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Abstract

• Developmental integration can cause traits to covary over macroevolutionary time and

in some cases prevent populations from reaching their adaptive optima. Developmental

integration between stomatal size and density may contribute to two major features of

stomatal anatomical evolution: inverse size-density scaling and bimodal stomatal ratio.

If these patterns result from developmental integration, we predicted that in

amphistomatous leaves 1) stomatal size and density should covary similarly on both

abaxial and adaxial surfaces and 2) stomatal traits (size and density) on each surface

should covary isometrically.

• We synthesized data on stomatal density and length from amphistomatous leaves of 711

terrestrial seed plant taxa mostly from the literature. We estimated the covariance in
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divergence between stomatal traits from 327 phylogenetically independent contrasts

using a robust Bayesian model.

• Adaxial stomatal density, but not length, is evolutionarily labile and not strongly

integrated with stomatal length or abaxial stomatal density. Hence, developmental

integration alone cannot explain inverse size-density scaling nor bimodal stomatal ratio.

• Quasi-independent evolution of stomatal anatomical traits facilitates largely unfettered

access to fitness optima. If stomatal anatomical traits are near their current fitness

optimum, this implies that limits on trait (co)variance result from selective rather than

developmental constraints. However, we cannot rule out that developmental integration

is important in some lineages. Future research should identify the mechanistic basis of

(dis)integration in stomatal development.

Keywords: Adaptation, amphistomy, developmental integration, leaf, phylogenetic

comparative methods, stomata

Introduction 1

The ability for traits to evolve independently of one another is a necessary prerequisite for 2

adaptation to complex environments (Lewontin 1978). If traits can evolve independently and 3

there is sufficient genetic variation, then selection should move populations toward their 4

multivariate phenotypic optimum. Adaptive evolution may be constrained if traits cannot 5

evolve independently because they are developmentally integrated. Developmentally 6

integrated traits have a “disposition for covariation” (Armbruster et al. 2014), meaning that 7

evolutionary divergence between lineages in one character will be tightly associated with 8

divergence in another character. Allometry is a classic example of developmental integration 9

that may constrain phenotypic evolution (reviewed in Pélabon et al. (2014)). Strong allometric 10

covariation between traits within populations can constrain macroevolutionary divergence for 11

long periods of time depending on the strength and direction of selection (Lande 1979). 12

However, developmental integration does not necessarily hamper adaptation, and can even 13

accelerate adaptive evolution when trait covariation is aligned with the direction of selection 14

(Hansen 2003). For example, fusion of floral parts increases their developmental integration 15

which may increase the rate and precision of multivariate adaptation to specialist pollinators 16

(Berg’s rule) (Berg 1959, 1960; Conner and Lande 2014; Armbruster et al. 1999). In this study 17

we are interested in quantifying the strength of developmental integration in stomatal anatomy 18

and whether developmental integration might hamper or accelerate adaptive evolution. 19

Stomata are microscopic pores on the leaf or other photosynthetic surfaces of most land 20

2/33

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.09.02.457988doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.02.457988
http://creativecommons.org/licenses/by-nc-nd/4.0/


plants formed by a pair of guard cells. Here we limit our focus to stomatal traits on leaves 21

within terrestrial seed plants, primarily angiosperms. The density, size, and patterning of 22

stomata on a leaf set the maximum stomatal conductance to CO2 diffusing into a leaf and the 23

amount of water that transpires from it (Sack et al. 2003; Franks and Farquhar 2001; Galmés et 24

al. 2013). Plants typically operate below their anatomical maximum by dynamically regulating 25

stomatal aperture. Even though operational stomatal conductance determines the realized 26

photosynthetic rate and water-use efficiency, anatomical parameters are useful in that they set 27

the range of stomatal function (Boer et al. 2016) and are correlated with actual stomatal 28

function under natural conditions (Murray et al. 2020). 29

Two salient features of stomatal anatomy have been recognized for decades but we do not 30

yet understand the evolutionary forces that generate and maintain them. We denote these two 31

features as “inverse size-density scaling” and “bimodal stomatal ratio” (Fig. 1). Inverse 32

size-density scaling refers to the negative interspecific correlation between the size of the 33

stomatal apparatus and the density of stomata (Weiss 1865; Franks and Beerling 2009; Boer et 34

al. 2016; Sack and Buckley 2016; Liu et al. 2021). Across species, leaves with smaller stomata 35

tend to pack them more densely, but there is significant variation about this general trend (Fig. 36

1a). Bimodal stomatal ratio refers to the observation that the ratio of stomatal density on the 37

adaxial (upper) surface to the density on the abaxial (lower) has distinct modes (Fig. 1b). 38

Stomata are most often found only on the lower leaf surface (hypostomy), but occur on both 39

surfaces (amphistomy) in some species (Metcalfe and Chalk 1950; Parkhurst 1978; Mott, 40

Gibson, and O’Leary 1982), especially herbaceous plants from open, high light habitats 41

(Salisbury 1928; Mott, Gibson, and O’Leary 1982; Gibson 1996; W. K. Smith, Bell, and Shepherd 42

