patch areas) as compared with humans.

A tightly coupled population in the right regime can display more sensitivity to weak external inputs
(see the SI section J for examples), although, in general, this will depend on the state of the network and
factors such as the type of E-I balance. With regard to this, current evidence favors loose balance in the
sensory cortex (defined to be when net input remaining after cancellation of excitation and inhibition is
comparable in size with the factors that cancel), for example, but in the motor or frontal cortex the case is
less clear, with tight balance also having been proposed (when the net input is very small relative to the
canceling factors) (28). Presumably, the weak perturbation effects of tES would be more important in the
tight balance regime.

In transcranial electric stimulation (tES), the electric field generated on the cortex is of the order of 1
V/m (29), which is known to produce a sub-mV membrane perturbation (25, 30). Yet, it is of mesoscopic
nature, with a spatial scale of several centimeters. The main characteristic of the exogenous macroscopic
electric field generated by tES is its small magnitude, low temporal frequency, moderate spatial correlation
scales (> 1 cm), a long application time (typically twenty minutes to one hour) and application with
repeated sessions when long-term plastic effects are desired. Endogenous fields are similarly characterized
by weak field magnitudes over mesoscopic scales (27). As we have seen in the analysis of an exact mean-field
theory, weak but spatially uniform fields can affect the dynamics of densely connected neuron populations
exposed.

The NMM2 formalism introduces new dynamical features, even in simple models. The MPR model,
which can be seen as an NMM2 in the limit of very high rate constant (fast synapses), already displays
chaos (15). We have seen here that NMM2 can produce rich dynamics, with features such as oscillations in
a single population with constant input, as well as bursting in a simple two population model (SI sections C,
D, and E). We leave the detailed analysis of these and other systems in the NMM2 framework for further
work.
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5. Conclusions

Based on a recently derived exact mean-field theory and decades of work on neural mass modeling, we
provided an extension of first that brings together the features in each with a solid mechanistic basis.
The resulting model is limited, as it is based on a simple neuron population model (QIF with uniform
self-connectivity), but is an exact mean-field theory endowing with unambiguous meaning each of its
parameters and variables. The analysis of the resulting system and comparison with classical NMMs sheds
light on network phenomena mediated by self-connectivity and the physiological basis of semi-empirical
parameters in NMMs.
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A. Dipole nature of electric field interaction in compartment model of a neuron in the linear regime. Here we show
that in the linear regime (far from threshold) or when the electric field is weak, the effect of an electric field on a
neuron compartment, or its average over a set of compartments, can be written in the form δV = λ · E, where λ is a
vector. This is the so-called “lambda-E” model used in transcranial electrical stimulation models (29, 31).

The effect of an external field can be represented in a neuron compartment model by an axial current that results
from the potential difference induced by the field along the fiber associated with a compartment (see, e.g., (26) and
references therein),

I = ga
∫ x+∆x

x

Ex(s) ds [SI-1]

where Ex is the field along the fiber. We can rewrite this as I = ga
∫
f

E · dl with the line integral along the fiber
compartment. If the field is constant along the fiber we can express this simply as I = E · u. The vector u is a vector
parallel to the line that ends in the compartment of interest and originates in the connected one(s), and thus pointing
into the compartment (see Figure SI-1). If the E field is aligned with this direction, we get a positive current into
the compartment. If the compartment of interest is k and the connected compartment is j, we refer to the vector
uk,j parallel to xk − xj (the coordinates of the compartments). The superscripts r and a refer to radial and axial
components and conductivities.

Fig. SI-1. Compartments and vectors for cable equation in E field. Here we represent a fiber by a node and and a set of directed edges.

From conservation of charge (the sum over j is over connected compartments, and i over membrane currents), and
assuming that the field is uniform and thus independent of the compartment k, we obtain

Ck
dVk
dt

+
∑
i

Ii,k =
∑
j!k

gaj (Vj − Vk) +
∑
j!k

gaj E · uk,j [SI-2]

The sum
∑
j!kQj ≡

∑
j ckjQj denotes the sum over compartments connected to the kth one, and can be expressed

via the compartment connectivity matrix ckj , with value of 1 if compartment j is connected to k, zero otherwise. The
sum on the left hand side is over ionic membrane currents out of the compartment.
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We can simplify this and also pull the constant electric field out the sum,

Ck
dVk
dt

+ Ik =
∑
j!k

gak(Vj − Vk) + pk ·E [SI-3]

where Ik =
∑
i Ii,k, the k sum is over connected components to the kth compartment and where

pk =
∑
j!k

gajuk,j =
∑
j

ckjg
a
kuk,j [SI-4]

The equation for a single compartment in steady state is thus of the form

Ck
dVk
dt
− pk ·E + grkVk + I0

k +
∑
j!k

gaj (Vk − Vj) = 0 [SI-5]

where pk is the dipole vector corresponding to the kth compartment, and Ik = Vkg
r
k + I0

k , with I0 the sum of currents
associated to the reversal potentials, and grk the axial (transmembrane) conductivity in the linear regime.

