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Abstract: 

Mammalian genomes are replicated in a cell-type specific order and in coordination with 

transcription and chromatin organization. Although the field of replication is also entering the 

single-cell era, current studies require cell sorting, individual cell processing and have yielded a 

limited number (<100) of cells. Here, we have developed Kronos scRT (https://github.com/CL-

CHEN-Lab/Kronos scRT), a software for single-cell Replication Timing (scRT) analysis. Kronos 

scRT does not require a specific platform nor cell sorting, allowing the investigation of large datasets 

obtained from asynchronous cells. Analysis of published available data and droplet-based scWGS 

data generated in the current study, allows exploitation of scRT data from thousands of cells for 

different mouse and human cell lines. Our results demonstrate that, although most cells replicate 

within a close timing range for a given genomic region, replication can also occur stochastically 

throughout S phase. Altogether, Kronos scRT allows investigating the RT program at a single-cell 

resolution for both homogeneous and heterogeneous cell populations in a fast and comprehensive 

manner. 
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Introduction 

DNA replication is a fundamental process in all living organisms that guarantees the duplication 

of genetic information before cell division. Based on inter-origin distance (~one origin every 100 kb 

in mammalian cells) and replication fork speed (1-3 kb/min), if all replication origins were activated 

at the same time in a single mammalian cell, it would only take about 30 minutes for complete 

genome replication to occur1,2. However, due to limiting factors of replication initiation and replication 

fork progression, the DNA replication process is not simultaneously initiated at all the potential 

origins at once3,4. Rather, for each cell type, there is a defined selection and temporal order in which 

these origins fire, and thus, mammalian DNA replication takes several hours (usually between 6 and 

12 h) to reach the finish line5,6. Furthermore, it has been shown that this temporal and spatial 

genomic orchestration coordinates with other processes such as chromatin organization and gene 

transcription7–9. The cell-type specific program that regulates the progression of DNA replication 

during the synthesis phase (S phase) is referred to as replication timing (RT) program10,11. It has 

been reported that RT is altered throughout disease development, such as in cancers and 

neurological disorders12–14. In addition, RT has been shown, by others and us, to play an important 

role in shaping the mutational landscape and impacting genome stability in both normal and cancer 

cells15–19. All these make RT an important aspect of better understanding the underlying causes, or 

outcoming effects, of genomic instability. 

During the last decade, the advent of high-throughput single-cell omics has allowed the study of 

intercellular variability and has shed light on both functional and structural dynamics of cells. 

Advances in high-throughput single-cell sequencing techniques have also made it possible to 

analyze RT at the single-cell level. Recent single-cell RT (scRT) studies20–22, offer an advantage 

over bulk cell studies as they provide the possibility of studying the RT program within individual 

cells and enable the investigation of cell-to-cell variability. However, all current scRT studies require 

identification of cell phases (i.e. G1, S) at a pre-sequencing stage with fluorescence-activated cell 

sorting (FACS) and manual processing on plates of individual cells, allowing incorporation of only 

between tens and a hundred of cells20–22, which lead to scalability concerns. Furthermore, these 

analyses lack a unified pipeline to extrapolate scRT. Nevertheless, the advent of scRT investigations 

has supported the hypothesis that most replication domains follow the predetermined replication 

times as the majority of the other cells in the same population20–22. However, there is still room to 

explore non-conforming events in single-cells that deviate from the average replication time and 

possibly follow stochastic replication. Importantly, latest advancements in Optical Replication 

Mapping (ORM) allow newly replicated DNA to be mapped and thus, early initiation events to be 

tracked at the single-molecule level23. Analysis of individual initiation events with ORM from human 

cells synchronized at the very beginning of S phase has revealed that, although most early initiation 
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events occur in early-replicating regions of the genome, a significant number, ~9%, occur in late 

replicating regions, supporting a stochastic model of initiation of replication. Therefore, the power of 

current scRT studies is shadowed by the previously mentioned limitations and the rare stochastic 

RT events may not be reflected in currently available scRT with limited sample sizes. 

Here, to overcome current restrictions in scRT studies, we put forth a uniform computational 

framework named Kronos scRT to investigate scRT based on single-cell copy number variation 

(scCNV) detection from single-cell Whole Genome Sequencing (scWGS) data. Our pipeline can be 

used to analyze datasets from various experiments including classical single-cell Whole Genome 

Amplification (scWGA), droplet-based 10x Genomics Chromium scCNV solution, single-cell High-

throughput Chromosome conformation capture (scHi-C) and other relative data, obtained either 

from FACS sorted cells or directly from asynchronous cycling populations. The framework described 

here allows us to increase the number of cells used to analyze scRT at least 10-fold (>1,000 cells 

in one experiment) compared to previous studies. By analyzing published data and the new droplet-

based scWGS data generated in the current study, we obtained large amounts (up to 1,010 S-phase 

cells for a given cell type from a single experiment, 4,265 cells analyzed in total) of scRT data of 

different mammalian cell lines. The obtained scRT data allow us to construct distinguished S-phase 

progression trajectories of different cell types as well as to identify coexisting sub-populations. In 

addition, our results show that incorporating significantly more cells enables us to stretch the study 

of DNA replication heterogeneity with unprecedent detail. Our analysis demonstrates that, for given 

genomic regions, although most cells replicate within a close timing range around the population 

average RT, replication can also happen stochastically in any given window during S phase. 

Modeling of replication kinetics by using scRT data demonstrates that measuring the firing efficiency 

in early S phase can predict the average firing time within cell population. Here, we extent a previous 

analysis from the single-molecule level into the single-cell level and show that stochastic regulation 

of replication kinetics is a fundamental feature of eukaryotic replication.  
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Results 

Kronos scRT: a computational tool allowing extraction and analysis of scRT data from 

scWGS data of asynchronous cells. 

We have developed Kronos scRT, a tool that computes scRT under a unified framework and in 

a comprehensive manner (Fig. 1a). At first, single-cell DNA sequencing reads are aligned to the 

reference genome and counted over regular bins (by default, and in our analysis 20 kb), whose size 

can be adjusted depending on the average coverage of the experiment. Read counts are then 

corrected for GC content and mappability bias. An option to blacklist genomic regions is available 

as well (Methods). The data are then segmented and copy number variation (CNV) is called 

independently within each individual cell. At this stage, two additional parameters are calculated: 

the cell ploidy, as the cell weighted mean copy number (CN), and the intracellular bin-to-bin 

variability, calculated as Depth Independent Median Absolute deviation of Pairwise Differences 

(DIMAPD) (Methods). To evaluate the minimum number of reads needed to obtain a stable CNV 

calling, we randomly selected a G1/G2-phase cell and an S-phase cell with a relative high coverage 

and downsampled them. The cells in question come from a MCF7 breast cancer cell line that 

according to the ATCC has a mode of 80 autosomes in G1 (ploidy: 3.64), which is in agreement 

with the estimation of Kronos scRT (Fig. 1b, Table 1). Based on the simulation, the ploidy 

estimations of the selected G1/G2-phase cell are quite stable (Table 1). The estimated mean ploidy 

of the selected S-phase cell is 4.53 with 1,302.27 reads per megabase (RpMb), and we obtained 

reasonable results until 585.96 RpMb (Table 1, highlighted in red). Therefore, we can estimate that 

a minimum of 160 reads per Mb per haploid genome are needed (i.e. about 1 million reads for a 

diploid human genome) in order to have a stable prediction of a cell mean ploidy for an S-phase cell. 

