1 Genomically hardwired regulation of gene activity orchestrates cellular

2 iron homeostasis in Arabidopsis

3

4	En-Jung Hsieh ¹ ,	Wen-Dar Lin ¹ , and	Wolfgang Schmidt ^{1,2,3,*}
---	------------------------------	--------------------------------	-------------------------------------

5

⁶ ¹Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan

⁷²Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan

³Genome and Systems Biology Degree Program, College of Life Science, National Taiwan

9 University, Taipei 10617, Taiwan

10 *corresponding author. E-mail: wosh@gate.sinica.edu.tw

11

12 Abstract

13 Iron (Fe) is an essential micronutrient that plays pivotal roles as electron donor and catalyst 14 across organisms. In plants, variable, often insufficient Fe supply necessitates mechanisms 15 that constantly attune Fe uptake rates and recalibrate cellular Fe homeostasis. Here, we show 16 that short-term (0.5, 6, and 12 h) exposure of Arabidopsis thaliana plants to Fe deficiency 17 triggered massive changes in gene activity governed by transcription and alternative splicing 18 (AS), regulatory layers that were to a large extent mutually exclusive. Such preclusion was 19 not observed for genes that are directly involved in the acquisition of Fe, which appears to be 20 concordantly regulated by both expression and AS. Generally, genes with lower splice site 21 strengths and higher intron numbers were more likely to be regulated by AS, no dependence 22 was on gene architecture was observed for transcriptionally controlled genes. Conspicuously, 23 specific processes were associated with particular genomic features and biased towards either 24 regulatory mode, suggesting that genomic hardwiring is functionally biased. Early changes in 25 splicing patterns were, in many cases, congruent with later changes in transcript or protein

abundance, thus contributing to the pronounced transcriptome-proteome discordance

27 observed in plants.

28

29 Introduction

30 Iron (Fe) is mineral nutrient with a plethora of vital functions across all kingdoms of life. In 31 plants, Fe is a critical component of electron chains in photosynthesis and required for the 32 biosynthesis of chlorophyll. Iron is abundant in the Earth's crust, but its availability is often 33 limited by interaction with other soil constituents, in particular at high redox and pH values. 34 In most aerated soils, Fe is present in the form of sparingly soluble Fe(III) oxides which 35 cannot readily be taken up by plants, causing leaf chlorosis, reduced yield, and decreased 36 quality of edible plant parts. Low plant Fe content can jeopardise human health by causing 37 Fe-deficiency anaemia, in particular in populations with a predominantly plant-based diet. To 38 counteract limited Fe availability, plants have evolved a suite of mostly transcriptionally regulated responses that mediate the acquisition of Fe from recalcitrant pools in soils^{1,2}. In 39 contrast to graminaceous species, which take up Fe³⁺ after secretion of Fe-avid 40 phytosiderophores (strategy II)³, dicotyledonous plants acquire Fe^{2+} by the concerted action 41 of processes that mobilize sparingly soluble Fe³⁺ by protonation, chelation, and reduction in 42 response to imbalances caused by inadequate Fe supply (strategy I)⁴⁻⁸. The responses to Fe 43 44 starvation are controlled by a complex network of homeostatic mechanisms that orchestrate the acquisition, transport, and cellular homeostasis of Fe⁹⁻¹². 45

Due to the central role of ferrous Fe as an electron donor and catalyst, its absence or
insufficiency compromises energy production and causes severe metabolic perturbations.
Reduced respiration efficiency and impaired activity of Fe-containing key enzymes of the
tricarboxylic acid (TCA) cycle such as aconitase or succinate dehydrogenase constitute major
constraints in Fe-undernourished cells, necessitating extensive rerouting of carbon flow

during periods of low Fe availability. Increased glycolysis rates upon Fe starvation, for instance, have been described for diverse eukaryote systems such as human cell lines¹³, macrophages¹⁴, and yeast¹⁵, suggesting that enhanced glycolytic flux is a conserved mechanism to compensate for decreased respiration. In Fe-deficient plants, pronounced metabolic changes have been observed across species¹⁶⁻²³, which, with some notable exceptions, are not mirrored in transcriptomic profiles. The mechanisms that govern such metabolic rerouting have remained largely elusive.

58 Alternative splicing (AS) of pre-mRNAs, i.e., the process of selecting different 59 combinations of splice sites for intron removal and exon ligation, contributes to the diversity 60 of transcripts and proteins by producing multiple mRNA and protein isoforms, and may, at 61 least partly, be causative for the lack of transcriptional footprints of Fe deficiency-induced 62 alterations in central carbon metabolism. In contrast to animals, where exon skipping (ES) is 63 dominating over other forms of AS, in plants, intron retention (IR) and alternative donor or acceptor splice sites (DA) are the prevalent forms of AS²⁴⁻²⁶. While ES is likely to produce 64 65 functional proteins, the latter forms of AS often interrupt the open reading frame and lead to 66 the introduction of premature stop codons, causing the formation of aberrant proteins or 67 mRNA that is targeted to the nonsense-mediated decay pathway²⁷. Between 60-80% of the 68 multi-exonic plant genes are alternatively spliced, a percentage that can vary in response to environmental stimuli or stress²⁸⁻³⁰. Thus, in plants, AS constitutes a huge and mostly 69 70 unexplored source of gene regulation of undisclosed significance, possibly fine-tuning the 71 transcriptome to the prevailing environmental conditions.

How environmental information is communicated into the nucleus to alter pre-mRNA splicing patterns remains largely enigmatic. AS is driven by a large suite of mRNA-binding, spliceosome-associated proteins such as serine/arginine-rich (SR) proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs) that binds to *cis*-regulatory sequences on the pre-

mRNA. Splicing factors are altered in abundance, localization, and activity upon stress,
conferring plasticity to the patterns of alternative splicing in response to internal or external
stimuli³¹⁻³⁵. Moreover, chromatin-related factors such as histone modifications and
nucleosome positioning, and genomic traits such as gene body length and splice site strength
were shown to affect AS30^{30,36-38}.

81 By employing short-term exposure of Arabidopsis plants to Fe deficiency as a well-82 explored environmental cue, we report here that the type of gene regulation (i.e., AS or 83 differential expression) is determined by the architecture of the gene, the amplitude of the 84 response, and the temporal pattern of the changes in gene activity. Genomic features are 85 biased towards and typical of specific Fe-responsive processes and seem to govern AS but 86 not transcriptional regulation, which appears to be chiefly driven by physiological 87 requirements. While differential AS (DAS) and differential gene expression (DE) are 88 generally complementary forms of gene regulation, we found this rule suspended when core 89 genes of the Fe deficiency response are considered, suggesting that the two regulatory modes 90 can operate synergistically to allow for an optimally tuned response. We further found that, in 91 many but not all cases, DAS features observed early after the onset of Fe-deficient conditions 92 represent a blueprint of what becomes evident at the activity, transcript, or protein level at 93 later stages of Fe deficiency.

94

95 **Results**

96 Iron deficiency triggers rapid changes in transcription and splicing patterns

97 To gain insights into transcriptional and post-transcriptional alterations in response to Fe 98 deficiency, Arabidopsis plants were subjected to 0.5, 6, and 12 hours of growth in Fe-free 99 media and subsequent transcriptomic profiling against plants that were transferred to fresh 100 Fe-replete nutrient solution using the RNA-seq methodology. The Illumina HiSeq 4000

101	sequencing system was adopted to acquire approximately 70-80 million reads for each library
102	with a read length of 100 base pairs (Supplementary Table S1). On average, a total of circa
103	27,000 genes was expressed in both roots and shoots, of which subsets of 1,161 (roots) and
104	1,027 (shoots) were defined as differentially expressed between Fe-deficient and Fe-
105	sufficient control plants at one or more of the three sampling time points with relevant
106	expression levels (RPKM > the square root of the mean expression value of the whole
107	dataset), $P < 0.05$, and a fold-change > 2 after normalization using the TMM (Trimmed Mean
108	of M-values) method (Fig. 1a). In both roots and shoots, differentially expressed genes
109	(DEGs) showed a relatively small overlap among the experimental time points, indicative of
110	a highly dynamic and temporally distinctive response to Fe deficiency (Fig. 1c).
111	Changes in the pattern of alternative splicing (AS) upon Fe deficiency were analysed
112	with the aid of the Read Analysis and Comparison Kit in Java (RACK J) software toolbox ³⁹ .
113	Applying the same thresholds used for the classification of DE genes and considering only
114	genes in which the AS feature was observed in all three replicates, a subset of 7,517 genes
115	was classified as differentially alternatively spliced (DAS), exceeding the number of
116	differentially expressed genes (DEGs) by more than fourfold (Fig. 1f). The largest fraction of
117	DAS genes (82%) produced transcripts that harboured differential intron retention (DIR)
118	features, a smaller subset (15%) carried differential donor/acceptor (DDA) sites, and 2.8% of
119	the DAS transcripts exhibited differential exon skipping (DES) after exposure to Fe
120	deficiency (Fig. 1e). A considerable subset of DAS genes carried two or more different AS
121	features. Genes with DAS features showed distinct overlaps among the different
122	experimental timepoints which depended on the type of AS with DIR being more conserved
123	than DEG and the overlap of DDA genes comparable to that observed for DEGs (Fig. 1c, d).
124	With the exception of DES, in which enhanced and repressed features varied over time, DAS
125	showed a neutral outcome of splicing efficiency upon exposure to Fe deficiency, with about

126 similar proportions of genes carrying enhanced or reduced splicing features (Supplementary

