Exploring bycatch diversity of organisms in whole genome sequencing of Erebidae moths (Lepidoptera)

Hamid Reza Ghanavi¹, Victoria Twort^{1,2} and Anne Duplouy^{1,3}

¹ Department of Biology, Lund University, Lund, Sweden.

² The Finnish Museum of Natural History Luomus, Zoology Unit, The University of Helsinki, Helsinki, Finland

³ Insect Symbiosis Ecology and Evolution, Organismal and Evolutionary Biology Research Program, The University of Helsinki, Helsinki, Finland

Corresponding Author: Hamid Reza Ghanavi Ecology Building, Sölvegatan 37, Lund, Skåne, 22362, Sweden Street Address, City, State/Province, Zip code, Country Email address: <u>hamid.ghanavi@biol.lu.se</u>

ORCID:

- Hamid Reza Ghanavi: 0000-0003-1029-4236
- Victoria Twort: 0000-0002-5581-4154
- Anne Duplouy: 0000-0002-7147-5199

Abstract

Models estimate that up to 80% of all butterfly and moth species host vertically transmitted endosymbiotic microorganisms, which can affect the host fitness, metabolism, reproduction, population dynamics, and genetic diversity, among others. The supporting empirical data are however currently highly biased towards the generally more colourful butterflies, and include less information about moths. Additionally, studies of symbiotic partners of Lepidoptera predominantly focus on the common bacterium *Wolbachia pipientis*, while infections by other inherited microbial partners have more rarely been investigated. Here, we mine the whole genome sequence data of 47 species of Erebidae moths, with the aims to both inform on the diversity of symbionts potentially associated with this Lepidoptera group, and discuss the potential of metagenomic approaches to inform on their associated microbiome diversity. Based on the result of Kraken2 and MetaPhlAn2 analyses, we found clear evidence of the presence of *Wolbachia* in four species. Our result also suggests the presence of three other bacterial symbionts (*Burkholderia* spp., *Sodalis* spp. and *Arsenophonus* spp.), in three other moth species. Additionally, we recovered genomic material from bracovirus in about half of our samples. The detection of the latter, usually found in mutualistic association to braconid parasitoid wasps, may inform on host-parasite interactions that take place in the natural habitat of the Erebidae moths, suggesting either contamination with material from species of the host community network, or horizontal transfer of members of the microbiome between interacting species.

Keywords

Genomics, Symbionts, Wolbachia, Lepidoptera, High throughput sequencing technologies

Introduction

A growing scientific community now sees each organism as a community of interacting species rather than as an independent entity. Insects are no exception. They host a variety of microbial symbionts sitting both inside and outside their host cells. These microorganisms are at least as numerous as the number of host cells, and may constitute up to 10% of the host total mass ¹. The effects of symbionts on their insect hosts are potentially as diverse as their taxonomy, ranging from pathogenic to obligate mutualists, and all the intermediate possible relationships ². This diversity has recently attracted the growing interest of the scientific community, but gaps and biases remain. For example, in Lepidoptera, research in symbiosis has mostly focused on the most charismatic groups of colourful diurnal butterflies ³⁻⁵ and on pest species to the human society ⁶⁻⁸. In contrast, the rest of Lepidoptera (mainly moths) which encompass no less than 130,000 species ⁹, have rarely been screened for their associations with symbionts ¹⁰.

High throughput sequencing technologies (HTS) now provide a relatively easy and cheap way to obtain large amounts of genetic data. These technologies used to generate genomic data are

varied and broadly applicable to the widest range of organisms. Thereby, revolutionizing our accessibility to genomic resources and continually expanding and renewing the scope of the questions we can address within the natural sciences. For example, sequencing material from a particular study organism, either entirely or partially, may results in a mix of primary host specific DNA and DNA from other sources. These other sources can include ecto/endosymbionts, food, and opportunistic parasites and pathogens, among others. Such genomic data opens up the genomic analyses towards broader targets, especially towards investigating the diversity of symbionts that might be associated to particular targeted hosts. Here, we mine the data produced from whole genome sequencing of 47 moth species from the family Erebidae to i) explore the potential diversity of symbionts associated to this megadiverse Lepidoptera family; and ii) to evaluate the exploratory power of recovering information on natural host-symbiont associations from the low coverage genome sequencing

approaches.

Results

Metagenomic analysis:

We identified the species *Idia aemula*, *Luceria striata*, *Acantholipes circumdata* and *Oraesia excavata* (RZ271, RZ42, RZ248, and RZ337) as infected by *Wolbachia*, and *Wolbachia*-associated phage *WO* (Table 1), with between 66,978 and 208,044 of the reads identified as belonging to the symbiont. Additionally, the reads obtained from sample RZ13 (*Gonitis involuta*) was also found to include 954 *Wolbachia* reads, which is a higher number of reads than found for any of the clearly uninfected specimens, but is considerably less than any of the four clearly infected specimens listed above.