1998; Jordan, Carpenter, and Brodribb 2014; Muir 2015, 2018; Bucher et al. 2017). Muir (2015) 43

described bimodal stomatal ratio formally but the pattern is apparent in earlier comparative 44

studies of the British flora (cf. Peat and Fitter (1994) Fig 1). For both features, we limit our 45

focus in this study to interspecific variation in mean trait values and do not seek to understand 46

intraspecifc variation. 47

Given the significance of stomata for plant function and global vegetation modeling, we 48

would like to understand whether these major anatomical features are shaped primarily by 49

adaptive or nonadaptive evolutionary forces. We briefly review adaptive hypotheses for both 50

inverse size-density scaling and bimodal stomatal ratio. Then we discuss how developmental 51

integration might contribute to these features, in addition to or in lieu of adaptive evolution. 52

Stomatal size and density determine the maximum stomatal conductance to CO2 and water 53

vapor but also take up space on the epidermis, which could be costly for both construction and 54
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Figure 1. Two salient features of stomatal anatomy in land plants are the (a) inverse relationship
between stomatal size and density and (b) the bimodal distribution of stomatal ratio. At
broad phylogenetic scales, leaves with smaller stomata (x-axis, log-scale) tend to have greater
stomatal density (x-axis, log-scale), but there is a lot of variation about the overall trend
indicated by the grey ellipse. Hypostomatous leaves (stomatal ratio = 0) are more common than
amphistomatoues leaves, but within amphistomatous leaves, the density of stomata on each
surface tends to be similar (stomatal ratio ≈ 0.5), which we refer to as bimodal stomatal ratio.

maintenance. Natural selection should favor leaves that have enough stomata of sufficient size 55

to supply CO2 for photosynthesis. Hence leaves with few, small stomata and high 56

photosynthetic rates do not exist because they would not supply enough CO2. Conversely, 57

excess stomata or extra large stomata beyond the optimum may result in stomatal interference 58

(Zeiger, Farquhar, and Cowan 1987), incur metabolic costs (Deans et al. 2020), and/or risk 59

hydraulic failure (Henry et al. 2019). The distribution of stomata and density may therefore 60

represent the combinations that ensure enough, but not too much, stomatal conductance. 61

Franks and Beerling (2009) further hypothesized that the evolution of small stomata in 62

angiosperms enabled increased stomatal conductance while minimizing the epidermal area 63

allocated to stomata. 64

Developmental integration between stomatal size and density, mediated by meristematic 65

cell volume, could also explain inverse size-density scaling. If the size of both guard cells and 66

the size of pavement cells between stomata are determined by initial meristematic cell volume, 67

then changes in cell volume early in leaf development would cause both increased stomatal 68

size and lower density (Brodribb, Jordan, and Carpenter 2013). This type of developmental 69

integration would not hinder adaptive evolution when the main axes of selection were aligned 70

with the developmental correlation. For example, if higher maximum stomatal conductance 71

were achieved primarily by increasing stomatal density and decreasing stomatal size as 72
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proposed by Franks and Beerling (2009), then developmental integration might accelerate the 73

response to selection compared to a case where stomatal size and density are completely 74

independent. 75

The adaptive significance of variation in stomatal ratio is unknown, but we have some 76

clues based on the distribution of hypo- and amphistomatous leaves. The functional 77

significance of amphistomy is that it adds a second parallel pathway from the substomatal 78

cavities through the leaf internal airspace to sites of carboxylation in the mesophyll (Parkhurst 79

1978; Gutschick 1984). Thus amphistomatous leaves have lower resistance to diffusion through 80

the airspace which increases the photosynthetic rate (Parkhurst and Mott 1990). Despite this 81

amphistomy advantage, most leaves are hypostomatous, suggesting that the benefits of 82

amphistomy in terms of increased photosynthesis usually do not outweigh the costs of 83

stomata on the upper surface. Amphistomy should increase photosynthesis under 84

saturating-light conditions where CO2 supply limits photosynthesis. This may explain why 85

amphistomatous leaves are most common in high light habitats (Salisbury 1928; Mott, Gibson, 86

and O’Leary 1982; Gibson 1996; W. K. Smith, Bell, and Shepherd 1998; Jordan, Carpenter, and 87

Brodribb 2014; Muir 2015; Bucher et al. 2017), especially in herbs (Muir 2018). However, the 88

light environment alone cannot explain why hypostomatous leaves predominate in shade 89

plants (Muir 2019), suggesting that we need to understand the costs of upper stomata better. 90

Upper stomata increase the susceptibility to rust pathogens in Populus (McKown et al. 2014, 91

2019; Fetter, Nelson, and Keller 2021). Amphistomy may also cause the palisade mesophyll to 92

dry out under strong vapor pressure deficits (Buckley et al. 2015). Other hypotheses about the 93

adaptive significance of stomatal ratio are discussed in Muir (2015) and Drake et al. (2019). 94