127 Fig. S1).

128

129 Fe deficiency induces a series of concatenated responses in roots and shoots

130 Transfer of plants to Fe-deplete media triggered the consecutive induction of a suite of 131 distinctly timed responses (Fig. 2). Induction of these processes was almost simultaneously 132 observed in roots and shoots, suggesting that minor changes in Fe supply suffice to sense Fe 133 deficiency in all plant parts. After six hours of exposure to Fe-deficient conditions, induction 134 of the basic Fe uptake machinery comprising the Fe chelate reductase FRO2 and the Fe^{2+} 135 transporter IRT1, vacuolar sequestration of excessive cytosolic levels of secondary-substrate metal cations such as Mn^{2+} and Zn^{2+} , and downregulation of Fe import into the vacuole were 136 137 the most prominent transcriptionally regulated responses in roots (Fig. 2a). Induction of these 138 processes was accompanied by increased expression of a suite of genes encoding regulators 139 such as the IRONMAN peptides IMA1 and IMA2 and the transcription factor POPEYE (PYE) 140 (Fig. 2a). A module that was induced slightly later comprised genes mediating the 141 mobilization of Fe in the rhizosphere via secretion of protons and Fe-mobilizing coumarins 142 (Fig. 2b). Induction of Fe mobilisation was accompanied by increased expression of the 143 transcription factors MYB72 and MYB10, which were shown to be crucial for plant survival in 144 soils with severely restricted Fe availability (Fig. 2 b)⁴⁰. Notably, sampling at very early 145 stages of Fe deficiency (0.5 h) revealed expression changes in a direction which was 146 antagonistic to that observed at later stages, suggesting that rearrangements of the 147 transcriptional machinery cause transient perturbations in gene expression that later result in 148 robust transcriptional regulation of these genes (Supplementary Tables S2-5). 149 In shoots, exposure to Fe-deplete media for 6 hours induced Fe transport across the 150 plasma membrane via OPT3 and IRT3 and expression of a variety of regulators such as PYE,

151	the E3 ligase BRUTUS (BTS), subgroup Ib bHLH proteins, and IMA1-IMA3 (Fig. 2c). Similar
152	to root cells, sequestration of transition metals into the vacuole was induced at this time point.
153	In addition, altered transcription of genes involved in ROS homeostasis (CGLD27, ENH1)
154	was observed in shoots (Supplementary Table S2). After 12 hours, increased trans-plasma
155	membrane transport of Fe-nicotianamine (NA) by YSL1 and Cu^{2+} via COPT2 can be inferred
156	from the induction of the cognate genes at this time-point. Also, chlorophyll metabolism
157	(HEMA1, NYC1) and ROS homeostasis (NEET) were affected by growth on Fe-deplete
158	media (Fig. 2d; Supplementary Table S2).
159	
160	In addition to genes directly involved in Fe homeostasis, in roots, and to a lesser extent in
161	shoots, short-term exposure to Fe deficiency caused a dramatic increase in the transcription
162	of genes associated with jasmonic acid (JA) biosynthesis and signalling (Fig. 3;
163	Supplementary Table S2 and S3), a response which was strictly restricted to the 6-hour time
164	point. In particular, the first steps of JA biosynthesis and the expression of a suite of
165	transcriptional regulators, referred to as jasmonate ZIM-domain (JAZ) proteins, were
166	strongly induced in response to Fe deficiency (Fig. 3).
167	
168	DAS orchestrates rerouting of the central carbon metabolism
169	Glycolysis is a key process in energy production and provides metabolic intermediates for
170	biosynthetic processes, storage, and anaplerotic processes. A subset of 75 genes associated
171	with glycolysis was regulated by the Fe regime, almost exclusively by DAS (Supplementary
172	Table S4). Notable exceptions from this pattern were the first and the last step in glycolysis,

- 173 catalysed by phosphofructokinase (PFK) and pyruvate kinase (PK), which are robustly
- 174 upregulated at later stages of iron deficiency in transcriptional surveys^{9,11}. Analysis of *PFK1*
- 175 expression by RT-qPCR showed increasing induction over the first three days of Fe

176	deficiency in roots and, to a much lesser extent, in shoots (Fig. 4a, c). Expression of the Fe
177	status marker bHLH38 was increased over the first three days of Fe deficiency with a higher
178	transcript level in shoots, indicating that the lower induction of <i>PFK1</i> in shoots was not
179	associated with a healthier Fe status of leaf cells (Fig. 4c). Since PFK is catalysing the rate-
180	limiting step in glycolysis, it can be assumed that glycolytic flux is particularly increased in
181	root cells. The final step in glycolysis, the PK-mediated conversion of phosphoenolpyruvate
182	(PEP) to pyruvate, was repressed in roots via enhanced IR of the cytosolic PK isoform
183	At5g08570. In shoots, transcripts of this isoform carried reduced IR upon exposure to Fe
184	deficiency. RT-qPCR analysis revealed decreased transcript abundance of this isoform in
185	both roots and shoots one day after exposure to Fe-deplete media (Fig. 4d). Downregulation
186	of another PK-encoding gene in roots (At3g49160) was reported in several transcriptomic
187	studies ^{7,11} , further supporting the supposition that PK activity is decreased upon Fe deficiency.
188	For several steps of root glycolysis, DAS appear to precede changes in enzyme
189	activity or abundance. Fructose-bisphosphate aldolase (FBA) catalyses the reversible aldol
190	cleavage of fructose-1,6-bisphosphate, yielding dihydroxyacetone phosphate. In roots, the
191	cytosolic isoform FBA8 exhibited both repressed IR and DA features (Fig. 4a). Also, the
192	cytosolic phosphoglycerate mutase (PGM) isoforms <i>iPGAM1</i> and <i>iPGAM2</i> showed reduced
193	IR upon Fe deficiency (Fig. 4a). In a previous study, we observed increased phosphorylation
194	of FBA8 and iPGAM1 protein and accumulation of the (cytosolic) FBA4 protein in roots
195	upon prolonged Fe deficiency ^{23,41} , indicating Fe deficiency-induced increase in enzyme
196	activity at later stages of Fe deficiency. Moreover, FBA and PGM accumulated in Fe-
197	deficient roots of Beta vulgaris and Cucumis sativa ^{19,42} , suggesting that increased abundance
198	of these enzymes in response to Fe deficiency is conserved across strategy-I species.
199	The anti-directional regulation of PFK and PK in roots of Fe-deficient plants implies
200	imbalances of glycolysis intermediates under conditions of Fe starvation. To further

201	investigate this matter, we determined the concentrations of glucose-6-phosphate (G6P),
202	phosphoenolpyruvate (PEP), and pyruvate over the first three days of Fe deficiency via
203	UHPLC-MS analysis. In roots, but not in shoots, the level of both PEP and pyruvate was
204	increased three days after the onset of Fe deficiency, indicating severe perturbances of
205	pyruvate metabolism at later stages of Fe deficiency (Fig. 4b). Other glycolysis intermediates
206	such as G6P or fructose-6-phosphate (F6P) did neither show pronounced changes in roots nor
207	in shoots upon short-term or extended exposure to Fe deficiency (Fig. 4b), suggesting that the
208	concentrations of theses intermediates are in steady-state during Fe deficiency.
209	
210	The TCA cycle malfunctions in roots of Fe-deficient plants
211	A subset of 34 of TCA-related genes was responsive to the Fe regime (Supplementary Table
212	S5). Similar to what has been observed for glycolysis, genes encoding enzymes of the TCA
213	cycle showed limited transcriptional control and were predominantly regulated by DAS
214	(Supplementary Table S5). In roots, all TCA cycle metabolites under study accumulated
215	three days after the onset of Fe deficiency, with citrate, malate, and succinate being most
216	abundant (Supplementary Fig. S3). In particular, citrate levels were strongly increased; no
217	such accumulation was observed in shoots. Citrate is synthesized in the first committed and
218	pace-making step of the cycle by condensation of oxaloacetate and acetyl CoA, catalysed by
219	citrate synthase (CSY). However, the mitochondrial isoforms CSY4 and CSY5 were neither
220	regulated by DAS nor by DE, suggesting other causes for the increased citrate levels.
221	Aconitase (ACO), catalysing the subsequent conversion of citrate to isocitrate, harbours an
222	active $[Fe_4S_4]^{2+}$ cluster, which may compromise ACO activity in Fe-deficient plants and
223	contribute to the accumulation of citrate. In line with this assumption, ACO2 and ACO3 were
224	transcriptionally downregulated in roots three days after transfer to Fe-deficient media ^{7,9,43} ,
225	indicating restricted conversion of citrate into isocitrate. Also other enzymes of the TCA

226 cycle such as citrate synthase and isocitric dehydrogenase were shown to affect by the iron 227 regime¹³, further supporting the notion that the TCA cycle is compromised or truncated under 228 conditions of Fe deficiency. This scenario is supported by a lack of consistent and mostly 229 repressive DAS-regulation of all steps of the TCA cycle (Supplementary Fig. S3). 230 231 The routes of pyruvate metabolization differ between roots and shoots 232 Pyruvate derived from glycolysis can be either converted to acetyl-CoA by pyruvate 233 dehydrogenase (PDH) in the mitochondrial matrix, or decarboxylated to acetaldehyde 234 through pyruvate decarboxylase (PDC) in the cytosol. PDH is a multienzyme complex 235 composed of three enzymes, pyruvate dehydrogenase (E1), dihydrolipoyl transacetylase (E2), 236 and dihydrolipoyl dehydrogenase (E3). In roots, isoforms of all three enzymes showed 237 generally reduced IR upon Fe deficiency (Fig. 5a). In shoots, a more complex, mostly 238 repressive regulation was observed (Fig. 5b). Alcohol dehydrogenase (ADH) reduces 239 pyruvate-derived acetaldehyde to ethanol and NAD⁺. In roots, short-term exposure to Fe 240 deficiency resulted in repressed IR of both PDC1 and ADH1 transcripts, indicative of 241 increased ethanolic fermentation (Fig. 5a). Also, the class III type alcohol dehydrogenase 242 ADH2 (HOT5) and the putative ADH At4g22110 showed DAS features that were mostly 243 repressed upon Fe starvation. By contrast, in shoots ADH1 carried chiefly enhanced DIR 244 features (Fig. 5b). Determination of ADH1 transcript levels in roots by RT-qPCR revealed a 245 steep increase after two days of Fe deficiency (Supplementary Fig. S4), matching transcriptomic studies carried out at later stages on roots of Fe-deficient plants^{7,44}. These data 246 247 suggest that the ADH-mediated fermentation route is supported in roots, but not in shoots of 248 Fe-deficient plants. 249 An alternative fate of acetealdehyde is the conversion to acetic acid, catalysed by a