Our Kraken2 and MetaPhlan2 analyses showed no to very few reads mapping to *Cardinium*, *Hamiltonella* or *Spiroplasma* bacteria, or to Microsporidian fungi, in any of the 47 datasets screened. In contrast, the specimens RZ103 and RZ111 (*Rema costimacula* and *Platyjionia mediorufa*) included considerably more reads from *Sodalis* bacteria (9,108 and 4,395, respectively), and from *Arsenophonus* bacteria (1,336 and 662, respectively), than any other samples (maximum of 50 reads in any other sample). A closer look at the Kraken2 outputs from the latter two samples also revealed a possible infection with a *Plautia stali* symbiont (gammaproteobacteria; 3,856 and 1,914 reads, respectively), which was not detected in any of the other 45 samples. Additionally, the sample RZ30 (*Creatonotos transiens*) is the only one

to show relatively high number of reads mapping to *Burkholderia* bacteria (N=1,995). Finally, we identified a considerable amount of reads from viruses of the polydnaviridae family, and especially of the Bracoviruses in three samples, *Erebus ephesperis*, *Masca abactalis* and *Asota heliconia* (RZ11, 1288 reads, RZ18, 1381 reads, and RZ44, 1384 reads). All other samples only include less than 750 reads, and more often no reads, for these viruses.

All details of the screen for the common symbionts can be found in Table 1, while all results from the Kraken2 and MetaPhlAn2 analyses can be found in the supplementary material and GitHub repository.

Discussion

We confidently add four moth species (i.e., *Idia aemula, Luceria striata, Acantholipes circumdata* and *Oraesia excavata*) to the list of species hosting the intracellular alphaproteobacterial symbiont *Wolbachia* (Hornett and Duplouy 2018), confirmed through two screening methods (i.e., Kraken2 and MetaPhlAn). With only 4 out of 47 species (8%) found infected, this represents a lower infection rate than presented in the current literature suggests (i.e., 16-79% of the studied lepidopteran groups infected with *Wolbachia*; ^{11–16}. The general penetrance of *Wolbachia* however varies significantly among species, and is often low within infected populations ¹⁷. Thus, our results are most likely underestimating the true infection rate within the Erebidae moths. Future broader screenings of different populations will provide more accurate natural infection rates for these species.

Noticeably, we observe the presence of *Wolbachia* phage *WO* within those samples for which *Wolbachia* presence is strongly supported. The interaction of this bacteriophage with *Wolbachia* has been the focus of many evolutionary studies in recent years ^{18–22}. Previous research suggests that phage *WO* are associated with horizontal gene transfer in *Wolbachia*, and with genes that may affect the fitness of the bacterium ^{23,24}. These bacteriophages have been observed in practically all the studied genomes of *Wolbachia* up to date, with very few obligate mutualistic exceptions ^{18,25,26}. In the sample RZ13, species *Gonitis involuta*, a relatively high number of reads mapped to *Wolbachia* (1K reads), although significantly lower than in the other four species (29K-144K reads), and no reads were mapped to phage-*WO*. Few non-excluding hypotheses may explain such a pattern, these reads might originate from (I) contamination with other genetic material alien to our sample, (II) the integration of

Wolbachia genomic material (partially or entirely) in the host genome, (III) random errors in the Identification of the reads as *Wolbachia*, (IV) low quality genomic material or (V) a combination of above-mentioned reasons. The overall screening results suggest that this sample was of low quality prior to sequencing. We however cannot rule out any of the other possibilities, and more studies are needed to fully confirm or reject the presence of *Wolbachia* in this species.