A striking feature of the interspecific variation in stomatal ratio is that trait values are not 95

uniformly distributed, but strongly bimodal. Muir (2015) derived general conditions in which 96

bimodality arises because adaptive optima are restricted to separate regimes, but this model 97

has not been tested. An alternative hypothesis is that stomatal traits on the ab- and adaxial 98

surfaces are developmentally integrated because stomatal development is regulated the same 99

way on each surface. In hypostomatous leaves, stomatal development is turned off in the 100

adaxial surface. In amphistomatous leaves, stomatal development proceeds on both surfaces, 101

but evolutionary changes in stomatal development affect traits on both surfaces because they 102

are tethered by a shared developmental program. This model of developmental integration 103

would lead to a bimodal trait distribution because leaves would either be hypostomatous 104

(stomatal ratio equal to 0) or have similar densities on each surface (stomatal ratio 105

approximately 0.5). To our knowledge, this hypothesis has not been put forward in the 106
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literature but came about during discussion with one of us (Muir, personal communication 107

with EJ Edwards). 108

We reasoned that the developmental hypotheses for inverse size-density scaling and 109

bimodal stomatal ratio could be tested using amphistomatous leaves. Since both leaf surfaces 110

are formed from the same genome and meristematic cells, if developmental integration is 111

strong we would expect similar patterns of trait covariation in the abaxial and adaxial surface 112

(see below for specific predictions). Conversely, if traits covary differently on each surface it 113

would indicate that stomatal anatomical traits can be developmentally disintegrated. 114

Analogously, variation in the genetic correlation and interspecific divergence of sexually 115

dimorphic traits in dioecious species demonstrate that integration is not fixed and can be 116

modified by selection (Barrett and Hough 2013). Below we reiterate the hypotheses and 117

specific predictions for amphistomatous leaves: 118

Inverse size-density scaling 119

• Hypothesis: Meristematic cell volume mediates developmental integration between 120

stomatal size and density 121

• Prediction: Amphistomatous leaves will exhibit identical size-density scaling on each 122

surface 123

Bimodal stomatal ratio 124

• Hypothesis: Stomatal traits on both leaf surfaces are developmentally integrated because 125

they follow the same developmental program 126

• Prediction: Evolutionary divergence in stomatal traits on one surface will be isometric 127

with divergence in stomatal traits on the other surface 128

We tested these predictions in a phylogenetic comparative framework by compiling 129

stomatal anatomy data from the literature for a broad range of seed plants. 130

Materials and Methods 131

Unless otherwise mentioned, we performed all data wrangling and statistical analyses in R 132

version 4.1.0 (R Core Team 2021). Source code is publically available on GitHub 133

(https://github.com/cdmuir/stomata-independence) and will be archived on Zenodo upon 134

publication. 135
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Data synthesis 136

We searched the literature for studies that measured stomatal density and stomatal size, either 137

guard cell length or stomatal pore length, for both abaxial and adaxial leaf surfaces. In other 138

words, we did not include studies unless they reported separate density and size values for 139

each surface. We did not record leaf angle because it is typically not reported, but we presume 140

that for the vast majority of taxa that the abaxial is the lower surface and the adaxial is the 141

upper surface. This is reversed in resupinate leaves, but to the best of our knowledge, our 142

synthesis did not include resupinate leaves. We refer to guard cell length as stomatal length 143

and converted stomatal pore length to stomatal length assuming guard cell length is twice 144

pore length (Sack and Buckley 2016). Table 1 lists focal traits and symbols. 145

Table 1. Stomatal anatomical traits with mathemtical symbol, variable string used in source
code, and scientific units.

Symbol Variable string Units

Dab abaxial_stomatal_density_mm2 pores mm−2

Dad adaxial_stomatal_density_mm2 pores mm−2

Lab abaxial_stomatal_length_um �m

Lad adaxial_stomatal_length_um �m

Data on stomatal anatomy are spread over a disparate literature and we have not attempted 146

an exhaustive synthesis of amphistomatous leaf stomatal anatomy. We began our search by 147

reviewing papers that cited key studies of amphistomy (Parkhurst 1978; Mott, Gibson, and 148

O’Leary 1982; Muir 2015). We supplemented these by searching Clarivate Web of Science for 149

“guard cell length” because most studies that report guard cell length also report stomatal 150

density, whereas the reverse is not true. We identified additional studies by reviewing the 151

literature cited of papers we found and through haphazard discovery. The final data set 152

contained 5104 observations of stomatal density and length from 1242 taxa and 38 primary 153

studies (Table S1). However, many of these data were excluded if taxonomic name and 154

phylogenetic placement could not be resolved (see below). Finally, we included some 155

previously unpublished data. Stomatal size data were collected on grass species previously 156

described (Pathare, Koteyeva, and Cousins 2020). We also included a previously unpublished 157

set of 14 amphistomatous wild tomato species (Solanum sect. Lycopersicum and sect. 158