Thus, we see that the behavior of each compartment is characterized by its own dipole and the interaction with
other compartments.

Equation SI-5 is linear and can be expressed in matrix form, with the compartment array notation V = (Vk) =
(V1, V2, . . . , VN ), C = diag(Ck) = diag(C1, C2, . . . , CN ), and (pk ·E) = (p1 ·E, . . . ,pN ·E),

C
∂V

∂t
+AV = I0 − (pk ·E) [SI-6]

and with the matrix A given by
Akj = δkjg

r
j − gaj ck,j + δkj

∑
l

gal cl,j [SI-7]

In steady state (V̇ = 0), the solution to this equation is

V = A−1[I0 − (pk ·E)] [SI-8]

or
Vk =

∑
j

A−1
kj [I0

k − pk ·E] =
∑
j

A−1
kj −E ·

∑
j

A−1
kj pjI0

j [SI-9]

where the second equality is a result of linearity of the A matrix, i.e., the fact that we are dealing with a linear
equation. Finally, we can write the solution as

Vk =
∑
j

A−1
kj I

0
j + Pk · E [SI-10]

This equation shows that the response of the compartment to an electric field is of dipole form, with the total dipole
Pk resulting from a superposition of dipoles,

Pk = −
∑
j

A−1
kj pj = −

∑
j,l

A−1
kj cjlg

a
juj,l [SI-11]

Furthermore, we observe that any linear function of compartment potentials will also display, by further superposition,
a dipole response. This includes, for example, the average membrane perturbation for apical dentrite compartments,
or soma.

What happens in the nonlinear case, when the neuron is not at baseline? We can write (steady state)

−pk ·E + Irk(Vk) +
∑
j!k

gaj (Vk − Vj) = 0 [SI-12]

with Irk(Vk) a nonlinear function, or, in a fashion analogous to the discussion above, in matrix form

−pk ·E +BV + I(V ) = 0

or
Fk(V ) = pk ·E [SI-13]

for a nonlinear operator F . This means we cannot pull out the E field out of the inverse. However, if the electric
field is very weak, we can carry out the analysis above with the linearized version of Equation SI-13 by expanding it
around the potential with zero field, with the same conclusion.
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B. Stability analysis for single population NMM2 model. We analyze here the fixed points and their stability of the
NMM2 single population model, showing it displays a Hopf bifurcation for some parameters choices.

We start from the equations

ϕ̇ = fϕ = k

c

[
∆
πc

+ 2ϕv
]

v̇ = fv = k

c
v2 − π2 c

k
ϕ2 + 1

c
[η̄ + Js+ I(t)]

ṡ = fs = z

ż = fz = a2ϕ− 2az − a2s

Fixed points, as described in the methods section, Equation 33, are determined by

0 = kv4 +Qv2 − J∆
2πcv −

∆2

4k

We can express Q as a function of the other parameters,

Q = J∆
2πvc + ∆2

4kv2 − kv
2 [40]

The Jacobian is

J =


fϕ,ϕ fϕ,v fϕ,s fϕ,z
fv,ϕ fv,v fv,s fv,z
fs,ϕ fs,v fs,s fs,z
fz,ϕ fz,v fz,s fz,z

 =


2k
c v

2k
c ϕ 0 0

− 2π2c
k ϕ 2k

c v J/c 0
0 0 0 1
a2 0 −a2 −2a


To assess stability of a fixed point we compute the eigenvalues of the Jacobian at that point, and if any points have a
positive real component they are marked as unstable.
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Fig. SI-2. Sample dynamics for self-inhibitory single population system with J = −50 and ∆ = 1. Graph axis are time (horizontal) and mean
membrane potential (vertical).
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Fig. SI-3. Sample dynamics for self-inhibitory single population system with J = −50 and ∆ = 5. Graph axis are time (horizontal) and mean
membrane potential (vertical).
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Fig. SI-4. Response of excitatory (J > 0) single population to step input function (red) as a function of self-coupling. Here the
total input is Q = η̄+H(t− t0)I. Note how the delay in response of the population to the input (neural “mass inertia”) varies with both J and a. Graph axis are time
(horizontal) and mean membrane potential (vertical).
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Fig. SI-5. Response of excitatory (J > 0) single population to step input function (red) as a function of ∆. Here the total input is
Q = η̄ +H(t− t0)I. Note how the delay in response of the population to the input (neural “mass inertia”) varies with both ∆ and a. Graph axis are time (horizontal) and
mean membrane potential (vertical).
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Fig. SI-6. Response of inhibitory (J < 0) single population to step input function (red) as a function of self-coupling. Here the total
input is Q = η̄ +H(t− t0)I. Graph axis are time (horizontal) and mean membrane potential (vertical).
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C. Sample dynamics for simplified NMM2 E-I model.