The two moth samples, *Rema costimacula* (RZ103) and *Platyjionia mediorufa* (RZ111), were of particular interests. Both the Kraken2 and the MetaPhlAn2 analyses suggest the presence of three gammaproteobacteria endosymbionts, namely Sodalis, Arsenophonus and 'Plautia stali-symbiont' in both samples. Sodalis has been characterized from different insects, including tsetse flies ²⁷, seal louse ²⁸, pigeon louse ²⁹, loose flies ³⁰, aphids ³¹, seed bug ³², weevils ^{33,34}, stinkbugs ³⁵, bees ³⁶, and ants ³⁷, among others. To our best knowledge however, this is the first time the three symbionts are found in Lepidoptera (Duplouy and Hornett 2018). This suggests that Sodalis bacteria might affect a more diverse group of organisms than is currently known. We are however cautious with the interpretation of this result, as the simple discovery of bacteria in the genomic data does not inform us about the nature of their interactions with the hosts. Whether Sodalis and the moth species share a symbiotic relationship, or not, will only be confirmed via experimentation and testing of the partnership through the host generations. Contamination of those two samples prior to DNA extraction is always possible. However, the sequenced host genetic material did not include significant amount of hemipteran DNA (or any other non-lepidopteran insect order), with comparable low numbers of reads (<1,500) mapped to Hemipterans in all the sequenced genomes. This, rules out DNA contamination by material from the previously confirmed hemipteran hosts of these three symbionts. It is shown that the female brown-winged green bug, P. stali, smears excrement over the egg surface during oviposition. The nymphs acquire the symbionts right after hatching by ingesting the excrements ³⁸. Therefore, a possible contamination source could be any contact with such excrement/egg clusters. Once again, studies of the symbionts in natural populations of these moth species are needed to fully resolve the true infection state of these species and the relationship with the bacteria.

The moth species *Creatonotos transiens* shows a potential partnership with proteobacteria *Burkholderia* sp. In Lepidoptera, *Burkholderia* are known from the microbiota associated with the moth *Lymantria dispar* ³⁹. However, similarly to the other symbionts presented

above, these bacteria are also found in very diverse groups of organisms, from Amoebas to Orthoptera, from humans to plants ^{40–43}. In the bean bug, *Riptortus pedestris*, studies have suggested that the bacteria can benefit their host by providing resistance to pesticides ⁴⁴. Although never tested, the presence of such Proteobacteria in moths could similarly enhance the host ability to resist pesticides. If proven true, this could contribute to partially explaining the global success of many pest moth species despite the development of various targeted control strategies.

Six genomes included significantly high amounts of bracovirus reads, *Erebus ephesperis* (RZ11), *Masca abactalis* (RZ18), *Nodaria verticalis* (RZ180), *Mecodina praecipua* (RZ268), *Idia aemula* (RZ271) and *Asota heliconia* (RZ44). Bracoviruses are a known genus of mutualistic viruses with a complex life cycle. Integrated in the genome of a braconid parasitic wasp, the bracovirus is transcribed during oviposition in lepidopteran larvae ⁴⁵. The presence of this viral genetic material in adult moths might suggest an unsuccessful infection by the parasitoid, and the survival of the larvae carrying the parasitic viral particles. Another potential explanation includes the possibility for the viral DNA to be integrated into the lepidopteran genome, as it is usually found in its common Hymenoptera host. Only studies simultaneously investigating parasitism success rate and tissue tropism of the bracoviruses in the Lepidoptera and Hymenoptera hosts, will be able to inform on the nature of these interactions.

From a methodological point of view, the present study shows the successful exploratory approach to mine for potentially hidden associated microbial diversity in genomic data. Our study was performed on shallow genome short reads obtained using Illumina platform. The original purpose of this sequencing effort was to study the phylogenomics of the hosts species ⁴⁶, but a similar approach to the one we have taken here can be implemented to any publicly available genomic datasets. The popularity of genomic scale sequence data methods, such as Illumina short read approach, created a wide publicly open genomic resource for the research community to study questions that are not directly into the focus of the studies generating them. It is however important to also consider the limitations of such approaches. First, the quality and completeness of the reference datasets needed for programs like Kraken2 are bound to significantly affect the results. Second, incomplete and shallow genomes tend to present false negatives when mined for many symbionts. In addition, the origin of the DNA used for the genome sequencing will affect any conclusion on presence/absence or abundance

of the symbionts detected and those undetected. In our study, all the used genomes came from DNA extracted from legs, therefore there is a methodical hard bias against gut fauna for example. Third, this kind of exploratory analyses of genomic material does not inform about the nature of the interaction between the organisms found in the genomic mix. Furthermore, in the majority of cases, this method also does not inform on the origin of the organisms. This is especially important as sample contamination is a known problem since the appearance of the molecular sequencing techniques. Finally, this method is not suitable for quantification of the present organisms. Altogether, these limitations exemplify the exploratory nature of the approach we used in this study.

Conclusion

As we expected, our method detects various symbiotic partners in several Erebidae moth species, including *Wolbachia* and the bacteriophage *WO* in four species, *Burkholderia* in one other species, and *Sodalis* and *Arsenophonus* simultaneously in two species. Although symbiotic associations of Lepidoptera with *Wolbachia* is likely, similar long-term associations between the three other symbionts and the Lepidoptera have yet to be described. Similarly, we detect DNA material from bracoviruses that are currently only described as mutualistic symbionts of Hymenoptera. The true nature of these associations requires further experimental investigation. The detection of bracovirus DNA could for example suggest ecological interactions between moths and parasitoids, and the ability of the formers to naturally resist parasitoid attack strategies. Altogether our study presents a method and produces material supporting testable hypotheses about the diversity and nature of symbiotic interactions in those particular Lepidoptera species. With the availability of open access metagenomics databases, this field promises extensive and exciting opportunities to explore potentially hidden symbiotic diversity.