Lycopersicoides) grown in pots under outdoor summer Mediterranean conditions previously 159

described (Muir, Galmés, and Conesa 2021). We took ab- and adaxial epidermal imprints using 160

clear nail polish of the mid-portion of the lamina away from major veins on the terminal 161
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leaflet of the youngest, fully expanded leaf from 1-5 replicates per taxon. With a brightfield 162

light microscope, we counted stomata in three fields of view and divided by area to obtain 163

density and measured the average guard cell length to estimate stomatal size. The data set is 164

publicly available as an R package ropenstomata (https://github.com/cdmuir/ropenstomata). 165

It will be deposited on Dryad and archived on Zenodo upon publication. 166

Phylogeny 167

We resolved taxonomic names using the R package taxize version 0.9.99 (Chamberlain and 168

Szöcs 2013). We queried taxonomic names supplied by the original study authors on 169

2021-08-26 from the following sources: GRIN Taxonomy for Plants (United States Department 170

of Agriculture, Agricultural Research Service 2020), Open Tree of Life Reference Taxonomy 171

(Rees and Cranston 2017), The International Plant Names Index (The Royal Botanic Gardens et 172

al. 2020), Tropicos - Missouri Botanical Garden (Missouri Botanical Garden 2020). We retained 173

the maximum scoring matched name with taxize score ≥ 0.75 (a score of 1 is a perfect match). 174

In 5 ambiguous cases we manually curated names. Taxonomic name resolution reduced the 175

data set from 1224 to 1183 taxa. Most taxa are different species, but some recognized 176

subspecies and varieties are also included. All algorithms and choices are documented in the 177

associated source code. 178

We used the R packages taxonlookup version 1.1.5 (Pennell, FitzJohn, and Cornwell 2016) 179

and V.phylomaker version 0.1.0 (Jin and Qian 2019) to maximize overlap between our data 180

set and the GBOTB.extended mega-tree of seed plants (S. A. Smith and Brown 2018 ; Zanne et 181

al. 2014). We further resolved large (≥ 4 taxa) polytomies in 30 clades with sufficient sequence 182

data using PyPHLAWD version 1.0 (S. A. Smith and Walker 2019) in Python 3.8.2 (Python 183

Software Foundation, https://www.python.org/). We used sequence data from the most recent 184

GenBank Plant and Fungal sequences database division (Ouellette and Boguski 1997). We 185

inferred subtree phylogenies using RAxML version 8.2.12 (Stamatakis 2014) and conducated 186

molecular dating using the chronos() function in the R package ape version 5.5 (Paradis and 187

Schliep 2019) to obtain ultrametric trees. We grafted resolved, ultrametric subtrees onto the 188

mega-tree at the polytomy nodes and rescaled to keep the mega-tree ultrametric. In some 189

cases, resolving polytomies was not possible because there was little or no overlap between 190

taxa in the data set and taxa with sequence data available for PyPHLAWD. In these cases, we 191

randomly selected two taxa as a phylogenetially independent pair and dropped the rest. 192

Remaining polytomies of three taxa were resolved randomly using the multi2di() function 193

in ape. The final data set for which we had both trait and phylogenetic information contained 194

8/33

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.09.02.457988doi: bioRxiv preprint 

https://github.com/cdmuir/ropenstomata
https://www.python.org/
https://doi.org/10.1101/2021.09.02.457988
http://creativecommons.org/licenses/by-nc-nd/4.0/


711 taxa (Notes S1). Seven taxa are gymnosperms; the vast majority are angiosperms. 195

Phylogenetically independent contrasts 196

We extracted 327 phylogenetically independent taxon pairs (Table S2). A fully resolved, 197

bifurcating four-taxon phylogeny can have two basic topologies: ((A, B), (C, D)) or ((A, B), C), D)). 198

Taxon pairs include all comparisons of A with B and C with D in each four-taxon clade. We 199

extracted pairs using the extract_sisters() function in R package diverge version 2.0.1 200

(Anderson and Weir 2021) and custom scripts (see source code). Taxon pairs are the most 201

closely related pairs in our data set, but not usually the most closely related species in nature. 202

For each pair we calculated phylogenetically independent contrasts (Felsenstein 1985) as the 203

difference in the log10-transformed trait value. Contrasts are denoted as Δlog(trait). We 204

log-transformed traits for normality because like many morphological and anatomical traits 205

they are strongly right-skewed. Log-transformation also helps compare density and length, 206

which are measured on different scales, because log-transformed values quantify proportional 207

rather than absolute divergence. We only used pairs of terminal taxa rather than the entire 208

tree for two reasons. First, even in whole-tree methods, approximately half of the data comes 209

from divergence at the tips, so we do not lose much statistical power. Second, using a 210

taxon-pair method obviates making strong assumptions about multivariate trait evolution 211

process homogeneity throughout seed plant evolution. Homogeneity is biologically unlikely 212

and it is difficult to fit more complex models reliably with only data from extant taxa. 213

Parameter estimation 214

Both hypotheses make predictions about trait covariance matrices or parameters derived from 215

them (see next subsections). We estimated the 4 × 4 covariance matrix of phylogenetically 216

independent contrasts between log-transformed values of Δlog(Dab), ΔlogDad), Δlog(Lab), and 217