Table 1. Ploidy level estimated from down-sampling of MCF7 scRT data  

G1/G2-phase S-phase Fraction 
of reads Reads per 

Mb 
Ploidy Reads per 

Mb 
Ploidy 

Mean SD Mean SD 
1316.55 3.65 NA 1302.27 4.53 NA 100% 
1184.86 3.66 3.30E-04 1171.96 4.49 1.20E-03   90% 
1053.15 3.65 6.70E-03 1041.72 4.51 1.50E-03   80% 
987.31 3.65 3.20E-04 976.57 4.56 7.50E-04   75% 
921.50 3.65 9.70E-04 911.54 4.47 1.10E-03   70% 
855.74 3.65 2.50E-03 846.43 4.55 9.60E-04   65% 
789.73 3.65 1.70E-04 781.26 4.44 8.10E-04   60% 
724.04 3.64 2.00E-04 716.14 4.50 1.40E-03   55% 
658.19 3.64 1.00E-03 651.06 4.42 1.40E-03   50% 
592.46 3.65 1.70E-04 585.96 4.49 8.20E-04   45% 
526.56 3.66 4.10E-04 520.94 4.35 1.10E-03   40% 
394.82 3.66 2.10E-04 390.76 4.25 1.30E-03   30% 
263.29 3.65 4.00E-04 260.46 4.04 1.60E-03   20% 
131.70 3.63 5.90E-04 130.29 2.88 4.60E-01   10% 
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Τhe following step consists of the identification of G1/G2-phase and S-phase cells. Depending 

on the type of data and the information available, Kronos scRT encompasses different approaches 

to distinguish cells in G1/G2 phase from those in S phase. If cells are FACS sorted in discrete 

populations, as in previous papers20–22, the phase information can be used directly to label cells into 

these two groups. Otherwise, for unsorted cycling populations, the detection of the S-phase cells 

can be calculated automatically. The automatic detection is based on two assumptions: firstly, most 

cells belong to the G1/G2 population; secondly, the intracellular bin-to-bin variability is minimal in 

G1 and G2 cells, where all the bins have similar CN, and maximizes towards mid-S phase due to 

the asynchronous replication of adjacent bins (Fig. 1b, c). The program, therefore, fits the variability 

data into a gaussian distribution and identifies S-phase cells as outliers (Methods). Lastly, if the cell 

cycle distribution has been altered, i.e. cells have been enriched for the S-phase without complete 

removal of G1 and G2 phase cells, the user can manually impose a variability threshold based on 

visual inspection of the data as in Fig. 1b. 

Due to the way of calculating the CN (Methods), it is impossible to discriminate between G1 and 

G2 cells. This affects the S-phase population as well, which is split into two parts. The first part has 

higher ploidy than the G1/G2-phase population and shows increasing variability moving towards 

higher ploidy. The second part, instead, shows a lower ploidy than the G1/G2 pool and its variability 

decreases while approaching it (Fig. 1b). S-phase cells ploidy must therefore be adjusted before 

proceeding with the downstream analysis. Adjustment can be automatically calculated (Fig. 1c) or 

manually imposed by the user (Methods). 

Adjusted CNs can then be used to calculate scRT profiles. Based on the coverage of our data, 

we binned the genome into 200 kb non-overlapping windows and calculated the weighted median 

CN for each cell. Using the G1/G2-phase population, a median CN profile is calculated and used to 

normalize the CN of each S-phase cell as a log2 ratio (Methods). Data are then binarized to obtain 

the scRT profiles, where 1 corresponds to replicated regions and 0 to unreplicated ones. The 

assumption is that replicated regions will have a doubled CN compared to the G1/G2 fraction, and 

therefore a log2 ratio close to 1, while non-replicated regions will have the same CN and a log2 ratio 

close to 0. Binarization is independent for each cell and is based on the identification of a normalized 

CN threshold. To identify the most appropriate threshold, we select the one that minimizes the 

Euclidian distance between the generated scRT profiles and the original data (Methods). An 

example is shown in Fig. 1d.  

As a quality control, a pairwise Simple Matching Coefficient of the scRT profiles is calculated and 

cells with a RT profile deviating from the main population are filtered out (Fig. 1e) (Methods). Finally, 

we can compute the pseudo-bulk RT as the weighted mean of the scRT profiles and compare it with 

the bulk RT. 
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Thus, by combining CNV, inter-cellular variability and quality control filtering, we successfully 

established a unified and genome-wide scRT computational profiling tool, Kronos scRT, which 

allows studying scRT from scWGS of both FACS sorted and unsorted cycling cells in an efficient 

manner. 
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Figure 1. An efficient uniform framework for scRT extraction. a The pipeline of Kronos scRT with the different 

modules enlisted. The input files, the main modules of Kronos RT and the optional modules are shown in green, dark 

blue and light blue, respectively. b Scatter plot reporting the average ploidy of a cell on the x-axis and the bin-to-bin 

intracellular variability on the y-axis. Each point is a single-cell and the color is assigned based on a cut-off automatically 
calculated, or manually imposed, regarding the population variability (Methods). High variability is associated with 

S-phase cells (green), while low variability is associated with G1/G2-phase cells (blue). An unknown region can be 

manually set (yellow). The vertical black line represents the median ploidy of the population. Reported data are from 

asynchronized MCF7 cells enriched for the S phase. The green and purple arrows show the S-phase progression of the 

first and second part of the S phase, respectively (Methods). c Data presented in (b) after S-phase progression 

correction. The color of the second portion of the S phase have been changed to purple. As before the green and the 

purple arrows indicate the correct S-phase progression. The black curve reports the S-phase density distribution that is 

used to calculate the parameters to adjust the S-phase progression (Methods). d A normalized copy-number (nCN) 
distribution of a representative single cell in black. In blue, the Euclidian distance between the real data and a binarized 

system computed with a certain nCN cut-off. In red, the cut-off used to binarized the data that corresponds to lowest 

calculated Euclidian distance (Methods). The nCN of a bin is calculated as the log2 ratio of the copy number of that bin 

in a replicating cell and the median copy number of the same bin in the non-replicating population. e Simple matching 

coefficient matrix among single cells. The identified irregular cells are therefore discarded (filtered out) as a further 

measure of quality control (see Methods for detail).  