Material and Methods

Genome Data:

We used the data produced from the whole genome sequencing project of 47 Erebidae species (see ⁴⁶). The sampling information is shown in Table 1. This selection includes genomes representing the main described subfamilies and major lineages within the Erebidae family.

The DNA was extracted from one or two legs of the selected samples. Extractions took place in 2000s / over a decade ago, for the purpose of another study (see ⁴⁷). It is important to keep in mind that the genome sequencing approach generating this dataset is not optimized to recover the symbiont diversity of these organisms, therefore the diversity is likely to be systematically underestimated.

Metagenomic analysis:

The raw reads were quality checked with FASTQC v0.11.8⁴⁸. Reads containing ambiguous bases were removed from the dataset using Prinseq 0.20.4⁴⁹. Reads were cleaned to remove low quality bases from the beginning (LEADING: 3) and end (TRAILING: 3) and reads less than 30 bp in length. The evaluation of read quality with a sliding window approach was done in Trimmomatic 0.38 ⁵⁰. Quality was measured for sliding windows of 4 bp and had to be greater than PHRED 25 on average. Cleaned reads were assigned taxonomic labels with Kraken2⁵¹ and MetaPhlAn 2.0⁵². Kraken2 was run using a custom database, which contained the standard kraken database, the refseq viral, bacteria and plasmid databases and all available Lepidoptera genomes from genbank (Supplementary Table 1 contains a full list of taxa included), confidence threshold of 0.05, and a mpa style output. MetaPhIAn was run using the analysis type rel_ab_w_read_stats, which provides the relative abundance and an estimate of read numbers originating from each clade. We visually screened the result for each sample, focusing on seven genera of vertically transmitted bacterial symbionts (i.e., Arsenophonus sp., Cardinium sp., Hamiltonella sp., Rickettsia sp., Sodalis sp., Spiroplasma sp. and Wolbachia sp.), one group of fungal symbionts (Microsporidia), and three types of viral symbionts (i.e., Wolbachia-phage WO, ichnovirus and bracovirus). This represents a non-exhaustive list of the maternally inherited symbionts found in diverse insect hosts, but covers all of those that have already been characterized within Lepidoptera¹⁰. We also checked on the presence of the gut bacteria Burkholderia sp., which are known to confer pesticide resistance to their host in the pest bean bug Riportus pedestris (e.g., 'can degrade an organophosphate pesticide, fenitrothion)⁵³.

Data availability:

The genome data used in this study are deposited in the NCBI SRA under BioProject PRJNA702831. All data in the supplementary material, the tables and the results can be found and downloaded from the GitHub repository: github.com/Hamidhrg/ErebidSymbionts.

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.02.458197; this version posted September 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