Δlog(Lad) using a distributional multiresponse robust Bayesian approach. We denote variances 218

as Var[Δlog(trait)] and covariances as Cov[Δlog(trait1),Δlog(trait2)]. The statistical model 219

also accounts for differences in mean trait values between surfaces. 220

We used a multivariate t-distribution rather than a Normal distribution because estimates 221

using the former are more robust to exceptional trait values. Exceptional trait values are 222

common in biology and can distort estimates of central tendency and variance. The 223

t-distribution is more robust because it has fatter tails (more kurtosis) than the Normal 224

distribution. The � parameter of the t-distribution describes how fat the tails are. As � → ∞, 225

the t-distribution converges to the Normal distribution. We estimated � from the data, 226
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meaning that if exceptional values are absent from the data, the model will be nearly 227

equivalent to standard Normal regression. 228

We also estimated whether the variance in trait divergence increases with time. Under 229

many trait evolution models (e.g. Brownian motion), interspecific variance increases through 230

time. To account for this, we included time since taxon-pair divergence as an explanatory 231

variable affecting the trait covariance matrix, but not the trait mean. 232

We fit the model in Stan 2.27 (Stan Development Team 2021) using the R packages brms 233

version 2.16.0 (Bürkner 2017, 2018) with a cmdstanr version 0.4.0 backend (Gabry and 234

Češnovar 2021). It ran on 2 parallel chains for 1000 warm-up iterations and 1000 sampling 235

iterations. All parameters converged (R̂ ≈ 1) and the effective sample size from the posterior 236

exceeded 1000 (Vehtari et al. 2021). We used the posterior median for point estimates and 237

calculated uncertainty with the 95% highest posterior density (HPD) interval from the 238

posterior distribution. 239

Is size-density scaling the same on both leaf surfaces? 240

We tested the first hypothesis by estimating the covariance between divergence in stomatal 241

length and stomatal density on each leaf surface. If size and density are developmentally 242

integrated, we predict the covariance matrices will not be significantly different. Specifically, 243

the 95% HPD intervals of the difference in covariance parameters should not include 0 if: 244

Var[Δlog(Dab)] ≠ Var[Δlog(Dad)] (1)

Var[Δlog(Lab)] ≠ Var[Δlog(Lad)] (2)

Cov[Δlog(Lab),Δlog(Dab)] ≠ Cov[Δlog(Lad),Δlog(Dad)] (3)

Do abaxial and adaxial stomatal traits evolve isometrically? 245

If stomatal traits on each surface are developmentally integrated then divergence in the trait 246

on one surface should result in a 1:1 (isometric) change in the trait on the other surface. 247

Furthermore, there should be relatively little variation away from a 1:1 relationship. 248

Conversely, if traits can evolve independently then the change in the trait on one surface 249

should be uncorrelated with changes on the other. We tested for isometry by estimating the 250

standardized major axis (SMA) slope of change in the abaxial trait against change in the 251

adaxial trait for both stomatal length and stomatal density. If change on each surface is 252
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isometric, then the HPD intervals for the slope should include 1. We used the coefficient of 253

determination, r2, to quantify the strength of integration, where a value of 1 is complete 254

integration and a value of 0 is complete disintegration. 255

Results 256

Adaxial stomatal density is more variable, but size-density covariance 257

is similar on both surfaces 258

Stomatal length negatively covaries with stomatal density similarly on both surfaces, but on 259

the adaxial surface there are many more taxa that have low stomatal density and small size 260

compared to the abaxial surface (Fig. 2). In principle, this pattern could arise either because 261

size-density covariance differs or the variance in adaxial stomatal density increases faster than 262

that for abaxial stomatal density. Also note that the interspecific variance increases with time 263

since divergence for all traits (Table S3), but the covariance matrix structure did not change 264

qualitatively over time (results not shown). For consistency, we therefore report estimates 265

conditional on time since divergence set to 0. Across pairs, we estimate that the covariance 266

between size and density is similar. The median estimate is 267

Cov[Δlog(Lad),Δlog(Dad)] − Cov[Δlog(Lab),Δlog(Dab)] = 2.66 × 10−3, but 0 is within the range 268

of uncertainty (95% HPD interval [−6.72 × 10−4, 6.79 × 10−3]). However the variance in adaxial 269

stomatal density is significantly greater than the abaxial stomatal density [Fig. 3]). We 270

estimate Var[Δlog(Dad)] is 2.64 × 10−2 (95% HPD interval [8.40 × 10−3, 5.13 × 10−2]) greater than 271

Var[Δlog(Dab)]. The variance in stomatal length was similar for both surfaces, with an 272

estimate of −8.08 × 10−5 (95% HPD interval [−1.38 × 10−3, 1.23 × 10−3]). 273

Stomatal density on each surface is less integrated than stomatal 274

length 275

The relationship between stomatal density on each leaf surface is visually more variable than 276

that for stomatal length (Fig. 4). This pattern occurs because the slope and strength of 277

integration for stomatal density on each surface is much weaker than that for stomatal length. 278