 

Determination and analysis of scRT from scWGS data of sorted S-phase cells. 

scRT studies usually require cell phase sorting via FACS because they lack of an in silico phase 

separation as presented in the current study. Nevertheless, cell phase information can be integrated 

to the analysis to label cells using the WhoIsWho module (Fig. 1a). To test the applicability of Kronos 

scRT’s framework, we used previously published scWGS data derived from sorted mid-S-phase 

mouse embryonic stem cells (mESC, n=67 cells) and mESC differentiated for 2 days to EpiLCs 

followed by five days of Embryo Bodies culture, which the authors claim to efficiently result into 

neuroectoderm cells (hereafter called NE-7d, n=45 cells)21. The scRT profiles of these two cell types 

were determined using Kronos scRT, and the phase was assigned using the FACS metadata 

(Supplementary Table 1). 

To demonstrate that Kronos scRT is efficient in detecting scRT profiles, even with the utilization 

of a small number of sorted mid-S-phase cells, we calculated the correlation between pseudo-bulk 

RT issued from scRT of each sample in the current study and BrdU-IP-issued bulk RT data 

generated by Takahashi and colleagues21 (Fig. 2a). We obtained a Spearman correlation of 0.89 

for mESC and 0.90 for NE-7d cells (Fig. 2b and Supplementary Fig. 1a), demonstrating the 

robustness of our method and computational pipeline. In addition, in agreement with previous 

studies11,13, the obtained mid-S binary replication signals show that cell-to-cell variability exists but 

is limited and that RT organization is largely conserved in single-cells. 

We were then interested in quantifying the replication variability within the cell populations by 

calculating, in each dataset, the Twidth values, defined as the time needed for given genomic regions 
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to be replicated from 25% to 75% of cells in a S-phase lasting 10 h20. We found that the Twidth in 

mESCs ranged between 2.78 h for early and 2.81 h for late replicating regions, while, in mNE-7d 

cells, it ranged between 2.76 h for early and 2.37 h for late. Using the Compare TW module, we 

applied a null hypothesis test through bootstrapping with H0: Twidth_early = Twidth_late and with H1: 

Twidth_early ≠ Twidth_late (Fig. 2c). No significant statistical difference can be observed between early 

and late Twidth (p-val=0.43) for the mESC cells, while for the mNE-7d cells, late replicating regions 

seem to be less variable than early ones (p-val < 10-4). Based on these results, mESC present a 

behavior similar to what was observed in Dileep & Gilbert 201820, with no significant differences 

between early and late S-phase, while mNE-7d shows lower variability at the end of the S-phase. 

Although a statistical difference can be observed, the limited number of cells raises questions about 

how these values reflect reality. 
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Figure 2. Extracting scRT from sorted mid-S phase mouse cells. a scRT calculated from FACS sorted mid-S phase 

mouse embryonic stem cells (mESC, left) and 7-day differentiated neuroectoderm cells (mNE-7d, right). In the bottom 

panel: the binary scRT profiles are reported sorting single cells from top to bottom by increasing replication percentage. 

The replicated and un replicated regions are shown in red and blue, respectively. In the upper panel, the pseudo-bulk 
RT calculated from the scRT profiles (see Methods) are compared to the bulk RT of the corresponding cell type. b 

Comparison between single-cell and bulk RT data. Lower-triangle: 2d density plot reporting pair-wise comparisons 

between samples. Density color code is reported on the right. Upper-triangle: Spearman correlation between RT data. 

Diagonal: RT distribution of each sample. c Twidth values of mESC (upper) and mNE-7d (lower) for Early (RT > 0.5) and 

Late (RT ≤ 0.5) replicating regions. Higher Twidth indicates higher RT variability among cells. P-values were calculated 

using the Kronos scRT Compare TW module (see Methods, **** < 10-4) 

 

Determination of scRT data from asynchronous cells using a microfluidic-based system. 

To demonstrate that Kronos scRT can detect scRT without cell sorting and pre-analysis cell 

phase identification (e.g. by FACS), we first generated scWGS data using a droplet-based 10x 

Genomics Chromium scCNV solution for 153 estrogen-treated cycling MCF7 cells (containing about 

20% of S-phase cells) (Fig. 3a) without cell sorting (see Methods) (Supplementary Table 1). As 

previously discussed, this condition allowed us to use the automatic identification of the S-phase 

cells (Fig. 3a, left panel). Moreover, the even distribution of cells across the S phase allowed the 

usage of the automatic S-phase correction (Fig. 3a, right panel). We calculated the scRT and 

pseudo-bulk from 32 identified S-phase cells (Fig. 3b and Supplementary Fig. 1b). The pseudo-bulk 

RT shows a high degree of correlation (Spearman correlation R=0.908) with the bulk RT (Fig. 3c). 

By visual inspection of the scRT profiles, it was possible to clearly identify a certain degree of 

variability (Fig. 3d). An advantage of having cells evenly distributed throughout S phase is the 

possibility to perform the Twidth analysis with higher resolution than only with the mid-S-phase-sorted 

cells (Fig. 3d). As suggested in previous studies21,24, Twidth are smaller at the beginning and at the 

end of the S phase, and with a progressive increase while moving towards the mid-S phase. 

Although with a limited number of observations (only 32 cells), such results reinforce the idea that 

initiation and termination of the replication program are more tightly regulated compared to the mid-S 

phase (Fig. 3d).  
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Figure 3. Extracting scRT from asynchronous human MCF7 cells. a Intracellular bin-to-bin variability scatter plot in 

function of single-cell ploidy before (on the left) and after (on the right) S-phase-progression correction. Same color code 
as Fig. 1b and c. Kronos scRT is able to automatically identify the S-phase cells from the asynchronous scWGS data 

(see Methods).  b scRT calculated from unsorted cycling MCF7 breast cancer cells. Same presentation as in Fig. 2a c 

Comparison between single-cell and bulk RT data, as in Fig. 2b. d Barplots reporting the Twidth calculated on regions of 

5 RT categories based on the psRT values (Very early > 0.8, 0.8 ≥ Early > 0.6, 0.6 ≥ Mid > 0.4, 0.4 ≥ Late > 0.2, Very 

Late ≤ 0.2). P-values were calculated using the Kronos scRT Compare TW module (Methods, * < 0.05, ** < 10-2, *** < 

10-3, **** < 10-4). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.09.01.458599doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458599
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

 

scCNV/scRT analyses allow identifying sub-populations of cells within a heterogeneous 

population. 

To obtain a more representative estimation of cell-to-cell replication timing variability, we decided 

to further increase the number of S-phase cells. As unsorted cell populations generally contain many 

more G1/G2- than S-phase cells, to reduce the sequencing costs, we enriched these samples for 

the S-phase through FACS sorting using a gate that contains majority the S-phase cells (Methods) 

following with scWGS. Using this approach, we obtained 1,362 MCF7 S-phase enriched cells, 

majority of which (n=1,010) belongs to S-phase cells (Fig. 1b, c, Supplementary Table 1). 