References

- 1. Douglas, A. E. Multiorganismal Insects: Diversity and Function of Resident Microorganisms. *Annual Review of Entomology* **60**, 17–34 (2015).
- 2. Dillon, R. J. & Dillon, V. M. THE GUT BACTERIA OF INSECTS: Nonpathogenic Interactions. *Annual Review of Entomology* **49**, 71–92 (2004).
- 3. Duplouy, A., Hursts, G. D. D., O'neill, S. L. & Charlat, S. Rapid spread of male-killing Wolbachia in the butterfly Hypolimnas bolina. *Journal of Evolutionary Biology* **23**, 231–235 (2010).
- 4. Altizer, S. M., Oberhauser, K. S. & Brower, L. P. Associations between host migration and the prevalence of a protozoan parasite in natural populations of adult monarch butterflies. *Ecological Entomology* **25**, 125–139 (2000).
- 5. Jiggins, Hurst, Dolman & Majerus. High-prevalence male-killing Wolbachia in the butterfly Acraea encedana. *Journal of Evolutionary Biology* **13**, 495–501 (2000).
- 6. Xu, P., Liu, Y., Graham, R. I., Wilson, K. & Wu, K. Densovirus Is a Mutualistic Symbiont of a Global Crop Pest (Helicoverpa armigera) and Protects against a Baculovirus and Bt Biopesticide. *PLoS Pathogens* **10**, e1004490 (2014).
- 7. Bapatla, K. G., Singh, A., Yeddula, S. & Patil, R. H. Annotation of gut bacterial taxonomic and functional diversity in Spodoptera litura and Spilosoma obliqua. *Journal of Basic Microbiology* **58**, 217–226 (2018).
- 8. Chen, F. *et al.* Effects of Wolbachia on mitochondrial DNA variation in populations of Athetis lepigone (Lepidoptera: Noctuidae) in China. *Mitochondrial DNA Part A* **28**, 826–834 (2017).
- 9. van Nieukerken, E. J. *et al.* Order Lepidoptera Linnaeus, 1758. In: Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. *Zootaxa* **1758**, 212–221 (2011).
- 10. Duplouy, A. & Hornett, E. A. Uncovering the hidden players in Lepidoptera biology: the heritable microbial endosymbionts. *PeerJ* **6**, e4629 (2018).
- 11. Werren, J. H., Windsor, D. & Guo, L. Distribution of Wolbachia among neotropical arthropods. *Proceedings of the Royal Society of London. Series B: Biological Sciences* **262**, 197–204 (1995).
- 12. Salunke, B. K. *et al.* Determination of Wolbachia Diversity in Butterflies from Western Ghats, India, by a Multigene Approach. *Applied and Environmental Microbiology* **78**, 4458–4467 (2012).
- 13. Duplouy, A. & Brattström, O. Wolbachia in the Genus Bicyclus: a Forgotten Player. *Microbial Ecology* **75**, 255–263 (2018).
- 14. Jiggins, F. M., Bentley, J. K., Majerus, M. E. & Hurst, G. D. How many species are infected with Wolbachia ? Cryptic sex ratio distorters revealed to be common by intensive sampling. *Proceedings of the Royal Society of London. Series B: Biological Sciences* **268**, 1123–1126 (2001).
- 15. Tagami, Y. & Miura, K. Distribution and prevalence of Wolbachia in Japanese populations of Lepidoptera. *Insect Molecular Biology* **13**, 359–364 (2004).

- Ilinsky, Y. & Kosterin, O. E. Molecular diversity of Wolbachia in Lepidoptera: Prevalent allelic content and high recombination of MLST genes. *Molecular Phylogenetics and Evolution* **109**, 164–179 (2017).
- Sazama, E. J., Ouellette, S. P. & Wesner, J. S. Bacterial Endosymbionts Are Common Among, but not Necessarily Within, Insect Species. *Environmental Entomology* 48, 127–133 (2019).
- 18. Gavotte, L. *et al.* A Survey of the Bacteriophage WO in the Endosymbiotic Bacteria Wolbachia. *Molecular Biology and Evolution* **24**, 427–435 (2006).
- 19. Wang, G. H. *et al.* Bacteriophage WO Can Mediate Horizontal Gene Transfer in Endosymbiotic Wolbachia Genomes. *Frontiers in Microbiology* **7**, 1–16 (2016).
- 20. Wang, N., Jia, S., Xu, H., Liu, Y. & Huang, D. Multiple Horizontal Transfers of Bacteriophage WO and Host Wolbachia in Fig Wasps in a Closed Community. *Frontiers in Microbiology* **7**, 1–10 (2016).
- 21. Tanaka, K., Furukawa, S., Nikoh, N., Sasaki, T. & Fukatsu, T. Complete WO Phage Sequences Reveal Their Dynamic Evolutionary Trajectories and Putative Functional Elements Required for Integration into the Wolbachia Genome. *Applied and Environmental Microbiology* **75**, 5676–5686 (2009).
- 22. Kaushik, S., Sharma, K. K., Ramani, R. & Lakhanpaul, S. Detection of Wolbachia Phage (WO) in Indian Lac Insect [Kerria lacca (Kerr.)] and Its Implications. *Indian Journal of Microbiology* **59**, 237–240 (2019).
- 23. LePage, D. P. *et al.* Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. *Nature* **543**, 243–247 (2017).
- 24. Shropshire, J. D., On, J., Layton, E. M., Zhou, H. & Bordenstein, S. R. One prophage WO gene rescues cytoplasmic incompatibility in Drosophila melanogaster. *Proceedings of the National Academy of Sciences* **115**, 4987 (2018).
- 25. Bordenstein, S. R. & Bordenstein, S. R. Eukaryotic association module in phage WO genomes from Wolbachia. *Nature Communications* **7**, 13155 (2016).
- 26. Kent, B. N. & Bordenstein, S. R. Phage WO of Wolbachia: lambda of the endosymbiont world. *Trends in Microbiology* **18**, 173–181 (2010).
- 27. Dale, C., Young, S. A., Haydon, D. T. & Welburn, S. C. The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. *Proceedings* of the National Academy of Sciences **98**, 1883–1888 (2001).
- 28. Boyd, B. M. *et al.* Two Bacterial Genera, Sodalis and Rickettsia, Associated with the Seal Louse Proechinophthirus fluctus (Phthiraptera: Anoplura). *Applied and Environmental Microbiology* **82**, 3185–3197 (2016).
- 29. Fukatsu, T. *et al.* Bacterial Endosymbiont of the Slender Pigeon Louse, Columbicola columbae, Allied to Endosymbionts of Grain Weevils and Tsetse Flies. *Applied and Environmental Microbiology* **73**, 6660–6668 (2007).
- Šochová, E., Husník, F., Nováková, E., Halajian, A. & Hypša, V. Arsenophonus and Sodalis replacements shape evolution of symbiosis in louse flies. *PeerJ* 5, e4099 (2017).
- 31. Burke, G. R., Normark, B. B., Favret, C. & Moran, N. A. Evolution and Diversity of Facultative Symbionts from the Aphid Subfamily Lachninae. *Applied and Environmental Microbiology* **75**, 5328–5335 (2009).
- 32. Santos-Garcia, D., Silva, F. J., Morin, S., Dettner, K. & Kuechler, S. M. The All-Rounder Sodalis: A New Bacteriome-Associated Endosymbiont of the Lygaeoid Bug Henestaris halophilus (Heteroptera: Henestarinae) and a Critical Examination of Its Evolution. *Genome Biology and Evolution* **9**, 2893–2910 (2017).