Two population excitation-inhibition (E-I) model
Excitation-inhibition models such as pyramidal-interneuronal network gamma (PING) (23, 32–34) are often used
to produce fast oscillations through a single Hopf bifurcation and are the simplest circuits in NMM capable of
spontaneously oscillating under a constant input (35). They consist of an excitatory and an inhibitory population
coupled together that can represent, for example, pyramidal and fast inhibitory cells in the cortex. We provide here
an analog circuit in the NMM2 formalism. For the purposes of analysis, we simplify this system to have a simple
constant input Q, and common parameters a,∆, and we neglect self-coupling terms (Γnn = 0, see Figure 1). The
equations for this system are

ϕ̇1 = ∆/π + 2ϕ1v1

v̇1 = v2
1 + s12 +Q− π2ϕ2

1

ϕ̇2 = ∆/π + 2ϕ2v2

v̇2 = v2
2 + s21 − π2ϕ2

2

ṡ12 = z12

ż12 = Γ12a
2ϕ2 − 2az12 − a2s12

ṡ21 = z21

ż21 = Γ21a
2ϕ1 − 2az21 − a2s21 [41]

This system of equations exhibits rich dynamics. Figure SI-7 provides some sample dynamics, which now include
bursting. Figure SI-12 displays simple bifurcation diagrams (starting from the same initial conditions (0,-2,0,0) and
eliminating a transient of 10 seconds) to study the effect of changing the rate parameter a. The tails of these diagrams
are probably noise from long transients. Figure SI-13 displays the increased sensitivity of the model to input when
the coupling is increased while maintaining the E/I balance (here the ratio of the Γ21/Γ12 constants).
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Fig. SI-7. Sample dynamics for the NMM2 two population E-I model. Horizontal axis is time (horizontal).
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Fig. SI-8. Sample dynamics for the NMM2 two population E-I model. Graph axis are time (horizontal) and mean membrane potential (vertical).
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Fig. SI-9. Interesting dynamics for the NMM2 two population E-I model (I).
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Fig. SI-10. Interesting dynamics for the NMM2 two population E-I model (II).
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D. Bifurcation diagrams for simplified NMM2 E-I model. Here we provide some bifurcation diagrams for the simplified
E-I model, by simply plotting the dynamics for each step of the bifurcation parameter (input current).

-40

-30

-20

-10

0

10

20

30

40

V1

0 20 40 60 80 100
I

Fig. SI-11. Bifurcation analysis of NMM2 E-I model for a = 5 with XPP-AUTO (bottom, see 07.5 MPR bifurcation.ipynb). The diagram exhibits multiple bifurcation points,
including Hopf and period doubling points.
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Fig. SI-12. Bifurcation analysis of NMM2 E-I model for different values of a (5,25,100).
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Fig. SI-13. Bifurcation analysis of NMM2 E-I model for different values of coupling gain (Γ increasing from top to bottom, with same E/I ratio). Note the increase in voltage as
the gain scaling is increased.
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E. More general NMM2 E-I model. Here we retain more features of the full two population model. The system of
equations becomes — first the firing rate equations,

ϕ̇1 = ∆1/π + 2ϕ1v1 [42]
v̇1 = v2

1 + Γ12s2 + Γ11s1 + η̄1 + I − π2ϕ2
1 [43]

ϕ̇2 = ∆2/π + 2ϕ2v2 [44]
v̇2 = v2

2 + Γ21s1 + Γ22s2 + η̄2 − π2ϕ2
2 [45]

and the synapse equations, assuming the type of synapse is fixed for each source neuron,

ṡ1 = z1 [46]
ż1 = a2

1ϕ1 − 2a1z1 − a2
1s1 [47]

ṡ2 = z2 [48]
ż2 = a2

2ϕ2 − 2a2z2 − a2
2s2 [49]
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Fig. SI-14. Interesting dynamics for the NMM2 more general two population E-I model (III).
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F. Realistic parameters for QIF model. Our starting point is the QIF equation,

cV̇j = kV 2
j + I, if Vj ≥ Vp, then Vr ← Vj [50]

The units adapted to the scale of the problem are provided in Table 1. All parameters are typical from the
literature, except k, which is adapted to produce reasonable firing rates. The resulting response function is provided
in Figure SI-15.

Fig. SI-15. Sample dynamics and response function for selected QIF parameters (see (36) for comparison).

Symbol Units Typical values
V mV 0–100 mV
Vr mV -100–50 mV
Vp mV 50–100 mV
I pA 0–1000 nA
c nF 200–1000 pF
k pA/mV2 1–5 pA/mV2

Table 1. QIF variables, parameters with typical values and units (see, e.g., (36). The value for k has been deter-
mined by finding reasonable behavior in the QIF model (firing rate).
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G. Realistic parameters for NMM2 model. The values related to the underlying QIF model are provided in the
previous section.

The full equations are

ϕ̇ = k

c

[
∆
πc

+ 2ϕv
]

v̇ = k

c
v2 − π2 c

k
ϕ2 + 1

c
[η̄ + Js+ I(t)]

ṡ = z

ż = a2ϕ− 2az − a2s

and the extra parameters are J, η̄,∆ (which replace sigmoid parameters) and the synaptic rate a.
With regard to J , this is the average charge delivered by a an action potential (the integral of the PSC). From

(37), we can estimate J to be about 50 ms · 500 pA, or about 25 pC.
The parameters, variables and NMM2 units are provided in Table 2. The resulting response function is provided in

Figure SI-15.