While preforming a dimensionality reduction analysis with Uniform Manifold Approximation and 

Projection (UMAP)25,26, on the scRT profiles of MCF7 S-phase enriched cells, we noticed that cells 

were disposed in an arch arrangement (Supplementary Fig. 2a). After taking into consideration 

percentage of replication of each cell, we realized that the arch was due to the presence of two 

different replication timing groups whose similarity is maximised at the beginning of the S phase 

(most of the genome in both groups is 0) (Supplementary Fig. 2a). We reasoned that the presence 

of two replication timing groups would most probably be associated with two sub-populations of cells 

with distinguish chromosomal rearrangements. We, therefore, repeated the dimensionality reduction 

analysis using the scCNV instead of the scRT from both G1/G2- and S-phase cells (Fig. 4a). This 

analysis showed a clear separation of 4 groups: two G1/G2-phase groups and two S-phase ones 

(Fig. 4a). While the average G1/G2 ploidy of the MCF7 population was about 3.72, the 

sub-population 1 had a ploidy of 3.67 and the sup-population 2 had ploidy 3.83 (Supplementary Fig. 

2b). As expected, differences of CNVs were observed between the two sub-populations, with the 

majority involving chromosomes 3, 7, 8, 11, 18 and 19 (Fig. 4b and Supplementary Fig. 2c). 

Chromosome 3 was of major interest as the copy-number profiles suggested a chromosome-wide 

copy-number gain (Fig. 4b and Supplementary Fig. 2c) in sub-population 2 compared to sub-

population 1. To further confirm this copy-number gain, we performed Fluorescence in situ 

Hybridization (FISH) on metaphase spreads with a probe specific for the entire chromosome 3 and 

one for its centromere (Fig. 4c, d). We found that most cells had 4 or 5 copies of chromosome 3, 

with respectively 162 and 170 out of 344 analyzed spreads (Fig. 4c-e), in agreement with our 

observation on scCNV data (Fig. 4b and Supplementary Fig. 2c). We were, therefore, able to 

associate each G1/G2-phase group to its corresponding S-phase group and pursue our analysis 

using the correct normalization for the data and deduce scRT of each sub-population of MCF7 cells 

individually. Our analysis demonstrated that Kronos scRT can analyze replication timing program 

within heterogeneous cell cultures and identify the underling sub-populations, which cannot be 

achieved with current population-based approaches.
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Figure 4. Identification of two sub-populations in MCF7 cell culture. a UMAP on scCNV of MCF7 cells colored by 

S-phase progression (only autosomal chromosomes).  Both G1/G2 (yellow) and S-phase (gradient colored as indicated) 

cells are separated in 2 major sub-populations. G1/G2 cells and S-phase cells are gated with color coded gates, with 

the sub-population 1 in aqua and the sub-population 2 in blue. b Copy-numbers along autosomes detected in G1/G2 

MCF7 cells, which are separated into 2 sub-populations based on the clustering results shown in (a). The binning for 

the visualization is 1 Mb (median CN profile in Supplementary Fig. 2c). c-d Examples of FISH experiment for cells with 

4 (c) and 5 (d) copies of chromosome 3 that correspond to the sub-population 1 and the sub-population 2, respectively. 

Chromosomes are stained with DAPI (grey), chromosome 3 is labelled in green and its centromere in red. Scale bar: 

10 µm. e Chromosome 3 counts based on FISH images (n=344). The two major groups with 4 (n=162) and 5 (n=170) 

copies of chromosome 3 correspond to the two groups shown in (a), respectively sub-populations 1 and sub-populations 

2. 

 

Determination of scRT spanning thousands of single cells of various human cell types 

In addition to MCF7 cells, we further extended our analysis to other cancer cells, 445 HeLa cells 

(including 222 S-phase cells), and 868 Jeff cells (normal lymphoblastoid, including 744 S-phase 

cells) (Supplementary Table 1). Both MCF7 sub populations were analyzed as an individual sample. 

Although their pseudo-bulk RT were extremely close to each other (R=0.94) (Fig. 5a, b), we were 

still able to distinguish two different sub-populations when preforming dimension reduction (Fig. 5c, 

d). Concerning the two other cell lines, we identified only one population with a median ploidy of 

2.87 for HeLa cells, as well as one population with a median ploidy of 1.94 for the Jeff cells 

(Supplementary Fig. 2b). As for MCF7 cells, we calculated the scRT and pseudo-bulk RT profiles 

for HeLa and Jeff cells (Supplementary Fig. 3a, d). The pseudo-bulk RT highly correlates with the 

bulk RT of the corresponding cell types (Supplementary Fig. 1b and Supplementary Fig. 3b, e). The 

scRT profiles are unique for each cell type as well and can be separated through dimension 

reduction (Fig. 5c-e). Finally, we calculated the Twidth using the same 5 classes of RT categories as 

in Fig. 3d. For all analyzed cell types, the regions replicated at the very beginning or very end of the 

S-phase are better synchronized, i.e. with lower Twidth values ranged between 1.2-1.4 h in early and 

1.05-1.18 h in late replicating regions, compared to regions replicated around mid-S phase, which 

instead have Twidth values around 1.7-1.8 h (Fig. 5e and Supplementary Fig. 3c, f). 
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Figure 5. scRT from S-phase enriched human cells. a Pairwise comparison of the MCF7 pseudo-bulk RTs and bulk 

RT. Same as in Fig. 2b. b The scRT of S-phase enriched MCF7 cells over a representative region. In the upper part of 

the plot pseudo-bulk RT profiles of the two MCF7 sub-populations and bulk RT profile. In the bottom panel, the scRT 

profiles ordered from top to bottom by replication percentage of each cell. c-d Dimensionality reduction analysis of scRT 

data of different human cell types generated in the current study. Cells are color-coded based on cell type in (c) and 

based on replication percentage in (d), respectively. e Barplots reporting the Twidths calculated on 5 RT categories based 

on the pseudo-bulk RT values in the two MCF7 sub-populations. Categories were selected as in Fig. 3d. P-values were 

calculated using the Kronos scRT Compare TW module (see Methods, **** < 10-4). 
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scRT of human cells show a stochastic variation within a cell population. 

One of the main questions in the RT field is to elucidate whether this program is stochastic or 

deterministic. The authors of previous scRT studies commented on the improbability of the system 

to be stochastic since they reported that cell-to-cell variability is low20–22. However, their observations 

were based on limited number of cells and were therefore not able to identify rare events. 

Recently, new evidence based on Optical Replication Mapping (ORM) sheds new light on this 

position23,27. Taking advantage of the high number of scRT obtained in the current study, we aimed 

to tackle this issue. To better visualize stochasticity, based on the percentage of replication of each 

cell, we selected the S-phase cells from 3 representative stages: early-S-phase cells (≤ 30% 

replication), mid-S-phase cells (40-60%) and late-S-phase cells (≥ 70%). We assigned each 200 kb 

genomic bin to an RT category based on its pseudo-bulk RT, and then, for each bin, we calculated 

its probability of being replicated in each representative stage (Fig. 6a, b and Supplementary Fig. 