- Toju, H. & Fukatsu, T. Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants. *Molecular Ecology* 20, 853–868 (2011).
- 34. Conord, C. *et al.* Long-Term Evolutionary Stability of Bacterial Endosymbiosis in Curculionoidea: Additional Evidence of Symbiont Replacement in the Dryophthoridae Family. *Molecular Biology and Evolution* **25**, 859–868 (2008).
- 35. Kaiwa, N. *et al.* Bacterial Symbionts of the Giant Jewel Stinkbug Eucorysses grandis (Hemiptera: Scutelleridae). *Zoological Science* **28**, 169–174 (2011).
- Rubin, B. E. R., Sanders, J. G., Turner, K. M., Pierce, N. E. & Kocher, S. D. Social behaviour in bees influences the abundance of Sodalis (Enterobacteriaceae) symbionts. *Royal Society Open Science* 5, 180369 (2018).
- Sameshima, S., Hasegawa, E., Kitade, O., Minaka, N. & Matsumoto, T. Phylogenetic Comparison of Endosymbionts with Their Host Ants Based on Molecular Evidence. *Zoological Science* 16, 993–1000 (1999).
- Oishi, S., Moriyama, M., Koga, R. & Fukatsu, T. Morphogenesis and development of midgut symbiotic organ of the stinkbug Plautia stali (Hemiptera: Pentatomidae). *Zoological Letters* 5, 16 (2019).
- 39. Mason, C. J. & Raffa, K. F. Acquisition and Structuring of Midgut Bacterial Communities in Gypsy Moth (Lepidoptera: Erebidae) Larvae. *Environmental Entomology* **43**, 595–604 (2014).
- 40. Khojandi, N., Haselkorn, T. S., Eschbach, M. N., Naser, R. A. & DiSalvo, S. Intracellular Burkholderia Symbionts induce extracellular secondary infections; driving diverse host outcomes that vary by genotype and environment. *ISME Journal* **13**, 2068–2081 (2019).
- 41. Itoh, H. *et al.* Host–symbiont specificity determined by microbe–microbe competition in an insect gut. *Proceedings of the National Academy of Sciences of the United States of America* **116**, 22673–22682 (2019).
- 42. Ohbayashi, T., Itoh, H., Lachat, J., Kikuchi, Y. & Mergaert, P. Burkholderia gut symbionts associated with European and Japanese populations of the dock bug Coreus marginatus (Coreoidea: Coreidae). *Microbes and Environments* **34**, 219–222 (2019).
- 43. Itoh, H. *et al.* Evidence of environmental and vertical transmission of Burkholderia symbionts in the oriental chinch bug, Cavelerius saccharivorus (Heteroptera: Blissidae). *Applied and Environmental Microbiology* **80**, 5974–5983 (2014).
- 44. Kikuchi, Y. *et al.* Symbiont-mediated insecticide resistance. *Proceedings of the National Academy of Sciences of the United States of America* **109**, 8618–8622 (2012).
- 45. Louis, F. *et al.* The Bracovirus Genome of the Parasitoid Wasp Cotesia congregata Is Amplified within 13 Replication Units, Including Sequences Not Packaged in the Particles. *Journal of Virology* **87**, 9649–9660 (2013).
- 46. Ghanavi, H. R., Twort, V., Hartman, T. J., Zahiri, R. & Wahlberg, N. The (non) accuracy of mitochondrial genomes for family level phylogenetics: the case of erebid moths (Lepidoptera; Erebidae). *bioRxiv* (2021) doi:10.1101/2021.07.14.452330.
- 47. Zahiri, R. *et al.* Molecular phylogenetics of Erebidae (Lepidoptera, Noctuoidea). *Systematic Entomology* **37**, 102–124 (2012).
- 48. Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
- 49. Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. *Bioinformatics* (2011) doi:10.1093/bioinformatics/btr026.
- 50. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. *Bioinformatics* (2014) doi:10.1093/bioinformatics/btu170.