250 group of aldehydedehydrogenases (ALDHs) in a reaction yielding NADH. In shoots, three

NAD-dependent ALDHs (the mitochondrial family 2 proteins ALDH2B7 and ALDH2B4,
and the cytoplasmatic family 3 protein ALDH3H1) showed reduced IR upon Fe starvation
(Fig. 5b). In roots, *ALDH2B7* transcripts carried enhanced IR at two time points after the
onset of Fe-deficient conditions (Fig. 5a), indicating repressed acetic acid formation. It thus
appears that different fermentation routes are engaged in roots and shoots, possibly driven by
differences in redox regulation and energy status of leaf and root cells.

257 Besides reduced PK activity, the build-up of toxic pyruvate concentrations in roots of

258 Fe-deficient plants is circumvented by rapid metabolization of its precursor, PEP. PEP is a

259 potent inhibitor of PFK activity and, if present at high levels, decreases glycolysis rates⁴⁵⁻⁴⁷.

260 Increased β-carboxylation of PEP via PEP carboxylase (PPC) in roots is a hallmark of Fe-

261 deficient roots of strategy I plants¹⁷. In roots, *PPC1* transcripts carried reduced IR features

262 (Fig. 5a), transcription of the gene was induced at later stages of Fe deficiency⁷. The reverse

263 reaction, the conversion of oxaloacetate to PEP by PEP carboxykinase (PCK), showed

264 enhanced IR (Fig. 5a,b). In concert with these results, *PCK1* was found to be downregulated

in roots (but not in shoots) of plants subjected to Fe deficiency for three days^{7,48}.

266

267 **DE and DAS concertedly regulate the ferrome**

268 Strikingly, the vast majority of DAS-regulated genes did not change significantly in

expression over the experimental period. In total, less than 1% of the DAS genes were also

270 differentially expressed (Fig. S1e). Plotting fold-changes of the different DAS types versus

271 DE revealed a moderate correlation between DIR and DE (Fig. 6a). By contrast, regulation of

272 gene activity by DDA and DE was almost mutually exclusive (Fig. 6b).

273 The principle of mutual exclusivity does not seem to apply when only genes that were

shown to robustly respond to Fe deficiency at the transcriptional level in previous studies are

considered, a subset that has been referred to as the 'ferrome'⁴⁹. To revise and update this

276	definition, we surveyed recent public transcriptomic datasets of Fe-deficient plants derived
277	from RNA-seq profiling studies. For roots, seven datasets were analysed, and genes that were
278	found to be differentially expressed in at least four of these studies (three out of five in shoots)
279	were included in the Arabidopsis ferrome. This procedure yielded subsets of 108 and 100
280	genes in roots and shoots, respectively; a suite of 39 genes was robustly differentially
281	expressed in both roots and shoots (Supplementary Table S6). From 114 DE-regulated
282	ferrome genes, a subsection of 42 (37%) was additionally regulated by DAS (Supplementary
283	Table S2), a percentage that is substantially higher than the average of 3-5% observed in
284	roots at the different sampling points. Most of the genes involved in Fe uptake were
285	transcriptionally regulated; however, some regulators (e.g., GRF11, BSTL2), genes encoding
286	enzymes such as the β -glucosidase <i>BGLU42</i> which is critical for the deglycosylation of
287	coumarins prior to secretion ⁵⁰ , and the Zn/Fe transporter <i>IRT3</i> , were exclusively regulated by
288	DAS. All of these genes were shown to be transcriptionally induced at later stages of Fe
289	deficiency (Supplementary Table S2).
290	Unexpectedly, in both roots and shoots the percentage of DE-regulated ferrome genes
291	increased over time. While after 0.5 hours the majority of Fe-responsive genes was DAS-
292	regulated, the proportions of DE and DAS were about equal at 6 hours and massively shifted
293	towards transcriptional regulation at 12 hours (Fig. 7a, b). A comparison with a previous
294	survey of genes responsive to a 3-day-period of Fe starvation revealed a steep decrease in the
295	percentage of DAS-regulated genes at later stages of Fe deficiency (Fig. 7b). Comparing
296	different subgroups within the ferrome showed that transcripts encoding enzymes tended to
297	have a higher percentage of DAS than transporters and regulators. After 3 days,
298	transcriptional regulation of metabolic genes was still lower than in the other categories, but
299	the participation of DAS in the overall gene regulation was dramatically reduced to about
300	relative to what was observed in the short term (Fig. 7b). Such decreased participation of

301 DAS in the regulation of Fe homeostasis was also observed when other gene ontologies were 302 considered (Fig. 7c). This analysis also revealed that at later stages of Fe deficiency 303 transcriptional regulation of ferrome genes is prioritized over other processes, indicating that 304 a more severely disturbed Fe metabolism prioritises expression of a specific subset of genes 305 to secure efficient Fe acquisition. It may also be assumed that at this stage, early DAS events 306 have been established as stable changes in protein abundance, which is not monitored in the 307 two transcriptomic studies considered here.

308

309 Gene architecture predefines the type of gene regulation

310 From the survey of Fe-responsive genes, it appears that the various Fe-responsive processes

311 are preferentially controlled by either DE (e.g., JA-biosynthesis and signalling), DAS

312 (glycolysis and TCA cycle), or both DE and DAS (Fe uptake), regulatory patterns that are

313 possibly associated with the amplitude of the response (Supplementary Tables S2-5). To

314 investigate whether genomic traits influence or govern the type of gene regulation, we first

analysed the number and length of introns of Fe-responsive genes. Intron length was only

316 moderately correlated with the probability of IR. Introns with a length of more than 200 bp

317 had a slightly higher chance of being retained upon Fe deficiency than shorter introns,

reaching a peak at about 700 bp (Supplementary Fig. S2a). The number of introns, on the

319 other hand, appeared to be a strong predictor for AS. When normalized to the average intron

320 number across the genome, the number of genes producing transcripts with DIR, DDA, or

321 DES features showed a steep incline which saturated at an intron number between 10 and 20

322 (Supplementary Fig. S2b, c). Notably, intron-rich genes harbouring >50 introns were rarely

323 found to be subject to DAS (Supplementary Fig. S2b, c).

As further parameters that presumptively affect the type of gene regulation, we investigated the influence of 5' and 3' splice site strength, promoter length, and the number

326	of transcription factor binding sites (TFBSs) on DE and DAS. Plotting the minimum average
327	splice site strength [ASS; (min 5' + min 3')/2] of Fe-responsive genes against the intron
328	number showed that weak splice sites were generally associated with lower intron numbers
329	(Fig. 8a-c), a finding that may be causal rather than merely correlative. Considering DE- and
330	DAS-regulated genes separately revealed that the average intron number was much lower in
331	DE than in DAS genes, while ASS appears to be biased towards higher values (i.e., stronger
332	splice sites) in this group relative to DAS-regulated genes. With few exceptions, genes with
333	intron numbers >20 were regulated by DAS (Fig. 8b). However, highly negative ASS values
334	do not appear to compromise transcriptional regulation, indicating that DE can be
335	promiscuously employed to regulate genes hardwired for being DAS-regulated. Factors that
336	may support transcriptional regulation such as promoter length and the number of
337	transcription factor binding sites (TFBSs) did not pose major effects on gene expression.
338	While promotor length was correlated with the number of TFBSs, no bias towards higher
339	values was observed for DE-regulated genes, suggesting that these parameters are not
340	decisive for the type of regulation (Fig. 8c, d). It thus appears that DE is not dictated by
341	genomic features and can be called into play when more robust regulation is required.
342	
343	The type of gene regulation is genomically hardwired across biological process
344	To further investigate the mechanisms underlying the regulation of Fe-responsive genes, we
345	compared the genetic architecture of genes involved in various processes that are affected by
346	the Fe regime. Homing in on individual genes of the ferrome, a comparison of the DE- and
347	DAS-regulated subsets supported the trend observed for all Fe-responsive genes, i.e., a
348	marked shift towards stronger splice sites for DE-regulated genes (Fig. 9). However,
349	regulation by DE was also observed for genes with very weak (i.e., highly negative) splice
350	sites and high intron numbers (Fig. 9a). The difference in ASS between DE- and DAS-

regulated genes was obvious at all experimental time points, and was independent of the plant
part under study (i.e., roots vs. shoots) and the direction of regulation (Supplementary Fig.
S3).

354 In addition to the ferrome, Fe-responsive genes involved in glycolysis (75 out of a 355 total of 133), the TCA cycle (34/63), JA-signalling (25/36), transcriptional regulation 356 (432/1717), and pre-mRNA splicing (163/396) were analysed. This comparison revealed 357 pronounced differences in splice site strength and intron number among the various groups 358 that appear to be typical of a particular process. When compared with all Fe-responsive 359 entities (n = 9,190), genes from the ferrome group, JA-related genes, and genes encoding 360 transcription factors showed a lower-than-average number of introns and a higher-than-361 average ASS, while genes related to glycolysis, the TCA cycle, and splicing-related genes 362 exhibited an opposite pattern (Fig. 10).