Symbol Units Typical values
V mV 0–100 mV
Vr mV -100–50 mV
Vp mV 50–100 mV
I pA 0–1000 nA
c nF 0.2–1.0 nF
k pA/mV2 1–5 pA/mV2

v mV -50–50 mV
ϕ, s Hz 0–100 Hz
J pC 5–50 pC (37)
η̄ pA -500–500 pA
∆ pA (0,500] pA
a Hz 20–500 Hz

Table 2. NMM2 variables, parameters with typical values and units — see, e.g., (36, 37).
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Fig. SI-16. Sample dynamics and response/W2P function for selected parameters.

Fig. SI-17. Sample dynamics and response/W2P function for selected parameters.
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Fig. SI-18. Sample dynamics and response/W2P function for selected parameters.

Fig. SI-19. Sample dynamics and response/W2P function for selected parameters.
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Fig. SI-20. Configuration with low self-connectivity and high synchronicity at Q = 800. The fixed point (stable) is in a topologically disconnected space (negative firing rate,
positive potential). An initial condition in the right space converges to fixed point (top), an initial condition on the other side orbits, reproducing QIF dynamics. W2P function
common to both is provided in the bottom plots. Fixed points with positive firing rate occur are stable but require lower inputs.
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H. Extension to gap junctions. We can extend the analysis to the model discussed in (16), including gap junctions
and asymmetric spikes. Let g denote conductance (units of 1/Ohm or [A/V]).

ϕ̇ = k

c

[
∆
πc

+ 2ϕv − g

c
ϕ

]
[51]

v̇ = k

c
v2 − π2 c

k
ϕ2 + 1

c

[
η̄ + Js+ I(t) + ln agc

k
ϕ
]

[52]

ṡ = z [53]
ż = a2ϕ− 2az − a2s [54]
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I. Dimensional reduction of single population model. The extended equations of the single population model are∗

ϕ̇ = k

c

[
∆
πc

+ 2ϕv
]

v̇ = k

c
v2 − π2 c

k
ϕ2 + 1

c
[η̄ + Js+ I(t)]

ṡ = z

ż = a2ϕ− 2az − a2s

with units [r, s]=Hz, [J ]=C, [v]=V, [k]=A/V2, [c]=C/V=A/(V Hz), [η̄,∆, Js(t), I] =A, and [k/c]=Hz/V, [a] = Hz.
Some natural units in NMM2 are

time = 1/a, c
2a

k∆ ,
c2a

kη̄
,
c2

kJ
(synapse and membrane times)

voltage = 1/γ = ca

k
,
J

c
,
η̄

ca
...

current = c2a2

k
,∆, η̄, Ja

The parameters in these equations are ∆, η̄, J, a, k, c and the dimensions in the problem are T, V,C. The associated
dimensional matrix is

M =


∆ η̄ J a k c

T : −1 −1 0 −1 −1 0
V : 0 0 0 0 −2 −1
C : 1 1 1 0 1 1


The fundamental dimensionless parameters (zero modes of the dimensional matrix) are

ε1 = ∆/η̄
ε2 = aJ/η̄

ε3 = ∆c2/(kJ2)

All dimensional quantities can be expressed as the product of an arbitrary one times a function of the dimensionless
parameters. E.g., all frequencies can be expressed as f = aF (ε1, ε2, ε3).

Let the a time variable be τ = at, with s̄ = s/a, z̄ = z/a2, and ϕ̄ = ϕ/a. Then, using a prime to denote derivative
w.r.t to τ ,

a2ϕ̄′ = k

c

[
∆
πc

+ 2aϕ̄v
]

[55]

av′ = k

c
v2 − π2a2 c

k
ϕ̄2 + 1

c
[η̄ + aJs̄+ I(t)] [56]

s̄′ = z̄ [57]
z̄′ = ϕ̄− 2z̄ − s̄ [58]

Define γ = k/(ca), with units [γ]= 1 /V and the dimensionless variable v̄ = γv, then

ϕ̄′ = ∆̃
π

+ 2ϕ̄v̄ [59]

v̄′ = v̄2 − π2ϕ̄2 + η̃ + J̃ s̄+ Ĩ(t) [60]
s̄′ = z̄ [61]
z̄′ = ϕ̄− 2z̄ − s̄ [62]

∗
One may be tempted to replace the last equation by z = a2βϕ − 2az − a2s, but this is redundant. The change of variables z = βz̃ and s = βs̃ then lead to z̃ = a2ϕ − 2az̃ − a2s̃, and the
β factor pops up in the second NMM2 equation, changing J → βJ . This is also clear from the point of view of the L operator.
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with the dimensionless current parameters

∆̃ = k

c2a2 ∆

η̃ = k

c2a2 η̄

J̃ = k

c2a2 aJ

Stability analysis. We analyze here the fixed points and their stability of the NMM2 single population model.We
start from the equations