- 51. Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. *Genome Biology* **15**, R46 (2014).
- 52. Segata, N. *et al.* Metagenomic microbial community profiling using unique cladespecific marker genes. *Nature Methods* **9**, 811–814 (2012).
- 53. Kikuchi, Y. & Yumoto, I. Efficient Colonization of the Bean Bug Riptortus pedestris by an Environmentally Transmitted Burkholderia Symbiont. *Applied and Environmental Microbiology* **79**, 2088–2091 (2013).

Acknowledgements

HRG received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 6422141. AD was funded by Marie Sklodowska-Curie Individual fellowship (#790531, Home Sweet Home). The authors acknowledge support from the National Genomics Infrastructure in Genomics Production Stockholm funded by Science for Life Laboratory, the Knut and Alice Wallenberg Foundation and the Swedish Research Council, and SNIC/Uppsala Multidisciplinary Center for Advanced Computational Science for assistance with massively parallel sequencing and access to the UPPMAX computational infrastructure. The authors highly value equity, diversity and inclusion in science. We would like to acknowledge the international character of our team, which significantly contributed to the completion and quality of the present study. It includes researchers from different countries, backgrounds and career stages.

Author Contributions

H.R.G. and V.T. conceived the presented idea. H.R.G. carried out the experiments and wrote the manuscript with input from all authors. V.T. and A.D. designed the computational framework and analysed the data. All authors discussed the results and commented on the manuscript.

Conflicts of interest

The authors declare that there is no conflict of interest.

- î	Code	species	Country	# raw reads	Kraken2 Results Metaphlar											Metaphian2 Results
REF				(Million)	Le pido ptera	Spiroplasma	Burkholderia	Sodalis	Ars eno pho nus	Rickettsia	Wolbachia	Wolbachia PhageWo	ich no vir us	bracovirus	Microsporidia	Wolbachia
1	MM00407	Scoliopteryx libatrix	FINLAND	38	2,266,973	-	289	-	-	-	-	-	-	-	-	-
2	RZ103	Rema costimacula	HONG KONG	22	907,037	-	-	9, 108	1,336	-	-	-	-	266	-	-
3	RZ104	Saroba pustulifera	HONG KONG	21	1,649,430	-	-	-	-	-	-	-	-	-	-	-
4	RZ105	Hypocala deflorata	HONG KONG	48	3,231,681	-	59	-	-	-	-	-	-	-	-	-
5	RZ11	Erebus ephesperis	TAIWAN	106	8,550,697	64	298	-	-	-	-	-	-	1,288	-	-
6	RZ111	Platyjionia mediorufa	HONG KONG	26	995,385	-	-	4,395	662	-	-	-	-	-	-	-
7	RZ119	S ch ist or h yn x argen tistrig a	HONG KONG	56	5,928,236	56	99	-	-	-	-	-	-	-	-	-
8	RZ1 3	Gonitis involuta	TANZANIA	17	1,254,304	-	83	-	-	-	954	-	317	102	-	2,005
9	RZ138	Micronoctua sp.	INDONESIA	107	11,736,010	100	126	50	-	-	-	-	-	-	-	-
10	RZ149	Hypopyra capensis	GHANA	53	4,808,838	-	107	-	-	-	-	-	-	-	-	-
11	RZ159	Rivula ochrea	GHANA	59	6,499,556	71	216	-	-	-	-	-	-	-	-	-
12	RZ18	Masca abactalis	INDONESIA	45	4,175,988	-	67	-	-	-	-	-	-	1,381	-	-
13	RZ180	Nodaria verticalis	GHANA	38	4,198,076	-	116	-	-	-	-	-	-	1,731	-	-
14	RZ21	Ophiusa coronata	MALAYSIA	42	2,653,381	-	76	-	-	-	-	-	-	-	-	-
15	RZ22	Azeta ceramina	COSTA RICA	55	4,926,573	64	85	-	-	-	-	-	-	-	-	-
16	RZ 248	Acantholipes circumdata	UAE	28	3,085,527	-	-	-	-	-	29,454	410	-	-	-	220,309
17	RZ 265	Rh es al a imparata	HONG KONG	38	6,206,848	-	67	-	-	-	-	-	-	-	-	-
18	RZ 268	Mecodina praecipua	HONG KONG	26	2,200,296	-	-	-	-	-	-	-	-	790	-	-
19	RZ 271	Idia aemula	USA	52	6,897,287	-	112	-	-	-	144,331	1,038	-	771	-	168,228
20	RZ28	Brunia antica	HONG KONG	77	7,118,395	59	242	-	-	50	-	-	-	-	-	-
21	RZ3	Laspeyria flexula	HUNGARY	54	7,58 3,217	-	82	-	-	-	161	-	-	-	-	-
22	RZ30	Creaton otos transiens	HONG KONG	30	6,196,702	-	1,995	-	-	-	-	-	-	198	-	-
23	RZ 31 3	Sypnoides fumosa	JAPAN	87	10,986,269	-	505	-	-	-	-	-	-	104	-	576
24	RZ 331	Tinolius eburneigutta	THAILAND	33	3,112,193	-	85	-	-	-	-	-	-	159	-	-
25	RZ 332	Anoba anguliplaga	GHANA	42	1,874,468	-	79	-	-	-	-	-	-	-	-	-
26	RZ 336	Calyptra hokkaida	JAPAN	34	5,835,726	-	122	-	-	-	-	-	-	341	-	-
27	RZ 337	Oraesia excavata	HONG KONG	38	3,147,679	-	65	-	-	-	66,978	182	-	581	-	208,044
28	RZ34	Nygmia plana	HONG KONG	19	1,026,248	-	-	-	-	-	-	-		-	-	
29	RZ 367	Hypena baltimoralis	USA	35	3,005,435	-	54	-	-	-	-	-	-	-	-	-