363 Separating exclusively DE- or DAS-regulated genes revealed pronounced differences 364 between the two groups, with DE-regulated genes exhibiting much stronger splice sites and 365 lower intron numbers (Fig. 8b). Strikingly, DAS-regulated transcription factors harbour 366 features of DE-controlled genes, possibly reflecting an evolutionary trend of this group 367 towards this type of regulation. It is further interesting to note that – while containing 368 transcription factors and metabolic genes to almost equal portions - ferrome genes behaved 369 similar to genes encoding transcription factors, suggesting that the massive changes in 370 abundance in response to environmental cues necessitates this type of regulation in most 371 genes in these two groups to allow for an adequate and efficient response to environmental 372 cues.

Although promoter length and the number of TFBSs do not seem to affect the mode of gene regulation, these parameters can be supportive to or even critical for gene expression. For example, in yeast, promoters of stress-responsive genes were found to be longer than

376	those of housekeeping genes ⁵¹ , suggesting that such responsiveness requires a more elaborate
377	interaction between trans-acting factors and cis-regulatory elements. In the present study, the
378	average promoter length (1,595 bp) and the average number of TFBSs (33.5) of all 9,190 Fe-
379	responsive genes were not significantly different from those determined for genes of the
380	categories ferrome, glycolysis, and TCA cycle, but slightly higher (38.1) for genes encoding
381	transcription factors (Fig. 9). Crucially, splicing-related genes had on average significantly
382	shorter promotors (1,290 bp) and less TFBSs (27.5), indicating a trend against regulation by
383	DE of these genes. Another deviation from the overall average was observed for JA-related
384	genes, which had longer promoters and more TFBSs (Fig. 11). The promoter architecture of
385	JA-related genes may reflect the extent of recruitment by different signalling pathways. For
386	example, genes encoding enzymes mediating the first steps of JA synthesis (i.e., LOX2,
387	LOX3, LOX4, AOS, and AOC3) had an average promotor length of 2,764 bp and 63.6 TFBSs,
388	almost twice of the average of Fe-responsive genes. JA synthesis is important for a plenitude
389	of processes, which is possibly mirrored by a large number of regulatory cis-consensus
390	motifs on the promotors of these genes. By contrast, clade Ib bHLH proteins, which are
391	highly responsive to the Fe regime but have not been associated with other responses, have
392	short promotors (on average 918 bp) and relatively few TFBSs (24.5). Collectively, the data
393	suggest that a particular process is prone to a certain type of gene regulation, which is, by an
394	appreciable extent, hardwired by the structure of the genes involved in this process.
395	

396 **Discussion**

397 Multi-layered gene control orchestrates the acclimation to Fe deficiency

398 The current survey shows that short-term exposure to Fe deficiency is sufficient to trigger

399 profound changes in mRNA abundance and AS patterns, inducing a series of responses that

400 act in concert to recalibrate cellular Fe homeostasis. These responses comprise alterations in

401 transport processes, secondary metabolism, redox and pH balance, hormone signalling, and 402 central carbon metabolism, and are simultaneously induced in roots and shoots. A less well-403 explored component Fe deficiency response is the sharply timed induction of JA biosynthesis. 404 Similar to what we describe here for the strategy I plants Arabidopsis, short-term activation of JA biosynthesis was reported for the strategy II plant rice⁵², suggesting that expression of 405 406 JA-related genes constitutes a general, conserved mechanism across land plants. The reasons 407 for this transient upregulation of JA synthesis are yet to be elucidated. Activation of JA 408 signalling by exogenously supplied methyl JA was shown to affect the assembly of the 409 microbial community in the rhizosphere, possibly by altering the composition of root 410 exudates⁵³. In addition, JA determines the compatibility between host and beneficial 411 microbes^{54,55}, which, in turn, may positively affect coumarin-mediated Fe uptake⁵⁶. An 412 alternative explanation can be inferred from a study on Arabidopsis plants exposed to 413 oxygen deficiency. Here, a similar boost in JA production was observed in roots after a 6-414 hour period of oxygen depletion and suggested to trigger repression of root meristem regulators to avoid energy exhaustion when respiration is compromised⁵⁷, a scenario which 415 416 may also apply to Fe-deficient plants. 417 An underappreciated response to Fe deficiency is the reprogramming of large parts of 418 the central carbon metabolism to counteract imbalances resulting from reduced respiration, 419 decreased activity of Fe-containing enzymes, and shifts in intracellular redox and pH 420 homeostasis. Rerouting central carbon metabolism to prioritize Fe uptake under conditions of Fe deficiency was observed in soil bacteria⁵⁸ and eukaryotic systems such as human 421 macrophages⁵⁹ and yeast^{15,60,61}, suggesting that alterations in primary metabolism represent a 422 423 conserved concept across organisms. Notably, the priority for anaerobic glycolysis, inhibition 424 of PK activity, and the truncated TCA cycle observed in Fe-deficient plant cell resembles the metabolism of cancer cells⁶², further underlining the plasticity of central carbon metabolism 425

and its role in the adaptation to a given set of conditions. Since many of the observed
perturbations such as, for example, the accumulation of pyruvate or citrate are undetectable
or at least not pronounced within the first 12 hours of Fe deficiency, it can be assumed that
alterations in gene activity occur both in response to and in anticipation of imbalances caused
by discontinued Fe supply.

431

432 **Pyruvate is a central player in the metabolic homeostasis of Fe-deficient plants**

433 High pyruvate levels stimulate respiration⁶³, a situation which is not desirable under

434 conditions of Fe-deficiency. In roots of Fe-deficient plants, prevention of such build-up is

435 attempted by inhibition of PK and induction of ADH. ADH transcript and protein levels were

436 found to increase in Fe-deficient roots of various species^{7,23,42,44,64,65}, suggesting that ethanol

437 fermentation is a common feature of the Fe deficiency response. In shoots, however, acetic

438 acid is a more likely product of anaerobic respiration. The different fate of pyruvate in root

439 and leaf cells may be associated with different redox status of root and leaf cells. In roots,

440 reduction of acetaldehyde to ethanol restores the NAD⁺ pool to maintain high glycolysis

441 rates⁶⁶. In Fe-deficient leaf cells, acetate synthesis may recalibrate redox homeostasis, a

442 scenario which was suggested to constitute a critical component of a survival strategy

triggered by drought stress and possibly other environmental changes⁶⁷⁻⁶⁹. In this strategy,

444 acetate formation via ALDH2B7 is crucial in counteracting oxidative stress by stimulating

445 COI1-dependent jasmonate signalling and subsequent induction of JA-responsive genes⁶⁹.

446 Another peculiarity associated with the metabolism of Fe-deficient root cells is related

to the massively increased export of protons, which necessitates strategies to replenish

448 substrate for the H⁺-ATPases and to prevent excessive alkalisation of the cytosol. The

449 concentration of free cytosolic H^+ is in the sub-micromolar range⁷⁰ and insufficient to support

450 the high proton fluxes of Fe-deficient root cells. Such compensatory release of protons is

451 achieved by PPC-mediated carboxylation of PEP or, more precisely, the preceding formation 452 of HCO_3 by carbonic anhydrase, which is accompanied by a net production of protons (Fig. 453 11). The product of PEP carboxylation, OAA, was not detectable in roots, indicative of its 454 rapid metabolization to citrate, the level of which was dramatically increased upon Fe 455 starvation. Citrate accumulation in roots of Fe-deficient has been reported for a variety of species with high proton extrusion capacity such as tomato¹⁶, cucumber^{71,72}, sugar beet⁷³, and 456 *Capsicum annuum*⁷⁴, implying a link between these two observations. Moreover, citrate 457 458 levels appear to correlate with PPC activity⁷⁵, making it tempting to speculate that increased 459 proton secretion and subsequent PEP carboxylation are the driving forces for citrate 460 accumulation in Fe-deficient roots. In Arabidopsis, PPC1 was found to be induced in proteomic⁴³ and transcriptomic surveys of Fe-deficient roots^{7,9,43,76,77}. Moreover, 461 transcriptional induction of PEP carboxylase kinase (*PPCK1*)^{7,9,77,78}, as well as 462 phosphorylation of PPC1 was observed in Fe-deficient roots²³, indicating multi-layered and 463 464 robust regulation of PEP carboxylation in roots upon Fe starvation. It can thus be assumed 465 that citrate accumulation is caused by increased production of OAA via PEP carboxylation 466 and limited metabolization of citrate due to compromised activity of the Fe-sulphur proteins 467 aconitase and succinate dehydrogenase, compromising the completion of the TCA cycle. In Arabidopsis, ATPase-mediated proton export is regulated by FIT⁷⁹, which would imply that 468 469 citrate accumulation is also dependent on functional FIT protein. In line with this concept, no 470 increased citrate levels upon Fe deficiency were observed in *fit* mutants⁸⁰. Taken together. 471 these data imply that, with a few exceptions where such changes are induced at the level of 472 transcription (e.g., PFK, PK, ADH, and PPC), DAS appears to represent the main regulon of 473 central carbon metabolism, in particular at early stages of Fe deficiency. This pattern differs 474 from that observed for genes encoding enzymes involved in the production of Fe-mobilizing 475 coumarins, which massively change in abundance both at the transcript and protein levels

