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Abstract 28 

Background 29 

Dietary high fructose (HFr) is a known metabolic disruptor contributing to development of obesity and 30 

diabetes in Western societies. Initial molecular changes from exposure to HFr on liver metabolism may 31 

be essential to understand the perturbations leading to insulin resistance and abnormalities in lipid and 32 

carbohydrate metabolism. We studied vervet monkeys (Clorocebus aethiops sabaeus) fed a HFr (n=5) 33 

or chow diet (n=5) for 6 weeks, and obtained clinical measures of liver function, blood insulin, cholesterol 34 

and triglycerides. In addition, we performed untargeted global transcriptomics, proteomics, and 35 

metabolomics analyses on liver biopsies to determine the molecular impact of a HFr diet on coordinated 36 

pathways and networks that differed by diet.  37 

 38 

Results 39 

We show that integration of omics data sets improved statistical significance for some pathways and 40 

networks, and decreased significance for others, suggesting that multiple omics datasets enhance 41 

confidence in relevant pathway and network identification. Specifically, we found that sirtuin signaling 42 

and a peroxisome proliferator activated receptor alpha (PPARA) regulatory network were significantly 43 

altered in hepatic response to HFr. Integration of metabolomics and miRNAs data further strengthened 44 

our findings. 45 

 46 

Conclusions 47 

Our integrated analysis of three types of omics data with pathway and regulatory network analysis 48 

demonstrates the usefulness of this approach for discovery of molecular networks central to a biological 49 

response. In addition, metabolites aspartic acid and docosahexaenoic acid (DHA), protein ATG3, and 50 

genes ATG7, HMGCS2 link sirtuin signaling and the PPARA network suggesting molecular mechanisms 51 

for altered hepatic gluconeogenesis from consumption of a HFr diet.  52 
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 57 

BACKGROUND 58 

Fructose intake in countries where people consume a Western diet has significantly increased over the 59 

past three decades, particularly through increased consumption of sweetened beverages and foods 60 

containing high-fructose corn syrup. Fructose consumption comprises a significant proportion of energy 61 

intake in the American diet, and increased consumption coincides with increased prevalence of obesity 62 

over the past three decades (1). Animal studies have shown that diets high in fructose consistently induce 63 

metabolic perturbations associated with metabolic syndrome and diabetes (1, 2). Altered metabolism in 64 

the liver has been implicated in multiple chronic metabolic diseases (3). Several studies have investigated 65 

HFr diet challenges in humans (4, 5) and nonhuman primates (NHP) (6-9). In cynomolgus monkeys 66 

(Macaca fascicularis), long-term exposure to high fructose (HFr) diets increased liver steatosis, with 67 

extent related to duration of fructose exposure (10), but questions remain about the initial molecular 68 

changes induced by high levels of fructose that result in long-term health complications.  69 

 70 

The vervet monkey (Chlorocebus aethiops sabaeus) is a model for multiple human complex diseases 71 

including neurodegenerative disease (11), Alzheimer’s disease (12-15), diabetes, obesity and 72 

metabolism (16-18) and cardiovascular disease (19, 20) among others. Due to the high degree of 73 

genomic (21-23), physiologic and metabolic conservation between vervets and humans, results in vervets 74 

are translatable to understanding human health and disease. The ability to control environmental factors 75 

including diet and feasibility of collecting tissue biopsy samples from healthy animals, provide 76 

opportunities to investigate molecular mechanisms that are dysregulated prior to evidence of clinical 77 

disease. Studies in vervets related to metabolism have included diet interventions with variation in 78 
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sources of protein, fat, and carbohydrate (18, 24, 25); However, none of these studies in humans or NHP 79 

have used global untargeted omics approaches to identify potential molecular mechanisms underlying 80 

diet-induced changes in liver metabolism. In addition, no studies to date have generated an integrated 81 

comprehensive multi-omics dataset to better understand these molecular changes (26).  82 