Table 1. The number of reads classified as originating from the host and various microorganisms. Values in bold highlight the values mentioned in the text, - represent samples with either zero or less than 50 reads classified.

30	RZ 389	Tamsia hieroglyphica	MALAYSIA	26	1,285,828	-	63	-	-	-	-	-	-	572	-	-	
31	RZ39	Ericeia subcinerea	HONG KONG	80	7,549,078	-	133	-	-	-	65	-	-	-	-	-	
32	RZ4	Colobochyla salicalis	HUN GARY	44	5,510,176	-	57	-	-	-	-	-	-	72	-	-	-
33	RZ40	Pangrapta bicornuta	HONG KONG	63	7,415,193	-	316	-	-	-	60	-	-	107	-	-	
34	RZ404	Amerila astreus	MALAYSIA	45	4,649,942	-	72	-	-	-	-	-	-	1 30	-	-	
35	RZ41	Metaemene atrigutta	HONG KONG	17	1,079,839	-	-	-	-	-	-	-	-	-	-	-	Č,
36	RZ4 2	Luceria striata	HONG KONG	27	3,065,608	-	75	-	-	-	67,176	494	-	-	-	181,728	
37	RZ44	Asota heliconia	HONG KONG	40	3,763,381	-	54	-	-	-	-	-	-	1,384	-	-	icvicw)
38	RZ48	Sympis rufibasis	HONG KONG	52	5,491,409	<u> </u>	208	-	-	-	-	-	-		-	-	
39	RZ5 6	Phyllodes eyndhovii	TAIWAN	64	4,058,586	-	118	-	-	-	-	-	-	-	-	-	avi
40	RZ5 7	Lygephila maxima	JAPAN	41	3,8 32,732	-	117	-	-	-	-	-	-	-	-	-	ailab
41	RZ58	Melipotis jucunda	USA	57	5,764,266	-	101	-	-	-	-	-	-	101	-	-	available under
42	RZ59	Panopoda rufimargo	USA	42	4,715,473	-	237	-	-	-	-	-	-	-	-	-	nder
43	RZ8	Syntomis phegea	H UN GARY	22	1,675,147	-	-	-	-	-	-	-	-	309	177	-	a <mark>C</mark>
44	RZ89	Arctornis sp.	JAPAN	33	3,256,478	-	50	-	-	-	-	-	-	94	-	-	
45	RZ9	S coleco campa liburna	USA	52	3,132,323	-	137	-	-	-	-	-	-	-	-		C-BY-NC-ND 4.0
46	RZ9 3	Epitausa dilina	COSTA RICA	41	4,202,446	-	-	-	-	-	-	-	-	-	-	-	
47	RZ94	Alesua etialis	COSTA RICA	16	1,605,058	-	76	-	-	-	-	-	=	-	-	-	4.0

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.02.458197; this version posted September 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.02.458197; this version posted September 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.