- 476 $(\text{this study})^{23,81}$. Thus, metabolic processes are not necessarily associated with DAS
- 477 regulation; it rather appears that the amplitude and specificity of the response (i.e., the direct
- 478 involvement in Fe uptake) determine the mode of gene regulation.
- 479

480 **Transcription is biased by but not dependent on genomic features**

481 A recent analysis of a suite of AS datasets derived from various eukaryote systems revealed 482 that in addition to or in conjunction with splicing factors, genomic traits may determine the 483 propensity of the mode by which a gene is regulated, suggesting that such features hardwire 484 genes to be controlled by either transcription or alternative splicing³⁰. In support of this 485 conception, we show here that in particular the number of introns and the strength of the 486 splicing sites influence the probability of a gene to undergo AS. In contrast to DAS, 487 transcriptional regulation does not appear to be dependent on genomic features. While 488 exclusively DE-regulated genes are strongly biased towards low intron numbers and high 489 splice site strengths, these traits are rather compromising DAS regulation than representing a 490 prerequisite for transcriptional regulation. Transcription appears to be promiscuously 491 employed when pronounced changes in gene activity are required. A representative example 492 is *PFK1*, which, despite having the architecture typical of DAS-regulated genes and being 493 part of a chiefly DAS-regulated process, is robustly controlled by transcription. It should be 494 noted, however, that transcription-promoting features such as the number of TFBSs may bias 495 the mode of gene regulation towards, or, as in the case of splicing factors, against regulation 496 by DE. The generally observed mutual exclusivity of DE and DAS was not evident in 497 ferrome genes, suggesting that the rapid and highly dynamic responses to the availability of 498 Fe requires a more complex regulation to avoid extreme depletion of or sudden overload with 499 Fe. Thus, under a certain set of conditions, the two mechanisms appear to collaborate to

500 regulate gene activity. Mostly, but not always, such cooperative regulation occurs anti-

501 directionally, suggesting that DAS is fine-tuning translation efficiency.

502

503 Conclusions

504	Collectively, our data show that DE and DAS are co-operative mechanisms that jointly, but
505	mostly autonomously, govern gene activity in a precisely timed pattern in response to
506	environmental signals. The current survey further revealed components of the Fe deficiency
507	response that are either not evident under steady-state conditions (i.e., JA signalling), or not
508	sufficiently mirrored at the transcript level and thus underappreciated in transcriptomic
509	studies (i.e., alterations in pyruvate metabolism). Our data further show that DAS events
510	triggered by short-term exposure to Fe starvation are in large part congruent with
511	observations derived from proteomic, physiological, and metabolic studies conducted at later
512	stages of Fe deficiency, forerunning subsequent alterations in protein abundance and enzyme
513	activity. AS appears to represent an area of largely unexplored 'dark matter', controlling
514	putatively important responses that may significantly contribute to the pronounced
515	discordance of mRNA and protein expression, a gap that is particularly wide in plants ⁸² . Thus,
516	DAS can be considered as a major contributor of such discordance and a putative proxy for
517	more robust metabolic or physiological changes. A surprising finding was the strong bias
518	towards the mode of gene regulation posed by genomic features. It seems reasonable to
519	speculate that particular processes are more efficiently regulated by either regulatory mode,
520	depending on the function of the genes and the amplitude of the alterations in gene activity
521	required for adequate acclimation to adverse environmental conditions.
522	

523 Materials and Methods

524 Plant Growth

525	Seeds of Arabidopsis (Arabidopsis thaliana (L.) Heynh) accession Columbia (Col-0) were
526	obtained from the Arabidopsis Biological Resource Center (Ohio State University). Plants
527	were grown hydroponically in a nutrient solution composed of 5 mM KNO ₃ , 2 mM Ca(NO ₃) ₂ ,
528	2 mM MgSO ₄ , 2.5 mM KH ₂ PO ₄ , 14 μ M MnCl ₂ , 70 μ M H ₃ BO ₃ , 1 μ M ZnSO ₄ , 0.5 μ M CuSO ₄ ,
529	$0.2~\mu M$ Na_2MoO4, 0.01 μM CoCl_2, 40 μM Fe-EDTA, and 4.7 mM MES buffer (pH 5.5).
530	Seeds were infiltrated with distilled H_2O for 3 days in dark in 4°C before being transferred to
531	the hydroponic system and then grown in a growth chamber at 21°C under continuous
532	illumination (70 μ mol m ⁻² s ⁻¹). After 16 d of pre-cultivation, plants were transferred to fresh
533	nutrient solution with either 40 μm Fe-EDTA (+Fe plants for control) or no Fe with 100 μM
534	3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine sulfonate (-Fe plants) for 0.5-, 6-, and 12-hours
535	treatment for RNA-seq analysis, and 1-3 days -Fe treatment for further RT-qPCR
536	experiments or Ultra-High Performance Liquid Chromatography (UHPLC) analysis. At the
537	end of the treatment, root and shoot were collected and stored at -80°C.
538	
539	RNA-seq and definition of DEGs

540 Total RNA was extracted from approximately 100 mg of Arabidopsis roots or shoots using

541 the RNeasy Plant Mini Kit (Qiagen, Cat. No. 74904). RNA samples were treated with

- 542 DNaseI (Qiagen, Cat. No. 79254) to remove DNA. RNA concentration was determined with
- a NanoDrop ND-1000 UV-Vis spectrophotometer (NanoDrop Technologies). For preparing
- 544 RNA-seq libraries, mRNA molecules with poly-A tails were purified using poly-T oligo-
- 545 attached magnetic beads.
- 546 The first-strand cDNA was synthesized by the use of dNTP (dUTP replaced by dTTP), buffer,
- 547 RNaseH, and DNA polymerase I. cDNA was purified using a Purification Kit (Qiagen)
- 548 followed by performing end repair and A-tailing. The sample was then treated with
- 549 USERTM (Uracil-Specific Excision Reagent) enzyme to digest the antisense strand DNA

550	follow by PCR reaction. After these procedures, the library could be sequenced using the
551	Illumina HiSeq 4000 platform. The first step in the trim process was the conversion of the
552	quality score (Q) to error probability. Next, for every base a new value was calculated; 0.05 –
553	error probability. This value is negative for low quality bases, where the error probability is
554	high. For every base, we calculated the running sum of this value. If the sum dropped below
555	zero, it was set to zero. The part of the sequence to be retained is between the first positive
556	value of the running sum and the highest value of the running sum. Everything before and
557	after this region was trimmed off. In addition, reads shorter than 35 bp were discarded. A
558	total of 66 to 87 million reads were obtained from Illumina sequencing for the various
559	libraries (Supplementary Table S1). Reads were aligned to the TAIR10 transcriptome using
560	Bowtie2 ⁸³ , and only alignments of read pairs that mapped to the same transcripts were
561	accepted. The remaining reads were mapped to the TAIR10 genome directly using the BLAT
562	program ⁸⁴ with default parameters. Alignments with a minimum 95% identity for each read
563	were considered for mapping but only the alignment with the highest identity were accepted.
564	Read counts were computed using the RACKJ software package
565	(http://rackj.sourceforge.net/), normalized using the Trimmed Mean of M-values (TMM)
566	method ⁸⁵ , and transformed into log-count-per-million (logCPM) using the voom method ⁸⁶ .
567	Adjusted RPKM values (Reads Per Kilobase of exon Model per million mapped reads ⁸⁷)
568	were computed based on logCPMs and gene model lengths. For two given samples, the
569	RPKM values of the genes was compared using <i>t</i> -tests, and a gene was identified as
570	differentially expressed if the corresponding P value was less than or equal to 0.05 and the
571	fold-change was greater than 2 at each time point. Only genes with relevant expression levels
572	(RPKM > the square root of the mean expression value of the whole dataset) were considered.
573	

574 Alternative splicing analysis

575	Alternative splicing events were identified as described previously ⁸⁸ using the RACKJ
576	software. Three types of alternative splicing were considered, IR, DA, and ES. For detecting
577	IR events, the IR ratio was computed as the average read depth of its intron divided by the
578	average read depth of the neighboring exons, and the IR ratios of three -Fe replicates were
579	compared to those of the controls (+Fe) using <i>t</i> -test. Similarly, to detect alternative
580	donor/acceptor or exon skipping events, signals representing AS events (read counts skipping
581	exons, and read counts covering the same splicing junctions) were divided by gene
582	expression levels as background. T-tests were performed on the obtained ratios to compare
583	samples from treated plants against control samples. Changes of relative expression levels of
584	AS events were inferred using a <i>t</i> -test P value < 0.05 with a fold-change > 2 .
585	
586	RT-qPCR
587	Samples were frozen in liquid nitrogen at the end of the experimental period and stored at -
588	80°C. Total RNA was extracted using the RNeasy Mini Kit (Qiagen) and treated with DNase
589	using the TURBO DNA-free kit (Ambion). Three μg of total RNA per sample was used for
590	obtaining cDNAs. First-strand cDNA was synthesized using oligo(dT) primer and the
591	SupersCript TM III First-Strand Synthesis System (Invitrogen, Cat. No. 18080) for RT-qPCR.
592	The resulting single-stranded complementary cDNAs were then used as a template in real-
593	time RT-PCR assay. RT-qPCRs were carried out with gene-specific primers listed in Table
594	S6, and SYBR TM Green PCR Master Mix (Applied Biosystems, Cat. No. 4367659) according
595	to the manufacturer's instructions using a QuantStudio 12K Flex Real-Time PCR System.
596	Three independent replicates were performed for each sample. The $\Delta\!\Delta C_T$ method was used to
597	determine the relative gene expression ⁸⁹ , with the expression of elongation factor 1 alpha
598	
070	(EF1 α ; At5g60390) used as an internal control.