The SMA slope between Δlog(Dad) and Δlog(Dab) is less than 1 (estimated slope = 0.815, 95% 279

HPD interval [0.69, 0.929]) and the strength of association is weakly positive (estimated 280

r2 = 0.131, 95% HPD interval [0.0613, 0.202]; Fig. 5). In contrast, the relationship between 281

Δlog(Lad) and Δlog(Lab) is isometric (estimated slope = 1, 95% HPD interval [0.934, 1.08]) and 282

strongly positive (estimated r2 = 0.763, 95% HPD interval [0.707, 0.816]; Fig. 5). 283
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Figure 2. Inverse size-density scaling in a synthesis of amphistomatous leaf traits across 711
taxa. The panels show the relationship between stomatal length (x-axis) and stomatal density
(y-axis) on a log-log scale for values measured on the abaxial leaf surface (left) and the adaxial
leaf surface (right). To avoid overplotting of points, we used a hexbin plot in which the shade
of the hexagonal bin indicates the number of points in that bin. Whiter shades indicate more
points (see scale to the right).

Discussion 284

Developmental integration leads to trait covariation and may hinder adaptation by preventing 285

traits from evolving independently towards a multivariate phenotypic optimum. Two major 286

features of stomatal anatomical variation at the macroevolutionary scale, inverse size-density 287

scaling and bimodal stomatal ratio, may be shaped by developmental integration between 288

pavement and guard cell size on both leaf surfaces. In this study, we took advantage of the fact 289

that amphistomatous leaves produce stomata on both abaxial (usually lower) and adaxial 290

(usually upper) surfaces to test predictions of developmental integration hypotheses using a 291

global phylogenetic comparison of seed plants, albeit mostly angiosperms. Contrary to 292

developmental integration hypotheses, adaxial stomatal density (Dad) evolves somewhat 293

independently of adaxial stomatal length (Lad) and abaxial stomatal density (Dab). Hence, 294

inverse size-density scaling and bimodal stomatal ratio cannot be attributed entirely to 295

developmental integration. Quasi-independent evolution of traits should enable lineages to 296

reach their fitness optimum, implying that selection is most likely a major constraint on the 297

variation in stomatal anatomy in seed plants. Future research should test whether 298

developmental integration is more or less important in certain lineages and identify the 299

mechanistic basis of developmental disintegration where it occurs on the plant tree of life. 300
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Does developmental integration lead to inverse size-density scaling? 301

If stomatal size and density are both determined by meristematic cell volume (Brodribb, Jordan, 302

and Carpenter 2013), then we predicted inverse size-density scaling would evolve with the 303

same (co)variance for both ab- and adaxial leaf surfaces. Contrary to this prediction, there are 304

many combinations of stomatal density and length found on adaxial leaf surfaces that are 305

absent from abaxial leaf surfaces (Fig. 2). In principle, the different relationship between traits 306

on each surface could be caused by different evolutionary variance in stomatal density 307

(Var[Δlog(Dab)] ≠ Var[Δlog(Dad)]) and/or covariance 308

(Cov[Δlog(Lab),Δlog(Dab)] ≠ Cov[Δlog(Lad),Δlog(Dad)]) on each surface. However, the 309

covariance relationship between density and length is similar on each surface, whereas the 310

evolutionary variance in adaxial stomatal density is significantly higher than that for abaxial 311

density (Var[Δlog(Dab)] < Var[Δlog(Dad)]; Fig. 3). Given that the average stomatal length is 312

usually about the same on each surface (see below), these results imply that plants can often 313

evolve stomatal densities on each surface without a concomitant change in size. 314

The disintegration of stomatal size and density on adaxial leaf surfaces implies that the 315

inverse size-density scaling on abaxial surfaces (Weiss 1865; Franks and Beerling 2009; Boer et 316

al. 2016; Sack and Buckley 2016; Liu et al. 2021) is not a developmental fait accompli. The 317

lability of Dad may explain why there is so much putatively adaptive variation in the trait 318

along light gradients (Muir 2018) and in coordination with other anatomical traits that vary 319

among precipitation habitats (Pathare, Koteyeva, and Cousins 2020). It also suggests that the 320

relationship between genome size and stomatal anatomy at macroevolutionary scales (Roddy 321

et al. 2020) may not be causal. Genome size sets a minimum on meristematic cell volume 322

(Šímová and Herben 2012), but the decoupling of size and density on the adaxial surface 323

suggests that meristematic cell volume is probably not a strong constraint on the final size of 324

pavement and guard cells. 325

Does developmental integration lead to bimodal stomatal ratio? 326

We predicted that if abaxial and adaxial stomata are developmentally integrated then we 327

should observe a strong, isometric relationship between trait divergence on each surface. 328

Consistent with this prediction, divergence in stomatal length on each surface is isometric 329

(SMA slope = 1) and strongly associated (r2 = 0.763; Fig. 5). In contrast, divergence in stomatal 330

density on each surface was not isometric (SMA slope = 0.815) and much less integrated (r2 = 331