4a, b). If the RT program was deterministic, we would not expect to see late replicating regions (RT 

< 0.5) being replicated in the early-S-phase cells, and vice versa. As expected, for the mid-S-phase 

cells, the majority of early replicating regions are replicated, while most late replicating regions are 

unreplicated (Fig. 6a, b and Supplementary Fig. 4a, b, middle panel). Strikingly, in all the examined 

cell lines, we can observe 1-5% of cells replicating late genomic domains (pseudo-bulk RT < 0.5) at 

the beginning of the S-phase (cells with less than 30% replication) (Fig. 6a, b and Supplementary 

Fig. 4a, b, left panel). At the same time, if we focus on the late-S-phase cells (cells with more than 

70% replication), in the deterministic model, we would expect all early replicating regions 

(pseudo-bulk RT > 0.5) to be completely replicated. Indeed, this is not the case, as about 95-99% 

of early bins have been replicated at this stage (Fig. 6a, b and Supplementary Fig. 4a, b, right panel).  

Importantly, for a bin, its probability of replication within early-S-phase cells is highly correlated 

with its population RT (Fig. 6a, b and Supplementary Fig. 4a, b, left panel) for all examined cell 

types, suggesting that the RT of a given genomic region depends on its firing probability within 

early-S phase as suggested by the stochastic models. To further test this hypothesis, we selected 

single cells at the beginning of the S-phase (percentage of replication ≤ 30%) and used the obtained 

scRT data to calculate the replication probability along the genome. These were then used as an 

input for Replicon, a stochastic replication simulator28,29, to simulate the RT program along the 

genome (Fig. 6c and Supplementary Fig. 4c). The obtained simulated RT profiles are highly similar 

(Spearman correlation >0.86) to the pseudo-bulk RT of the corresponding cell lines (Fig. 6c and 

Supplementary Fig. 4c, d), demonstrating that the replication signals detected in early-S-phase cells 

for the late replicating regions are real biological signals instead of technical noise. Our results 

strongly support the notion of a stochastic RT program. 
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Figure 6. scRT data support a stochastic model of replication. a-b Boxplots reporting the replication probability 

(x-axis) relative to its pseudo-bulk RT (y-axis, 1 is early and 0 is late) for S-phase-enriched cells of MCF7 sub-population 

1 (a) and Jeff (b) at different S-phase stages calculated in 200 kb bins. The middle panel of each plot shows the whole 

distribution, and the top and bottom panels are zoom in for the extremities of the distributions (indicated with the dashed 

boxes in the middle panel). c Comparison between the pseudo-bulk RT (solid line) and simulated RT (dash line) for the 

MCF7 sub-population 1 and Jeff cells. The simulation is based on Replicon28 and uses the probability of being replicated 

within early-S-phase cells (completed up to 30% of their genome replication) for each 200 kb bin as input. Similar results 

were obtained with scRT data of S-phase-enriched MCF7 sub-population 2 and HeLa cells (Supplementary Fig. 4). 

Spearman correlation in Supplementary Fig. 4d. 

 

Kronos scRT can extract scRT from various single-cell DNA sequencing data. 

Although, we performed experiments of scWGS created ad hoc for the scRT analysis, this is not 

a requirement when using Kronos scRT. As long as the single-cell sequencing data produced 

maintain the copy number information and they are derived from cycling cells, Kronos scRT can 

process them and extract scRT profiles. Amongst the published datasets, scHi-C data generated in 

Nagano et al. 201730 are a perfect example to demonstrate this. The dataset includes cycling mESC 

grown either on a feeder layer in ES-DMEM with fetal bovine serum (mESC Serum) or without 

feeders and adding PD and CHIR inhibitors, two inhibitors that favor the maintenance of a naïve 

ground state for mESC (mESC 2i)30. Although these data are paired-ends, due to their nature, they 

were fed into Kronos scRT as single-end data. Using Kronos scRT, we identified 482 G1/G2-phase 

and 533 S-phase cells for the 2i, and 132 G1/G2-phase and 178 S-phase cells for the serum 

condition. We then calculated the scRT of the S-phase cells and the pseudo-bulk RT profiles (Fig. 

7a). The data obtained from scHi-C correlates well with the bulk RT and the pseudo-bulk RT of the 

mESC analyzed previously from scWGS of sorted mid-S-phase cells (Spearman correlation > 

0.825) (Fig. 7a, b and Supplementary Fig. 1a). Furthermore, having more cells well distributed 

across the S phase allowed us to calculate Twidth values with the same number of replication 

categories used for the human samples (Fig. 7c). Our result confirmed that, like human cells, both 

mESC samples show a tighter replication timing at the beginning and end of the S phase compared 

to mid-S phase, suggesting that this is an important common feature for mammalian cells.  
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Figure 7. Analysis of scRT from scHi-C data with Kronos scRT. a On top: pseudo-bulk RT profile from mESC grown 

in 2i (purple) or in serum (green) compared to bulk RT (yellow). In the bottom panel, the scRT profiles ordered from top 

to bottom by replication percentage of each cell. b Pair wise comparisons of mESC pseudo-bulk RTs and bulk RT. 

Same as in Fig. 2b. c Twidth calculated for 5 RT categories based on the corresponding psudo-bulk RT values as in Fig. 

3b. P-values were calculated with the Compare TW module as before (* < 0.05, ** < 10-2, *** < 10-3, **** < 10-4). 

 

Discussion 

While RT studies have entered the single-cell era, various limitations have confined the 

outcoming conclusions to the volume of cells included. Here, we overcome this obstacle of 

scalability by using a microfluidic-based system to generate new data along with our unified 

computational pipeline.  
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We demonstrated how Kronos scRT allows rapid extraction and analysis of scRT from various 

single-cell DNA sequencing data (such as scWGS, scHi-C) at a 200 kb resolution. Most importantly, 

Kronos scRT can directly extract scRT with data from asynchronous cycling cells, which avoids 

complicated experimental procedures (such as cell sorting, WGA, etc.) as in the current exit 

approach20–22. Our downsampling analysis indicated that, with Kronos scRT, about 1 million reads 

are sufficient to obtain a suitable scRT at a good resolution for a diploid human genome (Table 1). 

With the current sequencing cost (~15 k€ for 10G 100 bp paired-end reads on NovaSeq), we can 

reach close to a price of ~1€ per single cell. We successfully applied Kronos scRT to obtain 

thousands of high-quality scRT profiles from various mouse and human cell types, which allow us 

to study the stochastics replication events at an unprecedented depth. In agreement with recent 

ORM data obtained from synchronized early S-phase cells23, our data obtained directly from 

asynchronized cells also support a stochastic replication model. This indicates that the early 

replication events observed within the late replicating regions detected by ORM are not resulted 

from the activation of dormant origins due to cell synchronization. 

Our analysis demonstrates that we can apply dimensionality reduction to scRT/scCNV profiles in 

order to identify sub-populations inside heterogeneous cultures. By renormalizing the copy-numbers 

of MCF7 replicated S-phase-cell sub-populations with their corresponding G1/G2-phase 

counterparts, we have successfully unveiled two different, although relatively similar, RT programs. 