600 Genomic analyses

601	Five' and 3' splicing site strength scores and event information were downloaded from the
602	PastDB dabase ³⁰ . An inhouse Perl script was developed to associate AS events of PastDB
603	with the accession number of genes from the TAIR10 annotation. The information on
604	transcription factor binding sites and promoter lengths was downloaded from the Arabidopsis
605	thaliana cis-regulatory database (AtcisDB) database on the Arabidopsis Gene Regulatory
606	Information Server (AGRIS) ⁹⁰ .
607	
608	UHPLC-MS analysis
609	Approximately 100 mg plant tissues were harvested, extracted in 1.5 ml of a solution of 375
610	μ l dH ₂ O, 750 μ l methanol, 375 μ l chloroform, and an internal standard (Citrate-2,2,4,4-d ₄ ,
611	CDN ISOTOPES, Cat. No. 147664-83-3) was added to final concentration of 10 μ M for each
612	sample. The supernatant was separated by quick spin-down at 3,000xg, incubated at -20 $^\circ$ C
613	for 30 min, and centrifugated at 3,000xg for 10 min at 4 °C. Obtained supernatant was mixed
614	by vortexing with 375 μl chloroform of chloroform to remove pigments. Colorless
615	supernatant was dried in a SpeedVac, resuspended in 50% methanol, and kept under -80 °C.
616	A Vanquish [™] Horizon UHPLC System (Thermo Scientific) coupled to an Orbitrap Fusion
617	Lumos (Thermo Scientific) mass spectrometer was used for the LC-MS analysis. The
618	chromatographic separation for samples was carried out on Atlantis Premier BEH C18 AX
619	VanGuard FIT Column, 1.7 μ m, 2.1 x 100 mm column (Waters). The column was
620	maintained at a temperature of 30°C and 1 μ L sample were injected per run. The mobile
621	phase A was 2% Acetonitrile 0.1% v/v formic acid in water and mobile phase B was 40% v/v
622	acetonitrile with 20 mM ammonium formate pH 3.0. The gradient elution with a flow rate
623	0.4 mL/min was performed with a total analysis time of 11 min. The gradient included 0.5%

624 B at 0 min, a hold at 0.5% B until 2 min, 99.5% B at 6 min, a hold at 99.5% B until

625	8 \square min, 0.5% B at 8.5 \square min, and a hold at 0.5% B until 11 \square min. General instrumental
626	conditions were RF lens 60%; sheath gas, auxiliary gas, and sweep gas of 50, 10, and 3
627	arbitrary units, respectively; ion transfer tube temperature of 325 °C; vaporizer temperature
628	of 350 °C; and spray voltage of 3500 V for negative mode. For analysis, a full MS scan mode
629	with a scan range m/z 50 to 400, resolution 30,000, AGC target 4e5 and a maximum injection
630	time 50 ms was applied. The Xcalibur 4.1 software (Thermo Scientific) was used for the data
631	processing.
(22)	

632

633 Acknowledgements

- 634 We thank Dr. Yuki Nakamura (IPMB, Academia Sinica) for kindly providing chemicals for
- 635 UHPLC standard and Shou-Jen Chou in the Genomic Technology Core Facility at IPMB for
- 636 preparing libraries for RNA-seq analysis. We also thank Mei-Jane Fang at the Genomic
- 637 Technology Core Facility at the Institute of Plant and Microbial Biology for using of the
- 638 QuantStudio 12K Flex Real-Time PCR System, and Yu-Ching Wu for the UHPLC-MS
- analysis, which was supported by the Academia Sinica Metabolomics Core Facility at the
- 640 Agricultural Biotechnology Research Center of Academia Sinica, supported by Academia

641 Sinica Core Facility and Innovative Instrument Project (AS-CFII-108-108).

642

643 Author contributions

- 644 E.J.H. and W.S. designed the research; E.J.H. performed the experiments; E.J.H., W.D.L.,
- and W.S. analysed the data; W.S. and E.J.H., wrote the manuscript.

646

647 **Conflict of interest**

648 The authors declare no conflict of interest.

650 Data availability

- The RNA-seq data have been deposited at NCBI under the accession number PRJNA759647
- 652 Reviewer link:
- 653 <u>https://dataview.ncbi.nlm.nih.gov/object/PRJNA759647?reviewer=itt5n0</u>
- 654 pfr6mmqho1akj54r5g2k
- 655

```
656
```

References

- 1. Kobayashi, T. *et al.* OsbHLH058 and OsbHLH059 transcription factors positively regulate iron deficiency responses in rice. *Plant Mol. Biol.* **101**, 471-486 (2019).
- 2. Gao, F. & Dubos, C. Transcriptional integration of plant responses to iron availability. *J. Exp. Bot.* **72**, 2056-2070 (2021).
- 3. Ro mheld, V. & Marschner, H. Mechanism of iron uptake by peanut plants: I. FeIII reduction, chelate splitting, and release of phenolics. *Plant Physiol.* **71**, 949-954 (1983).
- Eide, D., Broderius, M., Fett, J. & Guerinot, M. L. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. *Proc. Natl. Acad. Sci.* U.S.A. 93, 5624-5628 (1996).
- 5. Robinson, N. J., Procter, C. M., Connolly, E. L. & Guerinot, M. L. A ferric-chelate reductase for iron uptake from soils. *Nature* **397**, 694-697 (1999).
- 6. Santi, S. & Schmidt, W. Dissecting iron deficiency □ induced proton extrusion in Arabidopsis roots. *New Phytol.* **183**, 1072-1084 (2009).
- 7. Rodríguez-Celma, J. *et al.* Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and *Medicago truncatula*. *Plant Physiol.* **162**, 1473-1485 (2013a).
- 8. Schmid, N. B. *et al.* Feruloyl-CoA 6'-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. *Plant Physiol.* **164**, 160-172 (2014).
- 9. Grillet, L., Lan, P., Li, W., Mokkapati, G. & Schmidt, W. IRON MAN is a ubiquitous family of peptides that control iron transport in plants. *Nat. Plants* **4**, 953-963 (2018).
- 10. Gao, F., Robe, K., Gaymard, F., Izquierdo, E. & Dubos, C. The transcriptional control of iron homeostasis in plants: a tale of bHLH transcription factors? *Front. Plant Sci.* **10**, 6 (2019).
- 11. Kim, S. A., LaCroix, I. S., Gerber, S. A. & Guerinot, M. L. The iron deficiency response in Arabidopsis thaliana requires the phosphorylated transcription factor URI. *Proc. Natl. Acad. Sci. U.S.A.* **116**, 24933-24942 (2019).
- 12. Lei, R. *et al.* bHLH121 functions as a direct link that facilitates the activation of FIT by bHLH IVc transcription factors for maintaining Fe homeostasis in Arabidopsis. *Mol. Plant* **13**, 634-649 (2020).
- 13. Oexle, H., Gnaiger, E. & Weiss, G. Iron-dependent changes in cellular energy metabolism: influence on citric acid cycle and oxidative phosphorylation. *Biochim. Biophys. Acta Bioenerg.* **1413**, 99-107 (1999).
- 14. Pereira, M. *et al.* Acute iron deprivation reprograms human macrophage metabolism and reduces inflammation in vivo. *Cell Rep.* **28**, 498-511. e5 (2019).
- 15. Shakoury-Elizeh, M. *et al.* Metabolic response to iron deficiency in *Saccharomyces cerevisiae*. J. Biol. Chem. **285**, 14823-14833 (2010).

- 16. López-Millán, A. F., Morales, F., Gogorcena, Y., Abadía, A. & Abadía, J. Metabolic responses in iron deficient tomato plants. *J. Plant Physiol.* **166**, 375-384 (2009).
- 17. Zocchi, G. in Iron nutrition in plants and rhizospheric microorganisms. 359-370 (Springer, 2006).
- 18. Zocchi, G., De Nisi, P., Dell'Orto, M., Espen, L. & Gallina, P. M. Iron deficiency differently affects metabolic responses in soybean roots. *J. Exp. Bot.* **58**, 993-1000 (2007).
- 19. Rellán-Álvarez, R. *et al.* Identification of a tri-iron (III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: new insights into plant iron long-distance transport. *Plant Cell Physiol.* **51**, 91-102 (2010).
- 20. Mai, H. & Bauer, P. From the proteomic point of view: Integration of adaptive changes to iron deficiency in plants. *Curr. Plant Biol.* **5**, 45-56 (2016).
- Espen, L., Dell'Orto, M., De Nisi, P. & Zocchi, G. Metabolic responses in cucumber (*Cucumis sativus* L.) roots under Fe-deficiency: a 31 P-nuclear magnetic resonance invivo study. *Planta* 210, 985-992 (2000).
- 22. Herbik, A. *et al.* Iron and copper nutrition-dependent changes in protein expression in a tomato wild type and the nicotianamine-free mutant *chloronerva*. *Plant Physiol.* **111**, 533-540 (1996).
- 23. Lan, P. *et al.* iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects critical for iron homeostasis. *Plant Physiol.* **155**, 821-834 (2011).
- 24. Marquez, Y., Brown, J. W., Simpson, C., Barta, A. & Kalyna, M. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. *Genome Res.* 22, 1184-1195 (2012).
- 25. Reddy, A. S., Rogers, M. F., Richardson, D. N., Hamilton, M. & Ben-Hur, A. Deciphering the plant splicing code: experimental and computational approaches for predicting alternative splicing and splicing regulatory elements. *Front. Plant Sci.* 3, 18 (2012).
- 26. Keren, H., Lev-Maor, G. & Ast, G. Alternative splicing and evolution: diversification, exon definition and function. *Nat. Rev. Genet*, **11**, 345-355 (2010).
- 27. Kalyna, M. *et al.* Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. *Nucleic Acids Res.* **40**, 2454-2469 (2012).
- 28. Li, H. *et al.* Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling. *BMC Plant Biol.* **14**, 1-14 (2014).
- 29. Chaudhary, S., Jabre, I., Reddy, A. S., Staiger, D. & Syed, N. H. Perspective on alternative splicing and proteome complexity in plants. *Trends Plant Sci.* 24, 496-506 (2019).
- Martín, G., Márquez, Y., Mantica, F., Duque, P. & Irimia, M. Alternative splicing landscapes in Arabidopsis thaliana across tissues and stress conditions highlight major functional differences with animals. *Genome Biol.* 22, 1-26 (2021).
- Fu, X. & Ares, M. Context-dependent control of alternative splicing by RNA-binding proteins. *Nat. Rev. Genet.* 15, 689-701 (2014).
- 32. Calixto, C. P. *et al.* Rapid and dynamic alternative splicing impacts the Arabidopsis cold response transcriptome. *Plant Cell* **30**, 1424-1444 (2018).
- 33. Dikaya, V. *et al.* Insights into the role of alternative splicing in plant temperature response. *J. Exp. Bot.* (2021).
- Morton, M., AlTamimi, N., Butt, H., Reddy, A. S. & Mahfouz, M. Serine/Arginine-rich protein family of splicing regulators: New approaches to study splice isoform functions. *Plant Sci.* 283, 127-134 (2019).
- 35. Laloum, T., Martín, G. & Duque, P. Alternative splicing control of abiotic stress responses. *Trends Plant Sci.* 23, 140-150 (2018).