0.131; Fig. 5). Since average stomatal density on each surface can evolve quasi-independently, 332

a wide variety of stomatal ratios are developmentally possible. Leaves are not “forced” to 333
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deploy identical stomatal development programs on each surface. Hence, the bimodal stomatal 334

ratio pattern (Muir 2015) is unlikely to be the result of developmental integration alone. 335

Limitations and future research 336

The ability of adaxial stomatal density to evolve independently of stomatal size and abaxial 337

stomatal density is not consistent with the hypothesis that developmental integration is the 338

primary cause leading to inverse size-density scaling or bimodal stomatal ratio. However, 339

there are two major limitations of this study that should be addressed in future work. First, 340

while Dab can diverge independently of other stomatal traits globally, we cannot rule out that 341

developmental integration is important in some lineages. For example, Berg’s rule observes 342

that vegetative and floral traits are often developmentally integrated, but integration can be 343

broken when selection favors flowers for specialized pollination (Berg 1959, 1960; Conner and 344

Lande 2014). Analogously, developmental integration between stomatal anatomical traits could 345

evolve in some lineages, due to selection or other evolutionary forces, but become less 346

integrated in other lineages. For example, Dab and Dad are positively genetically correlated in 347

Oryza (Ishimaru et al. 2001; Rae et al. 2006), suggesting developmental integration may 348

contribute to low variation in stomatal ratio between species of this genus (Giuliani et al. 2013). 349

A second major limitation is that covariation in traits like stomatal length, which appear to be 350

developmentally integrated on each surface, could be caused by other processes. For example, 351

since stomatal size affects the speed and mechanics of stomatal closure (Drake, Froend, and 352

Franks 2013; Harrison et al. 2020), there may be strong selection for similar stomatal size 353

throughout the leaf to harmonize rates of stomatal closure. Coordination between epidermal 354

and mesophyll development may also constrain how independently stomatal traits on each 355

surface can evolve (Dow, Berry, and Bergmann 2017; Lundgren et al. 2019). 356

Future research should identify the mechanistic basis of developmental disintegration 357

between Dab and Dad. Multiple reviews of stomatal development conclude that stomatal traits 358

are independently controlled on each surface (Lake, Woodward, and Quick 2002; Bergmann 359

and Sack 2007), but we do not know much about linkage between ab-adaxial polarity and 360

stomatal development (Kidner and Timmermans 2010; Pillitteri and Torii 2012). Systems that 361

have natural variation in stomatal ratio should allow us to study how developmental 362

disintegration evolves. Quantitative genetic studies in Brassica oleracea L., Oryza sativa L., 363

Populus trichocarpa Torr. & A. Gray ex Hook., Populus interspecific crosses, and Solanum 364

interspecific crosses, typically find partial independence of Dab and Dad; some loci affect both 365

traits, but some loci only affect density on one surface and/or genetic correlations are weak 366
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(Ishimaru et al. 2001; Ferris et al. 2002; Hall et al. 2005; Rae et al. 2006; Laza et al. 2010; 367

Chitwood et al. 2013; McKown et al. 2014; Muir, Pease, and Moyle 2014; Porth et al. 2015; 368

Fetter, Nelson, and Keller 2021). For example, Populus trichocarpa populations have putatively 369

adaptive genetic variation in Dad. Populations are more amphistomatous at Northern latitudes 370

with shorter growing seasons that may select for faster carbon assimilation (McKown et al. 371

2014; Kaluthota et al. 2015; Porth et al. 2015). Genetic variation in key stomatal development 372

transcription factors is associated with latitudinal variation in Dad, which should help reveal 373

mechanistic basis of developmental disintegration between surfaces (McKown et al. 2019). 374
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Figure 3. Evolutionary divergence in adaxial stomatal density is more variable, but covariance
between density and length is similar on both surfaces. (a) Data from 327 phylogenetically
independent contrasts of change in log(stomatal length) (x-axis) and log(stomatal density)
(y-axis) for abaxial (left panel) and adaxial (right panel) leaf surfaces. Each contrast is shown by
black points and every contrast appears on both panels. Grey ellipses are the model-estimated
95% covariance ellipses. The negative covariance is similar for both surfaces but the breadth
in the y-direction is larger for adaxial traits, indicating greater evolutionary divergence in
log(stomatal density). (b) Parameter estimates (points), 66% (thick lines), and 95% HPD intervals
for estimates of trait (co)variance. Grey points and lines represent ab- and adaxial values; black
points and lines represent the estimated difference in (co)variance between surfaces. Only
the variance for stomatal density (middle panel) is significantly greater for the adaxial surface
(95% HPD interval does not overlap the dashed line at 0). Reported paremeter estimates are
conditioned on zero time since divergence between taxa (see Results).
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Figure 4. Relationship stomatal density and length on each leaf surface in a synthesis of
amphistomatous leaf traits across 711 taxa. The panels show the relationship between the
abaxial trait value (x-axis) and the adaxial trait value (y-axis) on a log-log scale for stomatal
density (left) and stomatal length (right). To avoid overplotting of points, we used a hexbin
plot in which the shade of the hexagonal bin indicates the number of points in that bin. Whiter
shades indicate more points (see scale to the right). The dashed line in across the middle is the
1:1 line for reference.
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Figure 5. Developmental integration in stomatal length is much stronger than stomatal density
between the surfaces of amphistomatous leaves (a) Data from 327 phylogenetically independent
contrasts of change in the abaxial trait value (x-axis) against change in the adaxial trait value
(y-axis) for log(stomatal density) (left panel) and log(stomatal length) (right panel). Each
contrast is shown by black points and every contrast appears on both panels. Dashed grey
lines are 1:1 lines for reference. Solid grey lines and ribbon the fitted SMA slope and 95% HPD
interval. (b) The SMA slope (left panel) is significantly less than 1 (isometry, top dashed line)
for density but very close to isometric for length. The coefficient of determination (r2, right
panel) is also much greater for length than density. The points are parameter estimates with
66% (thick lines) and 95% HPD intervals. Reported paremeter estimates are conditioned on zero
time since divergence between taxa (see Results).
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Supporting Information 384