ϕ̄′ = ∆̃
π

+ 2ϕ̄v̄ [63]

v̄′ = v̄2 − π2ϕ̄2 + η̃ + J̃ s̄+ Ĩ(t) [64]
s̄′ = z̄ [65]
z̄′ = ϕ̄− 2z̄ − s̄ [66]

Fixed points, as described in the methods section, Equation 33, are determined by

0 = v4 + η̃v2 − J̃∆̃
2π v −

∆̃2

4

The Jacobian is

J =


fϕ,ϕ fϕ,v fϕ,s fϕ,z
fv,ϕ fv,v fv,s fv,z
fs,ϕ fs,v fs,s fs,z
fz,ϕ fz,v fz,s fz,z

 =


2v̄ 2ϕ̄ 0 0
−2π2ϕ̄ 2v̄ J̃ 0

0 0 0 1
1 0 −1 −2


or, using the equilibrium condition ϕ̄ = −∆̃/(2πv̄),

J =


2v̄ − ∆̃

πv̄ 0 0
π ∆̃
v̄ 2v̄ J̃ 0

0 0 0 1
1 0 −1 −2


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J. Response to AC stimulation.

Fig. SI-21. Sample time-series of v with resonant frequency (around 10 Hz) stimulation starting from fixed points. The rise time to steady state can be very slow and is
proportional to the amplification factor of the amplitude.

Fig. SI-22. Sample Arnold tongues for AC stimulation with a weak E-field.
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Fig. SI-23. Frequency and amplitude as a function of J (bottom).
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Fig. SI-24. Response frequency (left) amplitude (right) as a function of J and ∆ (top) or J and a (bottom).

40 | www.neuroelectrics.com Ruffini

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2022. ; https://doi.org/10.1101/2021.09.01.458563doi: bioRxiv preprint 

www.neuroelectrics.com
https://doi.org/10.1101/2021.09.01.458563
http://creativecommons.org/licenses/by-nc-nd/4.0/


K. Slow synapse/slow input limit and mapping of NMM2 to NMM parameters. What happens in the limit of “frozen
synapses”, i.e., a = 0+? As we have seen after nondimensionalization of these equations, if the dimensionless currents
are large (e.g., a→ 0), the first two equations have large derivatives (moving fast compared to the second two) and
can be evaluated at their equilibrium point (assuming they have a stable one, as we know they do from MPR), and
we are in the regime of slow synapse time (compared to membrane time). The equations become — if also the input
current is static or slowly varying so that the v, ϕ subsystem has time to reach equilibrium,

0 = ∆̃
π

+ 2ϕ̄v̄ [67]

0 = v̄2 − π2ϕ̄2 + η̃ + J̃ s̄+ Ĩ [68]
s̄′ = z̄ [69]
z̄′ = ϕ̄− 2z̄ − s̄ [70]

with the dimensionless current parameters

∆̃ = k

c2a2 ∆

η̃ = k

c2a2 η̄

J̃ = k

c2a2 aJ

We are thus led to a traditional NMM formulation with a fixed W2P function. The details of this follow.
But we should note that it is important that the input current I be static or very slowly varying. The first two

equations will then have time to stabilize going to a fixed point.
Assuming the above, we would like to obtain from this the wave2pulse (W2P) relation: firing rate from membrane

potential or current perturbation from baseline, that is, a relation of the form (we drop all bars and tildes for
simplicity)

ϕ = ϕ(Q; ∆)

with the total input Q = η + Js+ I(t).
Then the differential equations become

s′ = z [71]
z′ = ϕ(Q(s, η, I); ∆)− 2z − s [72]

Note that in this form, the NMM2 equations (in the limit of slow synapses compared to other timescales) look very
much like NMM equations in a self-coupled population. The main difference is the fact that W2P is now replaced by
a different function, and that the fundamental dynamical variable is now synaptic current rather than the synaptic
potential alteration u.

This is actually advantageous, because to connect with physical measurements we are interested in synaptic
currents, and, in fact, in the NMM formalism we use a linear relation to transform u into s.

The main issue with the NMM2 formulation is the fact that the WP2 function does not saturate, a fact related to
the lack of refractory period in the QIF equations (the QIF neuron can increase its firing rate to infinity as a function
of input current).

To get closer to the NMM formulation, we write

v = − ∆
2ϕπ

and input this into the second equation above,

0 = ∆2

4ϕ2π2 − π
2ϕ2 +Q [73]

or
0 = π2ϕ4 −Qϕ2 − ∆2

4π2 [74]
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or

ϕ2 = Q

2π2 +
√

( Q

2π2 )2 + ∆2

4π4 [75]

or (since ϕ > 0),

ϕ =

√
Q

2π2 +
√

( Q

2π2 )2 + ∆2

4π4 [76]

Fixed point at I = 0. We start from ϕ∗ = s∗ and plug this into equation 73 to get

0 = ∆2

4s∗2π2 − π
2s∗2 + η + Js∗ [77]

Derivative. We can compute the derivative
∂Qϕ(Q; ∆)

differentiating equation 75 to get
∂Qϕ = ϕ

4π2ϕ2 − 2Q [78]

and evaluating at the fixed point

K∗(J, η,∆) ≡ ∂Qϕ|s∗ = s∗

4π2s∗2 − 2(η + Js∗)
[79]