- 36. Luco, R. F., Allo, M., Schor, I. E., Kornblihtt, A. R. & Misteli, T. Epigenetics in alternative pre-mRNA splicing. *Cell* **144**, 16-26 (2011).
- Pajoro, A., Severing, E., Angenent, G. & Immink, R. Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants. *Genome Biol.* 18, 1-12 (2017).
- 38. Jabre, I. *et al.* Differential nucleosome occupancy modulates alternative splicing in *Arabidopsis thaliana. New Phytol.* **229**, 1937-1945 (2021).
- 39. Li, W., Lin, W., Ray, P., Lan, P. & Schmidt, W. Genome-wide detection of conditionsensitive alternative splicing in Arabidopsis roots. *Plant Physiol.* **162**, 1750-1763 (2013).
- Palmer, C. M., Hindt, M. N., Schmidt, H., Clemens, S. & Guerinot, M. L. MYB10 and MYB72 are required for growth under iron-limiting conditions. *PLoS Genet.* 9, e1003953 (2013).
- 41. Lan, P., Li, W. & Schmidt, W. Complementary proteome and transcriptome profiling in phosphate-deficient Arabidopsis roots reveals multiple levels of gene regulation. *Mol. Cell. Proteomics* **11**, 1156-1166 (2012).
- 42. Donnini, S. *et al.* Proteomic characterization of iron deficiency responses in Cucumis sativus L. roots. *BMC Plant Biol.* **10**, 1-15 (2010).
- 43. Pan, I. C. *et al.* Post-transcriptional coordination of the Arabidopsis iron deficiency response is partially dependent on the E3 Ligases RING DOMAIN LIGASE1 (RGLG1) and RING DOMAIN LIGASE2 (RGLG2). *Mol. Cell. Proteomics* **14**, 2733-2752 (2015).
- 44. Thimm, O., Essigmann, B., Kloska, S., Altmann, T. & Buckhout, T. J. Response of Arabidopsis to iron deficiency stress as revealed by microarray analysis. *Plant Physiol.* **127**, 1030-1043 (2001).
- 45. Plaxton, W. C. The organization and regulation of plant glycolysis. *Annu. Rev. Plant Biol.* **47**, 185-214 (1996).
- 46. O'Leary, B. & Plaxton, W. C. Multifaceted functions of post-translational enzyme modifications in the control of plant glycolysis. *Curr. Opin. Plant Biol.* **55**, 28-37 (2020).
- 47. Plaxton, W. C. & Podestá, F. E. The functional organization and control of plant respiration. *Crit. Rev. Plant Sci.* 25, 159-198 (2006).
- 48. Rodríguez-Celma, J. *et al.* The transcriptional response of Arabidopsis leaves to Fe deficiency. *Front. Plant Sci.* **4**, 276 (2013).
- 49. Schmidt, W. & Buckhout, T. J. A hitchhiker's guide to the Arabidopsis ferrome. *Plant Physiol. Biochem.* **49**, 462-470 (2011).
- 50. Stringlis, I. A. *et al.* MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. *Proc. Natl. Acad. Sci. U.S.A.* **115**, E5213-E5222 (2018).
- Kristiansson, E., Thorsen, M., Tamás, M. J. & Nerman, O. Evolutionary forces act on promoter length: identification of enriched cis-regulatory elements. *Mol. Biol. Evol.* 26, 1299-1307 (2009).
- 52. Kobayashi, T. *et al.* Jasmonate signaling is activated in the very early stages of iron deficiency responses in rice roots. *Plant Mol. Biol.* **91**, 533-547 (2016).
- 53. Carvalhais, L. C. *et al.* Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. *Mol. Plant-Microbe Interact.* **28**, 1049-1058 (2015).
- 54. Jacobs, S. *et al.* Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus *Piriformospora indica*. *Plant Physiol.* **156**, 726-740 (2011).
- 55. Stringlis, I. A., De Jonge, R. & Pieterse, C. M. The age of coumarins in plant–microbe interactions. *Plant Cell Physiol.* **60**, 1405-1419 (2019).
- 56. Harbort, C. J. *et al.* Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. *Cell Host Microbe* **28**, 825-837. e6 (2020).

- 57. Shukla, V. *et al.* Jasmonate signalling contributes to primary root inhibition upon oxygen deficiency in *Arabidopsis thaliana*. *Plants* **9**, 1046 (2020).
- Mendonca, C. M. *et al.* Hierarchical routing in carbon metabolism favors iron-scavenging strategy in iron-deficient soil *Pseudomonas* species. *Proc. Natl. Acad. Sci. U.S.A.* 117, 32358-32369 (2020).
- 59. Pereira, M. *et al.* Acute iron deprivation reprograms human macrophage metabolism and reduces inflammation *in vivo*. *Cell Reports* **28**, 498-511 (2019).
- 60. Puig, S., Askeland, E., Thiele, D. J. Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. *Cell* **120**, 99-110 (2005).
- 61. Chen, Y., Li, F., Mao, J., Chen, Y. & Nielsen, J. Yeast optimizes metal utilization based on metabolic network and enzyme kinetics. *Proc. Natl. Acad. Sci. U.S.A.* **118**, 10.1073/pnas.2020154118 (2021).
- 62. Dayton, T. L. *et al.* Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma. *Genes Dev.* **30**, 1020-1033 (2016).
- 63. Zabalza, A. *et al.* Regulation of respiration and fermentation to control the plant internal oxygen concentration. *Plant Physiol.* **149**, 1087-1098 (2009).
- 64. Mai, H. *et al.* Iron and FER LIKE IRON DEFICIENCY INDUCED TRANSCRIPTION FACTOR dependent regulation of proteins and genes in *Arabidopsis thaliana* roots. *Proteomics* **15**, 3030-3047 (2015).
- 65. Rodríguez-Celma, J. *et al.* Characterization of flavins in roots of Fe-deficient strategy I plants, with a focus on *Medicago truncatula*. *Plant Cell Physiol.* **52**, 2173-2189 (2011).
- 66. Bui, L. T. *et al.* Conservation of ethanol fermentation and its regulation in land plants. *J. Exp. Bot.* **70**, 1815-1827 (2019).
- 67. Kursteiner, O., Dupuis, I. & Kuhlemeier, C. The pyruvate decarboxylase1 gene of Arabidopsis is required during anoxia but not other environmental stresses. *Plant Physiol.* **132**, 968-978 (2003).
- 68. Rasheed, S. *et al.* The modulation of acetic acid pathway genes in Arabidopsis improves survival under drought stress. *Sci. Rep.* **8**, 1-15 (2018).
- 69. Kim, J. *et al.* Acetate-mediated novel survival strategy against drought in plants. *Nat. Plants* **3**, 1-7 (2017).
- 70. Wegner, L. H. *et al.* Biochemical and biophysical pH clamp controlling Net H efflux across the plasma membrane of plant cells. *New Phytol.* **230**, 408-415 (2021).
- Rabotti, G., De Nisi, P. & Zocchi, G. Metabolic implications in the biochemical responses to iron deficiency in cucumber (*Cucumis sativus* L.) roots. *Plant Physiol.* 107, 1195-1199 (1995).
- 72. Nisi, P. D. & Zocchi, G. Phospho*enol*pyruvate carboxylase in cucumber (*Cucumis sativus* L.) roots under iron deficiency: activity and kinetic characterization. *J. Exp. Bot.* 51, 1903-1909 (2000).
- 73. López-Millán, A. F., Morales, F., Abadía, A. & Abadía, J. Effects of iron deficiency on the composition of the leaf apoplastic fluid and xylem sap in sugar beet. Implications for iron and carbon transport. *Plant Physiol.* **124**, 873-884 (2000).
- 74. Landsberg, E. Function of rhizodermal transfer cells in the Fe stress response mechanism of Capsicum annuum L. *Plant Physiol.* **82**, 511-517 (1986).
- 75. Abadía, J., López-Millán, A., Rombolà, A. & Abadía, A. Organic acids and Fe deficiency: a review. *Plant Soil* **241**, 75-86 (2002).
- Dinneny, J. R. *et al.* Cell identity mediates the response of *Arabidopsis* roots to abiotic stress. *Science* **320**, 942-945 (2008).
- 77. Yang, T. J., Lin, W. & Schmidt, W. Transcriptional profiling of the Arabidopsis iron deficiency response reveals conserved transition metal homeostasis networks. *Plant Physiol.* **152**, 2130-2141 (2010).