Note S1: Final fully resolved bifurcating phylogenetic tree of 711 taxa in Newick format. 385

Table S1. Primary sources of stomatal anatomical data and the taxa covered by each source.

Source Taxa

Arambarri et al. (2005) lotus

Avita and Inamdar (1980) ranunculaceae,paeoniaceae

Bucher et al. (2017) many

Caldera et al. (2017) arabidopsis thali,ana

Chandra (1967) solanum

Conesa et al. (2019) limonium

Eckerson (1908) many

Gindel (1969) many

Giuliani et al. (2013) oryza

Hanafy et al. (2019) mentha

Huang (2019) trees

Juhász (1966) solanum

Juhász (1968) solanum

Kannabiran and Ramassamy (1988) apocynaceae

Kawamitsu et al. (1996) grasses

Khan et al. (2019) gymnosperms

Kim (1987) silverswords

McKown, Akamine, and Sack (2016) scaevola

Muir, Galmés, and Conesa (2021) solanum

Pallardy and Kozlowski (1979) populus

Pandey and Nagar (2003) many

Pathare, Koteyeva, and Cousins (2020) grasses

Rivera, Villaseñor, and Terrazas (2017) asteraceae

Rodriguez (2021) eucalyptus

Scalon et al. (2016) passovia

Siddiqi, Ahmad, and Rehman (1991) euphorbiaceae

Sporck (2011) euphorbia

Stenglein et al. (2003a) lotus

Stenglein et al. (2003b) lotus

Sundberg (1986) many
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Source Taxa

Szymura and Wolski (2011) solidago

Xiong and Flexas (2020) many

Yang et al. (2014) many

Zarinkamar (2006) monocots

Zarinkamar (2007) eudicots

Zhao et al. (2020) monocots

Zlatković et al. (2017) sedum

Zoric et al. (2009) trifolium
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Table S2. Final data set of 327 taxon pairs for analysis. tree_node is the node of the common
ancestor of the taxon pair sp1 and sp2 in the phylogeny (Note S1). pair_age is the time in
millions of years since taxa split. The remaining columns are the trait divergence (log-scale)
between taxa (Δlog(trait)).

Table S3. Parameter estimates and 95% highest posterior density (HPD) intervals. For each
trait (Dab, Dad, Lab, Lad) we estimated the average (median) divergence between taxon pairs,
denoted Δlog(trait). See Table 1 for symbol definitions. The second section is the standard
deviation of Δlog(trait). The third section is the estimated coefficient of pair age (millions
of years) on the standard devition on a log-link scale. The fourth section is the estimated
correlation coefficient between Δlog(trait) of all pairwise trait combinations. The final section
is the estimated � family of the Student t distribution.

Trait(s) Estimate 95% HPD interval
Average Δlog(trait)

Dab -0.0015 −0.03 − 0.031
Dad -0.0019 −0.04 − 0.038
Lab -0.0038 −0.016 − 0.0096
Lad -0.0017 −0.015 − 0.011

Standard deviation of Δlog(trait)

Dab 0.230 0.2 − 0.26
Dad 0.280 0.24 − 0.32
Lab 0.094 0.083 − 0.1
Lad 0.094 0.084 − 0.11

Effect of pair age on standard deviation of Δlog(trait)
log-link scale

Dab 0.0098 0.0039 − 0.017
Dad 0.0170 0.01 − 0.024
Lab 0.0140 0.0091 − 0.02
Lad 0.0150 0.0096 − 0.021

Correlation between Δlog(trait)

Dab − Dad 0.36 0.26 − 0.46
Dab − Lab -0.55 −0.63 − −0.47
Dab − Lad -0.43 −0.53 − −0.34
Dad − Lab -0.31 −0.41 − −0.2
Dad − Lad -0.34 −0.45 − −0.24
Lab − Lad 0.87 0.84 − 0.9

Student t famil parameter �

− 3.7 2.8 − 4.7
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