Moreover, dimensionality reduction analysis on scRT profiles gives a reconstruction of the 

replication timeline spanning from early to late S phase of a given population, therefore forming 

pseudo-trajectories. Deconvoluting cell-to-cell heterogeneity is an important factor to take into 

consideration, especially for the data from cancer specimens, where normal and mutated cells 

coexist and the latter group has gone through multiple rounds of random mutation and clonal 

expansion31,32. Furthermore, the possibility of identifying subpopulations in the context of a tissue 

would prompt the study the RT program of cells that cannot be cultured in vitro and for which specific 

markers for selection are not available.  

Surprisingly, although the two sub-populations of MCF7 cells identified in this study containing 

significant differences of CNVs (Fig. 4 and Supplementary Fig. 2), their RT profiles are highly 

correlated (Fig. 5) (R=0.94), suggesting that the RT program is an extremely robust process and 

different copies of the same chromosome follow similar replication program. This is in agreement 

with previous report showing that the variation of RT between homologs (using hybrid musculus, i.e. 

139 x Castaneus cells) within the same cell is close to the variation of RT between different cells of 

the same cell types20. Due to the low SNP coverage and low sequencing depth per single cell in our 

samples, we are not able to calculate the scRT of different homologue chromosomes. Therefore, at 

the current technical stage, we can only analyze them as a binary system (i.e. replicated and 

unreplicated). New algorithms thus need to be developed to obtain the haplotype-resolved scRT in 
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order to explore the variation of replication program between homologous chromosomes in a more 

general context, such as in normal human diploid cells or cancer cells with complex karyotype. This 

will help to further investigate the link between structure variation and replication timing change, and 

its role in human disease, such as during cancer developments.    

 Additional studies are necessary to reveal the molecular mechanisms contributing the degree 

of RT stochasticity. The combination of other single-cell omics data, along with scRT, will provide 

further insights in DNA replication regulation. It should be noted that, RT has long been correlated 

with chromatin organization. In particular, both RT obtained from population and single cells show 

that early/late replicating domains are associated with the A/B compartment structure20,22,33–36, 

although the direct causal relationship remains unclear. Interestingly, although changes in RT and 

compartments during mESC differentiation are tightly linked, they are separable in certain 

contexts22. Comparison of haplotype-resolved bulk RNA-seq and scRT data from mice has indicated 

that allelic replication asynchrony is frequently but not always associated with allelic expression21. 

Multiple mechanisms might cause extrinsic (cell-to-cell) and intrinsic (homolog-to-homolog) 

replication variability, and whether the observed association between DNA replication and gene 

transcription results from the transcription per se or it is indeed due to the active chromatin state of 

active gene remains an open question9,37. Therefore, it’s important to further perform multi-omic 

studies (simultaneous analysis within the same single-cells) to provide a better understanding of 

replication kinetics. Potentially, the remarkable simplicity of our Kronos_scRT approach, which 

allows an increased number of cells to be integrated, can also be easily combined with the analysis 

of single-cell RNA-seq, scHi-C, CpG methylation and chromatin accessibility38–41, among others, 

offering an opportunity to study RT on both a multi-omic scale and at the single-cell level. 

Furthermore, these single-cell multi-omic data could also be used to extract the RT landscapes while 

simultaneously fulfilling their original purpose (e.g. chromatin accessibility for scHi-C and scATAC, 

transcription for scRNA-seq, etc). We therefore underline the need to increase the number of such 

studies in order to better comprehend DNA replication control and its stochasticity at the single-cell 

level. 

 

Methods 

Cell culture 

ER-positive breast cancer MCF7 cells were cultured and treated as mentioned in42. In brief, cells 

were maintained in complete media (DMEM supplemented with 10 % FBS, 50 U/mL penicillin and 

50 µg/mL streptomycin) in 5% CO2 at 37 °C. Estrogen (E2) treatment was performed after hormone 

starvation. Briefly, cells were plated at ~25% confluent in complete media for at least 16 h, rinsed 

with PBS for 3 times, and then hormone starved for 48 h in hormone-free media (DMEM without 
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phenol red supplemented with 10% charcoal stripped FBS (Dutscher), 50 U/mL penicillin and 50 

µg/mL streptomycin) before treated with 100 nM E2 dissolved in EtOH for 24 h. Cells were harvested 

post E2 treatment (70-80% confluence) via trypsin detachment. 

HeLa S3 cells were culture in DMEM high glucose media with 10% FBS, while JEFF cells were 

grown in RPMI 1640 supplemented with 5% FBS. HeLa S3 cells were harvested via trypsin 

detachment around 70-80% confluent, while JEFF cells were harvested at 0.7-0.8 x 106 cells/mL by 

centrifuge. 

Single-cell copy number variation sample preparation 

For samples preparing for scCNV detection, a first library was constructed with exponentially 

growing MCF7 cells treated with E2 for 24 h according to manufacturer’s instruction of 10x 

Genomics Chromium single-cell CNV solution, aiming to recover ~1000 cells. Due to the low S-

phase cell ratio in the exponentially growing population, we further applied FACS to enrich cells in 

S-phase. For this, exponentially growing MCF7 cells grown in complete media, as well as Jeff cells 

and HeLa S3 cells, were collected and stained with 20 µg/mL Hoechst 33342 in the corresponding 

complete media at 37 °C for 1 h. Stained cells were rinsed twice with PBS, cell clumps were removed 

using a 40 µm filter twice, and the resulting single cell suspension was then stained with 50 µg/mL 

PI before FACS. All PI-negative S-phase cells and partial G1-phase and G2/M-phase cells were 

collected in a 15 mL tube with 1 mL complete culture media. Approximately 2 x 105 cells were 

harvested for each sample and were rinsed once in PBS (Ca2+ free, Mg2+ free)-0.04% BSA. Sorted 

S-phase enriched cells were then run on a 10x Genomics Chromium with single-cell CNV solution 

kit following as previously described. Libraries were sequenced on an Illumina Novaseq 6000 using 

PE100, aiming to obtain 2 million unique reads per single cell. 

Fluorescence in situ Hybridization (FISH) 

For FISH analysis, cells were treated with colcemid (100 ng/ml, Roche) for 3 h and mitotic cells were 

collected by mitotic shake-off after a short trypsin treatment and centrifuged at 1000 rpm for 10 min. 

Cell pellets were resuspended in 75 mM KCl and incubated for 15 min in a 37°C waterbath. Carnoy 

fixative solution (methanol/acetic acid, 3:1) was prepared and 1:10 volume added on the cells, 

before centrifugation at 1000 rpm for 15 min. Cells were then fixed for 30 min at room temperature 

in the carnoy solution, centrifuged and washed once more with fixative. Minimum volume of fixative 

was left to resuspend the pellet and cells were dropped onto clean glass slides. FISH staining was 

performed following manufacturer’s instructions (MetaSystems) using chromosome painting and 

centromere enumeration probes to specifically identify the chromosome 3 (Metasystems probes). 