- 78. Bailey, K. J., Gray, J. E., Walker, R. P. & Leegood, R. C. Coordinate regulation of phospho*enol*pyruvate carboxylase and phospho*enol*pyruvate carboxykinase by light and CO₂ during C4 photosynthesis. *Plant Physiol.* **144**, 479-486 (2007).
- 79. Mai, H., Pateyron, S. & Bauer, P. Iron homeostasis in *Arabidopsis thaliana*: transcriptomic analyses reveal novel FIT-regulated genes, iron deficiency marker genes and functional gene networks. *BMC Plant Biol.* **16**, 1-22 (2016).
- 80. Chutia, R., Scharfenberg, S., Neumann, S., Abel, S. & Ziegler, J. Modulation of phosphate deficiency-induced metabolic changes by iron availability in *Arabidopsis thaliana*. *Int. J. Mol. Sci.* **22**, 7609 (2021).
- 81. Tsai, H. *et al.* Scopoletin 8-hydroxylase-mediated fraxetin production is crucial for iron mobilization. *Plant Physiol.* **177**, 194-207 (2018).
- 82. Vélez-Bermúdez, I. C. & Schmidt, W. The conundrum of discordant protein and mRNA expression. Are plants special? *Front. Plant Sci.* **5**, 619 (2014).
- 83. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat. Methods* **9**, 357-359 (2012).
- 84. Kent, W. J. BLAT--the BLAST-like alignment tool. Genome Res. 12, 656-664 (2002).
- 85. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. *Genome Biol.* **11**, 1-9 (2010).
- 86. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. *Genome Biol.* 15, 1-17 (2014).
- 87. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nat. Methods* **5**, 621-628 (2008).
- 88. Kanno, T., Lin, W., Chang, C., Matzke, M. & Matzke, A. J. A genetic screen identifies PRP18a, a putative second step splicing factor important for alternative splicing and a normal phenotype in *Arabidopsis thaliana*. *G3* **8**, 1367-1377 (2018).
- 89. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the $2-\Delta\Delta CT$ method. *Methods* **25**, 402-408 (2001).
- 90. Yilmaz, A. *et al.* AGRIS: the Arabidopsis gene regulatory information server, an update. *Nucleic Acids Res.* **39**, D1118-D1122 (2010).

657 Figure legends:

- 658 Figure 1. Differentially expressed genes (DEGs) and differentially alternatively spliced
- (DAS) transcripts in response to short-term exposure to Fe deficiency. a) Filters for the
- 660 identification and numbers of DEGs at the various experimental time points. b) Venn
- diagrams showing the overlaps of DEGs among the different time points. c) Filters for the
- 662 identification and numbers of DAS genes. d) Venn diagrams showing the overlaps of DAS
- genes among the different time points. e) Venn diagrams showing the overlaps of DIR, DDA,
- and DES genes in Fe-deficient roots. f) Venn diagrams showing the overlaps of DEG and

665 DAS genes in roots and shoots of Fe-deficient plants. DIR, differential intron retention; DDA,

differential donor or acceptor sites; DES, differential exon skipping; FC, foldchange.

667

668	Figure 2. Functions of Fe-responsive genes in Fe uptake and cellular Fe homeostasis. a-d)
669	Cartoon showing DEG and DAS genes in roots (upper panels) and shoots (lower panels) after
670	6 h (a, c) and 12 h Fe (b, d) deficiency. For the transcriptionally regulated genes, the direction
671	of regulation is indicated by red and blue arrows for up- and down-regulated genes,
672	respectively. DAS genes are denoted by italics, differentially expressed DAS genes are
673	indicated by italics and bold letters. The direction of DAS regulation is indicated by red
674	(enhanced) or blue (reduced) AS. Detailed explanations of gene functions are given in the
675	text.
676	
677	Figure 3. Induction of jasmonate biosynthesis, catabolism, and signalling genes in roots in
678	response to 6 hours Fe deficiency treatment. In plastids, lipid-derived α -linolenic acid is
679	converted by LOX, AOS, and AOC into oxophytodienoic acid (OPDA). Following transport
680	into peroxisomes, OPDA is reduced by OPDA REDUCTASE 3 (OPR3) and converted into
681	JA by β -oxidation. In the cytoplasm, JA is conjugated with amino acids to JA-Ile by JAR1 or
682	to MeJA by JMT. In the endoplasmic reticulum, JA-Ile is degraded to 12OH-JA-Ile and
683	converted to 12-OH-JA via IAR3, ILL5 and ILL6. The latter enzymes can also convert JA-Ile
684	to JA. In the absence of nuclear JA-Ile, expression of JA responsive genes via MYC2 is
685	repressed by JAZ. Upon the entry of JA-Ile into the nucleus, JAZ is degraded via the 26S
686	proteasome and ultimately triggers transcriptional activation of the target genes. Only genes

- that were differentially expressed or harboured DAS features in response to Fe starvation are
- shown.

690	Figure 4. Regulation of glycolytic enzymes and their products by Fe-deficiency. a) DAS
691	regulation of genes encoding glycolytic enzymes in roots. b) Concentrations of glucose-6-
692	phosphate (G6P), fructose-6-phosphate F6P/glucose-1-phosphate (G1P) (G6P and G1P have
693	identical retention times and cannot be distinguished from each other), phosphoenolpyruvate
694	(PEP) and pyruvate in roots and shoots 12 hours and 3 days after transfer to Fe-deplete media.
695	c-e) qRT-PCR analysis of PFK (c), PK (d; At5g08570) and bHLH38 (e). Asterisks indicate
696	significant differences from the wild type in each treatment: *, $P < 0.05$; **, $P < 0.01$; ***, P
697	< 0.001. C, control.
698	
699	Figure 5. Pyruvate metabolism in roots and shoots of Fe-deficient plants. a, b) Fe-responsive
700	enzymes in roots (a) and shoots (b). Only genes that were differentially expressed or
701	harboured DAS (DIR or DDA) features in response to Fe starvation are shown. See text for
702	details.
703	
704	Figure 6. Correlation between DE and DAS of Fe-responsive genes. a) DE versus DIR. b)
705	DE versus DDA.

706

707 I	Figure 7.	Relative	contribution	of DE and	DAS	in the reg	gulation	of Fe-	responsive	genes. a)
-------	-----------	----------	--------------	-----------	-----	------------	----------	--------	------------	-----------

708 Time-course of DE- and DAS-regulated genes in roots and shoots in response to Fe

deficiency. b) DE and DAS regulation in various categories of ferrome genes after short-tern

right panel) and three days after transfer to Fe-deficient conditions (right panel).

711 Short-term data are pooled from three experimental time points (0.5, 6, and 12 h). Long-term

data are taken from a previous study (Li et al., 2014). c) DE and DAS regulation of genes

713 involved in various processes after short-term exposure to Fe-deficient conditions. d) DE and

714 DAS regulation after long-term exposure (3 d) to Fe-deficient conditions.

7	1	5
1	T	J

716	Figure 8. Correlation of architectural traits of Fe-responsive genes with the mode of gene
717	regulation. a, b) Intron number (blue bars) and average minimum 5' and 3' splice site (SS)
718	strength (red bars) of all Fe-responsive genes (a), and DEGs, DAS genes, and genes that are
719	regulated by both DE and DAS (b). c, d) Correlation between the number of transcription
720	factor binding sites (TFBSs) and promotor length of all Fe-responsive genes (a), and DEGs,
721	DAS genes, and genes that are regulated by both DE and DAS (b).
722	
723	Figure 9. Correlation of architectural traits of individual ferrome gene with the mode of gene
724	regulation. a-c) Intron number (blue bars) and average minimum 5' and 3' splice site (SS)
725	strength (red bars) of DEGs (a) DAS genes (b), and genes that are regulated by both DE and
726	DAS (c).
727	
728	Figure 10. Genomic features of Fe-responsive genes involved in various processes. a)
729	Average minimum strengths of 5' and 3' splice sites. b) Intron number. c) Transcription
730	factor binding sites (TFBSs). d) Promoter length. Box plot shows the median (line) and the
731	average (x) for genes in roots (a) and shoots (b). Significant differences were detected using
732	two-way ANOVA with Tukey's multiple comparison test, $P < 0.001$.
733	
734	Figure 11. Summary of the changes in central carbon metabolism in roots of Fe deficient
735	plants. Carbon flux through the glycolytic pathway is increased by transcriptional
736	upregulation of <i>PFK1</i> . Pyruvate accumulation caused by a truncated TCA cycle is avoided by
737	downregulation of PK activity by DAS and DE and increased ethanolic respiration via PDC1
738	and ADH1, which are regulated by DAS and DE. This reaction regenerates the NAD^+ pool
739	for continued glycolytic flux. Acetate respiration, which is prioritized in shoots, is repressed

- 740 by DAS of ALDH7B4. Increased net proton secretion by P-type ATPases is counteracted by
- 741 the formation of HCO₃⁻ and subsequent carboxylation of phospho*enol*pyruvate (PEP),
- yielding oxaloacetate (OAA), which is converted to citrate. DAS genes are denoted by italics,
- 743 genes regulated by both DE and DAS are indicated by italics and bold letters. Enzymes that
- are not differentially expressed are depicted in grey. The direction of DAS regulation is
- 745 indicated in red (enhanced) or blue (reduced) letters.

а

b

bHLH38

а

b

С

b

а