 83 

The goal of this study included examination of the impact of a short-term exposure to a HFr diet in the 84 

liver, a key organ mediating carbohydrate and lipid metabolism, by integrating high-throughput omics 85 

data and investigating the benefits of data integration across multiple omics domains. The short-term HFr 86 

diet exposure has no discernible impact on body weight, insulin sensitivity, blood pressure, or 87 

triglycerides. Total plasma cholesterol and measures of liver injury were greater in animals fed the HFr 88 

diet than controls. We examined whether early molecular alterations in liver can be detected prior to 89 

development of obesity and diabetes. We compared transcriptome, proteome, and metabolome data 90 

from livers of vervets challenged with a HFr diet for six weeks with those fed a chow diet. We demonstrate 91 

that the molecular information obtained from integrated analysis of multi-omics datasets is more 92 

informative than analyses of any of the individual omics datasets. In addition, using this integrated omics 93 

approach, we identified sirtuin signaling and a peroxisome proliferator activated receptor alpha (PPARA) 94 

regulatory network as central to the hepatic short-term response to a HFr diet. Metabolites aspartic acid 95 

and DHA provide direct evidence on alterations in liver metabolism, and connect sirtuin signaling pathway 96 

and PPARA regulatory network, suggesting perturbations in these molecular mechanisms underlie 97 

altered hepatic gluconeogenesis in response to a short-term HFr diet. 98 

 99 

RESULTS 100 

 101 

Clinical and Morphometric Data Analysis 102 

Female age-matched vervet monkeys were fed a chow diet (controls, n=5) or a HFr diet (n=5) for six 103 

weeks.  Morphometric measures at the end of challenge were not different between groups. Total plasma 104 

cholesterol was increased, and measures of liver injury, alanine aminotransferase, alkaline phosphatase, 105 
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and gamma-glutamyl transpeptidase were increased in animals fed the HFr diet compared to controls 106 

(Table 1). 107 

 108 

Transcriptomics Data Analysis 109 

Comprehensive analysis of RNA expression has commonly been used to study the influence of genetic 110 

factors on phenotypic variation and is often used as a surrogate measure for functional alterations 111 

(potentially mediated by proteins or by alterations in metabolite levels). As a first step of our multi-omics 112 

characterization of liver biopsies from animals in this study, we performed RNA-Seq analyses on all 113 

samples. We identified 10,688 transcripts that passed quality filters. Of these, 467 were differentially 114 

expressed between liver samples from animals fed HFr and chow diets (unadjusted p < 0.05) (Additional 115 

file 3). Pathway enrichment analysis revealed that 51 pathways were different between HFr and chow 116 

including sirtuin signaling, remodeling of epithelial adherens junctions signaling, and necroptosis 117 

signaling (p-value < 0.05, Table 2, Additional files 1 and 4). Regulatory network analysis resulted in 5 118 

networks with predicted activation states. Four networks regulated by XBP1, PPARA, MITF, and KLF15 119 

were predicted to activate downstream targets, and one network regulated by HDAC1 was predicted to 120 

inhibit downstream targets (p-value < 0.05) (Table 3, Additional files 2 and 5). Regulators XBP1, PPARA, 121 

MITF, KLF15, and HDAC1 were expressed but not different between liver samples from HFr and chow-122 

fed animals. 123 

 124 

Proteomics Data Analysis 125 

We analyzed liver-extracted proteins using standard mass spectrometry approaches as reported 126 

previously (27). Overall, we were able to identify 2858 proteins across the 10 samples. Of these, 1594 127 

proteins were identified in at least 3 of 5 samples from either the chow- or the HFr-fed animals, and 1172 128 

proteins were identified in samples from at least 3 animals in each group. We included further analyses 129 

the 1172 proteins plus 70 proteins that passed quality filters for all samples in one group, but were not 130 

found in any of the samples of the other group. Of the combined 1242 proteins that passed these filters, 131 