We can use equation 75 above with ϕ∗ = s∗ to get

s∗2 = Q∗

2π2 +
√

( Q
∗

2π2 )2 + ∆2

4π4

From this we see that 4πs∗2 > 2Q∗2, so K∗ ≥ 0. More explicitly,

K∗(J, η,∆) ≡ ∂Qϕ|s∗ =

√
Q∗

2π2 +
√

( Q∗

2π2 )2 + ∆2

4π4

4π2
√

( Q∗

2π2 )2 + ∆2

4π4

≥ 0 ∈ R

Since Q∗ = η + Js∗ + I, from equatio 78 we see that the derivative ϕ′(s) at the fixed point is

ϕ′(s∗) = JK∗ [80]

and therefore has the same sign as J .

Linearized equations. We can then linearize these equations about their equilibrium points (s∗, z = 0), ϕ(s∗)− s∗ = 0
and for small I, and defining t = s− s∗ write

t′ = z

z′ = (∂sϕ− 1)|s∗,I=0 t− 2z + ∂Iϕ|s∗,I=0 δI [81]

or

t′ = z

z′ = (JK∗ − 1) t− 2z +K∗ δI [82]

In second order form
t′′ − 2t′ + (1− JK∗)t = K∗ δI

The eigenvalues of this ODEs are (recall K∗ ≥ 0),

λ = −1±
√
JK∗

We note here that for J > 0 the eigenvalues are real (no resonance possible), but recall that the slow synapse
approximation is applicable only if the dynamic external input to the population is slowly varying w.r.t. QIF
dynamics.
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Resonance for small perturbations. If J < 0, The eigenvalues of this ODEs are

λ = −1± i
√
|J |K∗ = −β + iω0

The resonance peak over amplitude is of the form

χ∗ = Ain
βω0

=
√
K∗√
J

Plots for fixed point, K∗ and χ∗ as a function of J are provided in Figure SI-25.

Relation to NMM sigmoid. The NMM sigmoid is given by

ϕ = σ(v) = 2ϕ0
1 + er(v0−v)

How similar are the two transfer/W2P functions? Some examples of fitting are provided in Figure SI-25.
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Fig. SI-25. NMM2 slow limit. Fitting of a sigmoid to the transfer function for some parameters (top) and fit sigmoid parameters for a range of J values (middle). The most
important change is for the firing rate. Bottom: fixed point (s∗ = ϕ∗), derivative K∗ and resonant peak for various values of J (there is no resonance for positive J values).
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L. Slow synapse/fast input limit. In the limit of slow synapses (a = 0+) but fast input, we have that we need to treat
the synaptic input as a constant s∗ (it does not change at all compared to the the other time scales and we take it as
frozen in time). The equations become (we drop bars and tildes),

ϕ′ = ∆
π

+ 2ϕv [83]

v′ = v2 − π2ϕ2 + η + Js∗ + I(t) [84]

The Jacobian to be evaluated at the fixed point v∗, ϕ∗ is

J =
(

2v − ∆
πv

π∆
v 2v

)
and the eigenvalues are

λ = 2v ± i∆
v

The resonant peak in the linear regime is χ = 1
2∆ .
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M. Formal relation between NMM2∗ and NMM. The formal relationship between NMM2 and NMM occurs in the
limit of slow Q = η +

∑
Js+ I(t), that is, when all the inputs to the population are slow compared to MPR/QIF

dynamics (we can call this the NMM2∗ regime). In that case we can formally related the two theories through their
transfer functions as summarized in Figure SI-26.

Fig. SI-26. Relationship of NMM2∗ and NMM.

N. Further notes on the relation with the Devalle et al formulation (17). Devalle et al (17) start from the QIF equation

c ˙̃V = gL
(Ṽ − Vt)(Ṽ − Vr)

(Vt − Vr)
+ Ĩ

Here we have the proper physical units: [V ] = V, [Ĩ] = A, [gL] = A/V, etc.
Aside: Note that the dynamic quantity

1
R(Ṽ )

= gL
Ṽ − Vt
Vt − Vr

has units of conductance (Ω−1), and with it we can rewrite the differential equation in an intuitive form (RC circuit),

c
d

dt
(Ṽ − Vr) = Ṽ − Vr

R(Ṽ )
+ Ĩ

The time “constant” associated to this RC circuit would be

τ(Ṽ ) = c(Vt − Vr)
gL(Ṽ − Vt)

Connection with our notation. We define

k = gL/(Vt − Vr)
v = Ṽ − (Vt + Vr)/2
I = Ĩ − gL(Vt − Vr)2/4

then we obtain
cv̇ = kv2 + I

This is the formulation we start from here. Here we preserve units of all the variables, with [v]=V, [I] =A, [k]=A/V2,
[c]=C/V=A/(V Hz), and [k/c]=Hz/V.

Again, we can refer here to a dynamical time scale if we want to think in terms of an RC circuit,

τ(v) = c

k

1
v
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Devalle time scale. In order to get a time scale in the system we need to use other constants — the threshold or rest
voltage. Here we use V̄ = Vt − Vr as is the case in Devalle.