The Metafer imaging platform (MetaSystems) was used for automated acquisition of the 

chromosome spread. Picture triplets were merged with Fiji (v.2.1.0) and the resulting images were 

manually scrutinized for chromosome 3 enumeration. Representative pictures were acquired using 

a Deltavision Core system (Applied Precision). 
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Trimming and aligning reads 

The fastqtoBAM module of Kronos scRT uses demultiplexed fastq files and removes standard 

adaptors from reads before attempting to map them on the reference genome. Trimming is 

performed using the Trim Galore (version 0.4.4, 

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), a modified version of cutadapt 

and FastQC. After trimming, reads are aligned to the reference genome (in our study, human 

genome version hg38 and mouse genome version mm10 were used) using RBowtie2 package 

(version 1.4.0) reporting only the best mapping for each read. SAM files are then sorted and 

converted into BAM files using Rsamtools (version 1.34.1) in order to be deduplicated using Picard 

MarkDuplicates (version 2.6.0, http://broadinstitute.github.io/picard). 

Calculate bins mappability and GC content for copy-number estimation 

The binning module of Kronos scRT is used to calculate mappability and GC content in each 

genomic bin. This information is later used by the CNV module to normalize read counts and select 

which bins will be considered for further analysis. By default, bin size is 20 kb, but, depending on 

the sample average sequencing dept, it can be adjusted by the user. Moreover, only autosomal 

chromosomes are used by default, but the user can decide to keep sex chromosomes as well.  GC 

content is simply calculated as the frequency of C and G in the reference sequence belonging to a 

bin. 

To calculate mappability, this module simulates 1X coverage reads from a reference genome, adds 

mutation with a frequency equal to the error rate of a sequencer (0.1%) and re-maps the reads on 

the reference genome using Rbowtie2 with the same settings used in the fastqtoBAM module.  Read 

parameters such as length of the reads, single-end or paired-end reads and insert size are estimated 

from the BAM files of the single cell experiment or they can be manually set by the user. The 

mappability of the n bin (Mn) is therefore calculated as the number of remapped reads of this bin 

(Rrn), divided the number of reads that were originally generated from the same location (Rsn) (i). 

 

             (i) 

 

CNV calling and intracellular bin-to-bin variability 

 

The CNV module of Kronos scRT counts the number of high-quality reads, mapping quality score ≥ 

30, over the bins generated by the binning module. Cells with less than 2*105 reads are discarded 

(the user can manually adjust this threshold). Regions with a mappability lower than 0.8 or higher 

than 1.5 are excluded from the rest of the analysis (the user can as well provide a list of blacklisted 

genomic regions). Read counts are then adjusted based on mappability as in formula (ii). 

Mn = Rrn

Rsn
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              (ii) 

Where rn is the read count on the bin n, Mn is the mappability of the bin n obtained from (i) and rmn 

is the adjusted read count based on its mappability. 

Read counts is then corrected for the GC content of each bin (iii). 

             (iii) 

 

Where Rn is the normalized read count of the bin n, rmn is the adjusted read counts (ii), GC|n 

represents all the bins with the same GC content of the bin n and the tilde represent the median17. 

The CNV module will first calculate the bin-to-bin variability. To do so, it will re-bin the genome into 

500 kb bins and calculated the total read count for each bin. Then it will proceed calculating the 

Depth Independent Median Absolute deviation of Pairwise Differences (DIMAPD) as defined in 10x 

Genomics CNV solution. Assuming that the majority of analyzed cells is in G1/G2 phase, in which 

the bin-to-bin variation is minimal, DIMAPD is fit to a gaussian distribution and cells that are 

statistically different with high DIMAPD (formula Error! Reference source not found. and Error! 
Reference source not found.) are, therefore, considered belonging to S-phase. 

               iv 

Where D is a vector conting differences between neighburing 500 kb bins, R is a vector containing 

the number of reads in 500 kb bins, and the index i identifies a bin (ranges betwen 1 to the total 

number of bins -1). 

            v 

Where D comes from (iv), N is the number of 500 kb bins, Ri is the number of reads in the bin i and 

Gs is the genome size in Mb. 

 

CN are called starting from 20 kb bin tracks that are smoothed and segmented using circular binary 

segmentation (CBS) algorithm from the R package DNAcopy (version 1.56.0). CN is then estimated 

through the minimization of the following target function as suggested by 10x Genomics (formula 

vi). 

 

           vi 

Where Sn represents the size of the segment n, Rn represents the read count of segment n, and X 

is a number between the 5th and the 95th percentile of the read counts of all the segments in a cell. 

r mn = rn

Mn

Rn =
r mn ⋅ r̃ mGC|n

r̃ m

D = Ri − Ri+1
R i ∈ [1,N )

DIMAPD = ˜
D − D̃ ⋅

N

∑
i=1

Ri

Gs

χ =
N

∑
n=1

Sn ⋅ sin2 π ⋅ Rn

X
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Each local minimum of this equation is a possible solution to calculate CN. A filter on local minima 

that lead to unreasonable mean ploidy (formula viiiError! Reference source not found.) is 

therefore applied and CN is calculated (formula vii). The filters used in this study can be found in 

Supplementary Table 2 (Ploidy limits). For the G1 and Mid-S cells the closest ploidy to 2 was 

selected. 

             vii 

Where  is the value of  for which  is minimized (formula vi), Rn is the read count in the 

segment n, and CNn is an integer that represent the copy number of the segment n. The mean ploidy 

of a cell can then be calculated as follow: 

            viii 

Where P is the mean ploidy, Sn is the size of the segment n, and CNn is the copy number of the 

segment n. The difference between the absolute minima and its closest relative minimum is used to 

evaluate how good is the CN calling, for values below 2 the CN is not considered reliable (ploidy 

confidence). Negative values of ploidy confidence are imposed as suggested by 10X Genomics. 

Bins included in the provided blacklist are removed, as done here with the binning for the mESC 

and mNE-7d cells.  

Single-cell replication profiling and scRT calculation 

As already mentioned, the DIMAPD parameter can be used to distinguish the replicating cells (i.e. 

S phase) from those which are not (i.e. G1/G2 cells). The automatic threshold is a reasonable choice 

if the cell population has not been sorted to enrich for the S phase. For the S-phase enriched cells, 

the diagnostic module can be used to select more adequate thresholds manually. The thresholds 

used in this study are reported in Supplementary Table 2. If available, FACS metadata can be 

integrated through the WhoIsWho module of Kronos scRT . 

As shown in Error! Reference source not found.b, the function that we use to identify CN (formula 

vi) introduces some constraints in the calculation of mean ploidy. Firstly, it is not possible to 

distinguish between G1 and G2 cells that co-occupy the same area (Error! Reference source not 
found.1b, blue population). Secondly, the S phase is split into two (Error! Reference source not 
found.1b, green population): with the first part that progresses normally, while the second part is 

approaching the G1/G2 population from the left side of the plot as indicated by the two arrows. 