126 proteins were quantitatively different between liver samples from HFr- and chow-fed animals (p-value 132 
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< 0.05) (Additional file 6). Pathway enrichment analysis revealed 58 pathways altered by HFr and 133 

included pathways that were also observed from the transcriptomic data, including sirtuin signaling, and 134 

remodeling of epithelial adherens junctions signaling (p-value < 0.05, Table 2, Additional file 7). No 135 

regulatory networks were found with a predicted activation state (Table 3, Additional file 8). Network 136 

regulators XBP1, PPARA, MITF, KLF15, and HDAC1 were not detected in the proteomic analysis. 137 

 138 

Commonalities between Gene and Protein Expression 139 

Comparison of gene and protein expression showed 320 molecules with greater expression and 263 with 140 

reduced expression that were common to both the transcriptomics and proteomics analyses in liver 141 

samples from animals fed a HFr diet compared to chow-fed animals. Comparison of statistically 142 

significant differentially expressed genes and proteins revealed only 2 shared molecules, SLCO1B1 and 143 

HTATIP2, with decreased abundance in livers from HFr-fed animals compared to chow-fed animals 144 

(Figure 1, Additional file 9). 145 

 146 

Metabolomics Data Analysis 147 

To examine whether we could expand on the molecular changes induced in the liver by HFr exposure 148 

that we uncovered by gene-centric analyses (transcriptomics, proteomics), we performed untargeted 149 

analysis of small molecule metabolites to analyze the metabolomic changes. Overall, we quantified 471 150 

metabolites that passed quality filters. Of these, 18 showed significantly different abundances between 151 

liver samples from HFr- and chow-fed animals (p-value < 0.05, Additional file 10). Pathway enrichment 152 

showed 25 pathways including aspartate biosynthesis. Sirtuin signaling was observed but not significant 153 

(p-value = 0.089, Table 2 and Additional file 11). All pathways identified in the enrichment analysis only 154 

contained one single metabolite per pathway, highlighting the limited annotation of metabolites in 155 

pathways and networks. No regulatory networks were found with a predicted activation state and p-value 156 

< 0.05 (Table 3, Additional file 12). 157 

 158 

Integrated Omics Analysis 159 
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Using the datasets described above, we further assessed whether combinations of omics datasets 160 

improved statistical confidence and significance in the network and pathway enrichment findings. First, 161 

we examined the combination of the gene expression and proteomics results. Integrated analysis of 162 

transcriptomic and proteomic data revealed 51 significantly enriched pathways (p-value < 0.05). 163 

Statistical significance of sirtuin signaling, remodeling of epithelial adherens junctions, necroptosis 164 

signaling, and regulatory cell mechanics by calpain protease increased, and the number of molecules 165 

identified in each network increased with dataset integration. Interestingly, for sirtuin signaling, the 166 

number of genes and proteins was greater than the sum of genes and proteins from individual omic 167 

pathway analysis; this is due to our requirement for direct connections with addition of protein data to 168 

gene data connecting additional genes in the pathway. Significance of some pathways decreased, such 169 

as stearate biosynthesis, cell cycle control of chromosomal replication, and cholesterol biosynthesis 170 

(Table 2, Additional files 1 and 13). Integrated analysis showed 4 activated networks with predicted 171 

regulators PPARA, XBP1, MITF, and KLF15, and one inhibited network with predicted regulator HDAC1. 172 

Statistical significance increased and the number of molecules in the networks increased for the PPARA 173 

and XBP1 networks when compared to the analysis of the transcriptomic data alone (Table 3, Additional 174 

files 2 and 14). 175 

 176 

Integration of the transcriptomics and proteomics data with metabolomics findings further enhanced the 177 

pathway enrichment and network analyses, and resulted in the identification of 43 significantly enriched 178 

pathways. The significance of several pathways, and the number of molecules identified in each pathway, 179 

increased even more compared to the gene-protein integrated pathways, including again sirtuin signaling, 180 

remodeling of epithelial adherens junctions, necroptosis signaling, and regulatory cell mechanics by 181 