Dimensional analysis shows that [cnkmV̄ q] = Cn+mVq−n−2mHzm, and using m = 1, n = −1, q = 1 we find the
desired timescale,

τm = c

kV̄
= c/gL

Devalle also rescale v → v/V̄ and I → I/(gLV̄ ) to end up with the almost adimensional equation (adimensional
except for time) τ v̇ = v2 + I. Rescaling the time variable then leads to v̇ = v2 + I.

Other time scales. More generally, the dimensional analysis can include the input I:

[cnkmV̄ qIp] = Cn+mVq−n−2mHzmCpHzp = Cn+m+pVq−n−2mHzm+p

Setting m+ p = −1, or p = −1−m

[cnkmV̄ qI−1−m] = Cn−1Vq−n−2mHz−1 = s

thus we need n = 1, q − 1− 2m = 0, or
[ckmV̄ 2m+1I−1−m] = s

E.g., setting m = 0, we get the time scale
[τ ′m] = [cV̄ I−1] = s

Setting m = −1/2,
[τ∗m] = [ c√

kI
] = s

What does this all mean? That we can rewrite the DE in multiple ways. E.g., start from

cv̇ = kv2 + I

And multiply it by V̄ /I,

τ ′mv̇ = kV̄

I
v2 + V̄

We can now rescale v = αv′,

τ ′mv̇
′ = α

kV̄

I
v′

2 + V̄

α

or with αkV̄I = 1
τ ′mv̇

′ = v′
2 + I ′′

with I ′′ = kV̄ 2

I . So, as we can see, there are different transformations that lead to the same form τ v̇ = v2 + I, but
with different time scales. This may be relevant for fast-time slow-time analysis.

From the point of view of connecting to physiology, though, the version that makes most sense to work with is the
Devalle one: time constant of the membrane (which is what is related to PSC measurements) is not related to input
current.
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O. Units systems in QIF, MPR and NMM2.

QIF. Consider a population of fully and uniformly connected quadratic integrate and fire (QIF) neurons indexed by
j = 1, ..., N . To make a direct connection with experimental work, we start from the equation for the membrane
potential of a single neuron V j in a population of interest as in (17),

c ˙̃V j = gL
(Ṽ j − Vt)(Ṽ j − Vr)

(Vt − Vr)
+ Ĩj , if V j ≥ Va, then reset V j → Vr [85]

where Vr and Vt represent the resting potential and threshold of the neuron (in Volts), and Va is a limit reset potential
(apex), Ṽ is the membrane voltage, Ĩ the input current, c the membrane capacitance, gL is the leak conductance,
with units [c] =C/V, [Ṽ ] = V, [Ĩ] = A and [gL] = A/V. In this equation, the total input current to neuron j is
Ĩj = η̃j + J̃s(t) + Ĩ(t) and includes a quenched (constant) noise input component η̃j with mean ˜̄η and variance ∆̃
, the input from other neurons s(t) per connection received (the mean synaptic activation) with uniform coupling
J̃ (with units of charge) and a common input Ĩ(t). The common input Ĩ(t) can represent both a common external
current input or the effect of an electric field.

Natural units. To simplify the analysis (completing the square), we define

k = gL/(Vt − Vr)
v′ = Ṽ − (Vt + Vr)/2
I ′ = Ĩ − gL(Vt − Vr)/4

which, through Ĩ, also affects J̃ , η̃ and p̃(t), to obtain

cv̇′ = kv′
2 + I ′, and if v′ ≥ va, then reset v′ → −(Vt − Vr)/2 [86]

with units [k]= A/V2 and voltage and current in proper units (V and A, respectively). Defining v = v′/(Vt − Vr) and
I = I ′/(gL(Vt − Vr)) results in

τmv̇ = v2 + I, if v ≥ va, then reset v → −1/2 [87]

with τm = c/gL and v, I, η and p(t) dimensionless variables, and J with units of time (as s is in Hz). If we work in
time units defined by the timescale τm, the equation becomes

v̇ = v2 + I, if v ≥ va, then reset v → −1/2 [88]

What we have done by the above transformations is essentially work in natural units of time (τm = c/gL), voltage
(Vt − Vr) and current (gL(Vt − Vr)). It is important to keep in mind these changes of variables when dealing with
multiple interacting populations involving different parameters. The coupling parameters across populations as well
with electric field are affected by the above transformations.

Thus, the above operations are essentially equivalent to working in a system of units where

Vt − Vr = 1 (potential) [89]
gL(Vt − Vr) = 1 (current) [90]
τm = c/gL = 1 (time) [91]

gL(Vt − Vr)τm = 1 (charge) [92]

MPR. Following the derivation of the mean-field equations in (15) we get

ϕ̇ = k

c

[
∆̃
πc

+ 2ϕv′
]

[93]

v̇′ = k

c
v′

2 − π2 c

k
ϕ2 + 1

c

[˜̄η + J̃ s(t) + I ′(t)
]

with units [r, s]=Hz, [J̃ ]=C, [v]=V, [k]=A/V2, [c]=C/V=A/(V Hz), [˜̄η, ∆̃, I] =A, and [k/c]=Hz/V. To close these
equations, we write s = L̂[ϕ] for some differential operator representing a causal, linear filter representing synaptic
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dynamics. The cases of first and second order filtering are discussed below. In the limit of instantaneous synaptic
transmission, τ → 0 or aτ (t− t′)→ δ(t− t′), which implies s→ ϕ, we obtain the closed, simple set of equations for
the single population model analyzed in (15).