Therefore, Kronos scRT diagnostic module calculates two parameters to correct S-phase 

populations. Preferentially, the program tries to reunite the S phase in a monomodal distribution in 

which the ploidy variability is maximized. When this is not possible, parameters are chosen in order 

CNn = [ Rn

Xmin ]
Xmin X ⃗χ

P =
∑N

n=1 Sn ⋅ CNn

∑N
n=1 Sn
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to create a bimodal distribution with a minimized ploidy variability. The user can manually set these 

parameters. 

  

 

The CN of each segment is as well corrected based on these values. Based on our downsampling 

(Table 1), only cells with more than 160 reads per Mb per haploid genome were kept for the 

downstream analyses. 

The genome is then binned again, in this case, in bins of 200 kb to calculate scRT, but the size 

should be adjusted based on sequencing depth. A weighted median CN is then calculated, where 

the weights are the sizes of overlap between each 200 kb bin and the previously calculated 

segments. 

The G1/G2-phase population is used to calculate a median pseudo-bulk CN profile and it is used to 

normalize each cell in S phase as follow (formula ix): 

 

           ix 

 

Where nCNn,x is the normalized copy number of the bin n in the S-phase cell x. CN200n,x is the copy 

number of  the bin n in the S-phase cell x before normalization, and CNGn is the CN of the bin n in 

all the G1/G2-phase cells. 

Each S-phase cell profile is then binarized. To do so, Kronos scRT identifies a nCN value for which 

the following target function is minimized (x) (Fig. 1d). 

          x 

Where εth,x is the Euclidian distance using the threshold th for the cell x and nCNn,x is obtained from 

(ix). Once the threshold that minimizes εx is identify, we can calculate scRT profiles as follow (xi). 

          xi 

Where scRTn,x is a binary value representing whether the bin n in the cell x has been replicated (1) 

or not (0),  nCNn,x comes from (ix) and thmx is the th for each εx is minimized in the cell x. 

Simple matching coefficient distances are then calculated for each pair of cells. The population is 

filtered to remove cells that diverge by at least 25% from 60% of the single-cell population (Fig. 1e). 

Cells are then sorted by percentage of replication and tracks are averaged within each bin of 

replication percentage. In order to ensure a symmetrical distribution, excess cells (i.e. very early 

and/or very late) are filtered out. Replication tracks per percentage interval are then averaged 

together to create pseudo-bulk RT and compared with bulk RT. In this study, bulk RT of mESCs and 

nCNn,x = log2 (
CN 200n,x

C̃NGn )

εth,x = nCNn,x − {
1 i f nCNx,n ≥ th
0 i f nCNx,n < th

2

th ∈ [0,1]

scRTn,x = {
1 i f nCNx,n ≥ thmx

0 i f nCNx,n < thmx
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NE-7d issued from BrdU-IP samples had coordinates converted to mm10 with R package liftOver 

(v1.10). Human bulk RT were converted from hg19 to hg38 using ucsc-liftOver tool (v 366). 

 

Studying variability and sample differences 

To study cell-to-cell variability, Kronos RT calculates Twidth: the time needed for genomic regions to 

be replicated from 25% to 75% of cells in a S-phase lasting 10 h. The module Compare TW of 

Kronos RT allows user to apply a null hypothesis test though bootstrapping with H0: Twidth_group1 = 

Twidth_ group2 and with H1: Twidth_ group1 ≠ Twidth_group2. To do so, it randomly assigns the bins belonging 

to two groups to either of them, keeping the total original number of bins in each group constant.  

Newly assigned bins are then used to calculate the absolute difference between Twidth_ group1 and 

Twidth_group2 and then compare it with the real difference (xii). 

        xii 

Where p is the p value, N is the number of iterations, by default 104, Tw1i and Tw2i are the Twidth 

calculated for the two groups in the iteration i, while Twidth1 and Twidth2 are the values of the real groups. 

Downsampling 

To test the CN calling stability in function of the dept of sequencing, we randomly selected one 

G1/G2- and one S-phase cell from the S-phase enriched MCF7 data (barcodes: 

CAGCCGACAGAGGCAT and TGGACGCTCTGCTACC, respectively). Down-sampling was 

performed using Picard DownsampleSam (version 2.6.0, http://broadinstitute.github.io/picard). For 

each percentage of reads, 100 simulated cells were created. Cells were then analyzed with Kronos 

scRT CNV module to calculate the mean ploidy of each simulated cell. 
 
Dimension Reduction 

Kronos DRed is the dimension reduction module, which uses genome-wide scCNV or scRT data to 

transform the data and provide a low-dimensional representation reflecting the important features 

(e.g. cell type, cell population, etc.). For CNV data, original values are used, while for RT data, 

simple matching coefficient distances are used, as calculated from R package ade4 (v1.7) and the 

input parameters were set to distance matrices. t-SNE43 and UMAP25,26 were performed with R 

packages Rtsne (v0.15) and umap (v0.2.7), respectively. For t-SNE, perplexity was set to a fiftieth 

of the number of cells or a minimum value of 10 accordingly, theta was 0.25, and partial PCA was 

performed allowing t-SNE coordinates to be calculated under 5,000 iterations.  

MCF7 sub-population separation 

Kronos RT (option --extract_G1_G2_cells) was used to generate complete S and G1/G2 phase CNV 

in 200 kb bins. Bins containing missing values or those belonging to sex chromosomes were 

p = 1
N

⋅
N

∑
i=1

{1 i f |T w1i − T w2i | ≥ |Twidth1 − Twidth2 |
0 i f |T w1i − T w2i | < |Twidth1 − Twidth2 |
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removed. Dimension reduction of the resulting data was performed under UMAP using R package 

umap (v0.2.7, option random state=20210828). 2D UMAP coordinates were projected along with 

the percentage of replication of the cells for G1/G2 and S-phase distinction. Cells were labelled 

based on manually attributed cut-off coordinates from the UMAP projection. For each resulting group, 

genome-wide scCNV data was visualized (Fig. 4b and Supplementary Fig. 2d), which allowed 

manual attribution of S-phase groups to their corresponding G1/G2 groups and thus, correct 

normalization of these groups in the downstream scRT analysis. 

Replication Timing Simulation 

We used the Replicon simulation code28 to simulate the replication timing profiles. The Replicon 

simulator uses the initiation probability landscape (IPLS), i.e. the relative probability of initiating at 

any point in the genome, as input. In our simulations, we used the probability of being replicated 

within early-S-phase cells (completed up to 30% of their genome replication) for each 200 kb based 

on the scRT data of the corresponding cell types. We used the same setting for other parameters 

as in our previous publication23 followed the suggestion of the original paper29. 

Data availability 

The scWGS data of mouse were obtained from GSE108556. The scHi-C data of mouse were 

obtained from GSE94489. The bulk RT data were obtained from GSM923442 for MCF7, 

GSM923449 for HeLa, GSM923451 for GM12878 and GSE108556 for mESC and NE-7d cells. The 

mm10 blacklist can be located at https://github.com/Boyle-Lab/Blacklist. The raw and processing 

generated in the current study will be submitted to SRA and GEO, respectively.  

Code availability 

Kronos scRT is available on github (https://github.com/CL-CHEN-Lab/Kronos scRT). 
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