calpain protease. Sirtuin signaling had the greatest significance and the greatest number of identified 182 

molecules with genes, proteins and metabolites. In addition, significance of other pathways such as cell 183 

cycle control of chromosomal replication, and cholesterol biosynthesis further decreased again when 184 

compared to the gene-protein integrated networks (Table 2, Additional files 1 and 15). Integrated network 185 

analysis was similar to pathway analysis with increased significance and molecule number compared to 186 
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the gene-protein integrated networks, with the PPARA regulatory network (that included gene transcripts, 187 

proteins and metabolites) being the most significant (Table 3, Additional files 2 and 16). Of note, the 188 

protein FASN directly links regulatory networks PPARA, XBP1 and KLF15. In addition, overlapping 189 

molecules in networks link regulators PPARA and KLF15 with sirtuin signaling, including the protein 190 

ATG3, gene transcripts ATG7, HMGCS2, and metabolites DHA and L-aspartic acid (Figure 2). 191 

 192 

Integration of miRNA Data 193 

In an effort to explore putative regulatory mechanisms underlying the pathway and network enrichment 194 

we describe above, we integrated analysis data from small RNA-Seq (which characterizes miRNAs) with 195 

the multi-omics datasets described above. In our analysis, we identified 576 known miRNAs that passed 196 

quality filters. Of these, 22 were differentially expressed between liver samples from HFr- and chow-fed 197 

animals (p-value < 0.05, Additional file 17). Detailed miRNA – gene/protein pairing provided a list of 793 198 

inverse pairs that included 17 differentially expressed miRNAs and 758 differentially abundant genes or 199 

proteins (Additional file 18). Integration of miRNAs with pathways increased the number of molecules in 200 

remodeling of epithelial adherens junctions and necroptosis signaling, and the number of molecules 201 

increased for regulatory networks PPARA, XBP1, MITF and HDAC1 (Table 3, Additional file 2). In 202 

addition, these regulatory networks were interconnected by miRNAs that target genes and proteins in 203 

multiple networks: miR-148-3p for PPARA, MITF, KLF15, and XBP1 network genes and proteins, miR-204 

181a-5p for MITF, KLF15, and XBP2 network genes and proteins, miR 342-5p for MITF, XBP1 and 205 

PPARA network genes and proteins, and miR-574-5p for XBP1 and MITF network genes and proteins 206 

(Figure 2). This integration suggests potential regulatory roles for these miRNAs in coordinating the 207 

molecular changes induced in the liver after exposure to a HFr diet, and emphasizes the complexity of 208 

miRNA interactions that may affect both transcript and protein levels. 209 

 210 

Genes and Proteins in Multi-Omic Networks with Associations to NASH- and NAFLD-Related 211 

Traits 212 
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To examine the potential shared pathophysiological mechanisms induced by short term HFr diet 213 

exposure with long-term liver health outcomes associated with HFr, we compared GWAS catalog variants 214 

and genes associated with nonalcoholic steatohepatitis (NASH)- and nonalcoholic fatty liver disease 215 

(NAFLD)-related traits, including BMI, lipoproteins, obesity, diabetes, insulin resistance, with the 216 

differentially expressed genes and proteins identified in our analysis of liver samples. The alignment of 217 

the datasets revealed 53 genes and proteins with one or more intergenic single nucleotide polymorphism 218 

(SNP) associated with one or more NASH/NAFLD related trait(s) (Additional file 19). When we restricted 219 

the analysis only to genes and proteins in significantly enriched multi-omic pathways and networks, we 220 

identified 13 genes with GWAS SNPs, including FABP1 (associated with NAFLD) in PPARA and HDAC1 221 

networks; GOT2 (associated with triglycerides and aspartate aminotransferase) in the sirtuin signaling 222 

pathway; and ATG7 (associated with fat body mass) in the sirtuin signaling pathway and KLF15 network 223 