In the reduced version with the variables and units as in Equation (87) — where Vt − Vr = 1 (potential) and
gL(Vt − Vr) = 1 (current) —, the MPR equations become (17)

τmϕ̇ = ∆
πτm

+ 2ϕv [94]

τmv̇ = v2 − π2τ2
mϕ

2 + η̄ + Jτms+ I(t)

The units are: voltage v is dimensionless, the rates ϕ and s have units of frequency (Hz), τm = c/gL has units of time
(seconds), and the charge J = J̃/(gL(Vt − Vr)τm) and current ∆ = ∆̃/(gL(Vt − Vr)) dimensionless.

We can define time units measured by τm (so that in the new units τm = 1) by using a new times variable t̃, with
t = t̃τm. We use tildes to denote rates and their derivatives in the new time units thorough multiplication by τm.
Then the equations transform to (with tilde denoting rates measured in these units)

˙̃ϕ = ∆
π

+ 2ϕ̃v [95]

v̇ = v2 − π2ϕ̃2 + η̄ + Js̃+ I(t)

which is the formulation in (15). All variables and parameters are dimensionless and expressed in the natural units of
the problem, where τm = c/gL = 1 (time), Vt−Vr = 1 (voltage), gL(Vt−Vr)τm = 1 (charge) and hence gL(Vt−Vr) = 1
(current).

Formulation for the single and multiple population cases. The complete set of equations for a single population
becomes

ϕ̇ = k

c

[
∆
πc

+ 2ϕv
]

[96]

v̇ = k

c
v2 − π2 c

k
ϕ2 + 1

c
[η̄ + Js+ I(t)]

ṡ = z

ż = a2ϕ− 2az − a2s

with the input collecting external input and the influence of an external field, I(t) = p(t) + P · E(t).
The equations for the single population can be reduced to the simplified form in Equation (94) with dimensionless

voltage v and current I that brings to light the two main timescales in the problem,

τmϕ̇ = ∆
πτm

+ 2ϕv [97]

τmv̇ = v2 − π2τ2
mϕ

2 + η̄ + Jτms+ I(t)
τsṡ = w

τsẇ = ϕ− 2w − s

with τs = 1/a and and w = τsz. Here s and w have units of Hz, while v is dimensionless, ϕ and s are in Hz,
τm = c/gL has units of time (seconds), J = J̃/(gL(Vt − Vr)τm) is the dimensionless charge, and ∆ = ∆̃/(gL(Vt − Vr))
the dimensionless current.

As before, can transform the above equations to dimensionless units by using τm as the time unit (τm = 1),

ϕ̇ = ∆
π

+ 2ϕv [98]

v̇ = v2 − π2ϕ2 + η̄ + Js+ I(t)
ζṡ = w

ζẇ = ϕ− 2w − s

All variables are dimensionless and ζ = τs

τm
the synaptic time constant in membrane time units. The first two

equations are again the formulation in (15).
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Equivalently, we can multiply the last equation by a2, with a = ζ−1 = as/am (i.e, the synaptic rate in the τm unit
system),

ϕ̇ = ∆
π

+ 2ϕv [99]

v̇ = v2 − π2ϕ2 + η̄ + Js+ I(t)
ṡ = w

ẇ = ϕa2 − 2aw − sa2

In summary, we can write the NMM2 equations in units defined by τm = 1 (time), Vt − Vr = 1 (voltage) and
gL(Vt − Vr) = 1 (current), gL(Vt − Vr)τm = 1 (charge) in this simplified form.

Multiple populations. The single population case in Equation (96) is readily generalized for interacting populations.
Letting p denote the population index and pq denote a synapse from population p to q, the uniform input received by
population p by Ip(t) = pp(t) + Pp · Ep(t), the equations for interacting populations become

ϕ̇p = kp
cp

[
∆p

πcp
+ 2ϕpvp

]
[100]

v̇p = kp
cp
v2
p −

cp
kp
π2ϕ2

p + 1
c

[
η̄p + Ip(t) +

∑
m:n←m

Γpqspq

]
[101]

ṡpq = zpq [102]
żpq = a2

pqϕm − 2apqzpq − a2
pqspq [103]

Figure 1 provides a diagram of the self-coupled population and multiple population cases.
Finally, we can work with the form in Equations (97) by defining dimensionless voltage variables independently

in each population if need be (i.e., if Vt − Vr and gL(Vt − Vr) differ among them) and taking care of the coupling
between them and with external electric fields. Each population has its own unit system, so to speak.
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