(Table 4). 224 

 225 

DISCUSSION  226 

The liver is central to metabolic regulation, and dysregulation of liver metabolism directly impacts 227 

gluconeogenesis and lipogenesis. Exposure to a HFr diet is known to increase the risk of dyslipidemia, 228 

insulin resistance, lipogenesis (28), levels of hepatic oxidative stress markers, and induce NASH and 229 

NAFLD (6). Unlike glucose, fructose is absorbed in the intestine independently of energy or sodium 230 

exchange. When consumed in high amounts, fructose is transported to the liver via hepatic portal 231 

circulation and is preferentially converted to lipids. Fructose forms the building blocks of triglycerides (29), 232 

and triglycerides produced in the liver mostly are packaged into atherogenic very low-density lipoprotein 233 

particles (30). Fructose in the liver can also serve as substrate for the gluconeogenesis pathway and 234 

increase circulating glucose levels (31), which, together with the increased triglyceride levels, decreases 235 

overall glycemic control. The specific contribution of hepatic steatosis to whole body insulin sensitivity 236 

and dyslipidemia (32-35) is particularly significant for individuals diagnosed with the metabolic syndrome. 237 

However, the underlying molecular networks that are dysregulated by a HFr diet and precede insulin 238 
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resistance, NASH and NAFLD have not yet been identified, and the initial molecular abnormalities 239 

initiated by the exposure to fructose remain to be identified (6). 240 

 241 

NHPs have been shown to be valuable models of diet-induced metabolic dysregulation due to extensive 242 

similarities with human metabolism (7). The ability to carefully control diet exposure, and the physiological 243 

similarity to humans make NHP an ideal model to examine molecular tissue and organ changes in 244 

response to short- and long-term dietary challenges. We used a cohort of vervet monkeys (Clorocebus 245 

aethiops sabeus) fed an acute HFr diet (n=5) or chow diet (n=5) for 6 weeks. Previous analyses showed 246 

changes in liver enzymes, total plasma cholesterol, and liver histology indicative of liver injury with 247 

periportal and inflammatory lesions in the HFr group (6), but no other clinically discernable abnormalities 248 

in body mass, or circulating glucose levels. In this study, we used global untargeted transcriptomics, 249 

proteomics, and metabolomics of liver biopsy samples to identify the acute early hepatic molecular and 250 

cellular response to a HFr diet, prior to onset of fat accumulation or systemic pathophysiological changes, 251 

to identify dysregulated molecular networks that potentially drive fat accumulation, and may be the 252 

initiating steps for subsequent long-term liver dysregulation. Pathway and network analyses were 253 

performed on individual datasets and integrated multi-omics datasets to determine whether there was a 254 

gain in our understanding of the molecular impact of a HFr diet with a combined approach compared to 255 

use of single or double omics datasets. Our analytical approach included prioritization of molecules by 256 

using pathway and network enrichment statistics, with the stringent requirement of direct connections 257 

among molecules, to improve statistical rigor for this study with small sample sizes (a common limitation 258 

of NHP studies).  259 

 260 

We chose to use IPA to assess integrated omics effectiveness since it has tools for canonical pathway 261 

enrichment, and the underlying knowledgebase provides a means for regulatory network analysis at high 262 

resolution using transcripts, proteins, and metabolites, which is not yet feasible with other publicly 263 

available tools such as DAVID Bioinformatic Resources (36). Our findings confirm previous papers 264 
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indicating the need for better tools to perform integrated omic analyses (26). In addition, it will be important 265 

to test strengths and limitations of multi-omics data integration with other tools when available. 266 

 267 

In analyzing individual omics datasets, we identified a large number of statistically significant pathways 268 

for each data type, which is often the case for these types of data, making it a challenge to prioritize 269 

networks and distinguish likely true associations from spurious results. Integration of hepatic 270 

transcriptomic and proteomic data increased the significance of a number of pathways and networks, 271 

while decreasing the significance of other pathways, suggesting that truly associated pathways can be 272 

distinguished better with this approach. Interestingly, comparison of differentially expressed genes and 273 

proteins showed very little overlap: potentially due to the low correlation usually observed in expressed 274 

protein and transcript abundances. Most studies investigating proteome and transcriptome in the same 275 

model have noted this (e.g. (37)). However, integration of these datasets provided additional molecules 276 

with direct connections within a pathway or network, increasing the overall number of molecules, 277 

increasing the confidence in pathway or network prediction, and providing additional information about 278 

molecular functions. For some pathways and networks, additional differentially abundant molecules 279 

were added from the second omics dataset, creating new connections not evident in either of the 280 

individual omics datasets. Of note, proteins are often identified as molecules connecting separate 281 

regulatory networks and steps within signaling pathways, e.g. ATG3 in sirtuin signaling and FASN for 282 

the XBP1, PPARA and KLF15 networks. 283 

 284 

Integration of transcriptomic and proteomic data increased the significance of the sirtuin signaling 285 

pathway, and revealed direct connections between sirtuin signaling and the four activated networks with 286 

predicted regulators PPARA, XBP1, MITF and KLF15. It is important to note that all of these genes were 287 

detected but not differentially expressed, but the encoded proteins were not detected. These results do 288 

not contradict the role of these proteins as central regulators since activity of all four depend on post-289 

translational modifications (38-43).  290 
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 291 

Integration of metabolomic data with transcriptomic and proteomic datasets further improved significance 292 

of some pathways, with sirtuin signaling increasing in rank and statistics from being 7th for transcriptomics 293 

and 39th for proteomics, to becoming 2nd for transcriptomics and proteomics, and 2nd overall with 294 

integration of all 3 datatypes. This pathway included the most molecules, including 4 metabolites. Other 295 

pathways decreased in significance and rank compared with the analysis of individual omics datasets. 296 

Addition of metabolites also provided more direct connections among regulatory networks, and 297 

connected the sirtuin signaling pathway with the PPARA network. Metabolites aspartic acid and DHA 298 

also indicated end-of-pathway directionality for the sirtuin signaling pathway and the PPARA network.  299 

 300 

Finally, integration of miRNA data showed 19 of 22 differentially expressed miRNAs targeted genes 301 

and/or proteins in the four activated networks and sirtuin signaling pathway with inverse expression 302 

profiles. Our miRNA findings suggest that the initial hepatic response to short-term exposure to a HFr 303 

diet is at least in part epigenetically regulated. Taken together, these results demonstrate that integration 304 

of transcriptomic, small transcriptomic, proteomic, and metabolomic data reveals pathways and networks 305 

central the HFr diet response in the liver, not seen by analysis of only one or two of these omic datasets.   306 

 307 

Our results from these unique NHP biopsy samples reveal interesting novel molecular mechanisms 308 

regulating the initial hepatic response to HFr diet exposure in these animals. The sirtuin signaling pathway 309 

and networks regulated by PPARA, XBP1, MITF and KLF15 appear to be central to the HFr diet 310 

response. Both sirtuin signaling (44, 45) and PPARA (46) play important roles in the pathophysiology of 311 

NAFLD. For the sirtuin gene family, the majority of studies have focused on the role of SIRT1 in regulating 312 

both lipid and carbohydrate metabolism (47-49). Interestingly, in our study, SIRT2 rather than SIRT1 was 313 

central to the initial hepatic response to a HFr diet. A recent study in male mice showed that SIRT2 314 

functions as a negative regulator of NAFLD development and progression, with increased expression 315 

being protective when animals were fed a high-fat diet (50). Our study in female NHPs showed higher 316 

SIRT2 expression in the HFr group compared with chow-fed animals, and lower expression of GOT2 and 317 
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decreased abundance of aspartic acid (51), which is regulated by GOT2 (52, 53). In mice, quantification 318 

of GOT2 protein expression by immunohistochemistry shows decreased abundance with NAFLD (54), 319 

supporting our preliminary findings. GOT2 and aspartic acid are at the end of the sirtuin pathway and 320 

indicative of altered gluconeogenesis and pathologies associated with NAFLD.  321 

 322 

While the overall pathways identified in our analysis are supported by published evidence in other model 323 

organisms and related pathophysiologies, we also raise additional questions about previously under- or 324 

unappreciated regulatory networks. Our analysis suggests that the HFr diet exposure led to activation of 325 

the PPARA network, and downstream molecules GOT2 and aspartic acid showed decreased abundance. 326 

Studies of PPARA liver expression in mice with steatosis in response to a high-fat diet show sex-327 

differences: PPARA expression is increased in male rats, and FASN, which is directly downstream of 328 

PPARA, is also increased. However, in female rats, FASN is increased but PPARA is not (55), suggesting 329 

that hepatic PPARA activation/inhibition of FASN may be sex-specific, and the potentially divergent 330 

expression patterns in our female NHP in response to the HFr diet may be specific to female animals. 331 

 332 

As another example, our detailed multi-omics analysis also suggested that DHA, an omega-3 333 

polyunsaturated fatty acid with anti-inflammatory functions (56), was lower in livers from animals fed a 334 

HFr diet than in livers from chow-fed animals. While no studies have reported changes in DHA in 335 

response to fructose, human studies examining dietary supplementation with DHA have suggested the 336 

beneficial effects of the increased level of DHA may include decreased incidence of NAFLD (57). DHA is 337 

known to bind and activate PPARA (58) which may influence sirtuin signaling and the integrated 338 

regulatory network we discovered in our analysis. The decreased abundance of DHA, but with predicted 339 

activation of PPARA and activation of all but GOT2 downstream of PPARA, like aspartic acid, suggests 340 

differences between rodents and primates or sex-differences in these signaling networks, and may point 341 

to other mechanisms (apart from DHA) by which PPARA expression may be increased by HFr. 342 

 343 
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GWAS of genes and proteins in sirtuin signaling and the four activated networks we identified show a 344 

single gene, FABP1, that has been reported to be associated with alanine aminotransferase levels, a 345 

marker of liver disease (59). Twelve additional genes were associated with lipoprotein-, insulin-, and BMI-346 

related traits. Identification of SIRT2 and an integrated network of regulatory genes and proteins with 347 

altered abundance in livers from animals exposed to a HFr diet that are upstream of GOT2 and aspartic 348 

acid suggest that we have identified novel molecules and regulatory mechanisms that influence and 349 

potentially govern the initial hepatic response to short-term HFr diet exposure. Additional studies are 350 

required to validate our findings, and to explore potential targets by which these networks can be 351 

modulated to blunt the effects of fructose consumption on overall liver metabolism and function, 352 

preventing subsequent health complications known to occur with high intake levels.  353 

 354 

CONCLUSIONS 355 

We have demonstrated that integration of multiple omics datasets significantly improves prioritization of 356 

pathways and networks that influence hepatic response to a short-term HFr diet. Using this integrated 357 

approach, we identified sirtuin signaling and a large, integrated regulatory network, with molecules 358 

overlapping sirtuin signaling as a potential key modulator and regulator of hepatic metabolism in response 359 

to a HFr diet. 360 

 361 

MATERIALS AND METHODS 362 

Animals and Experimental Design 363 

All experimental procedures involving vervet monkeys (Chlorocebus sabaeus) were approved and 364 

complied with the guidelines of the Institutional Animal Care and Use Committee of Wake Forest 365 

University Health Sciences, which is an AALAC accredited facility. Procedures were performed by a 366 

veterinarian (KK), including liver biopsy as previously described (27). Animals were provided non-367 

steroidal anti-inflammatory and opioid analgesics during recovery as needed. Liver tissue was flash 368 

frozen in liquid nitrogen and stored at -80 C until analysis. Animal housing, handling, diet compositions 369 

(chow and HFr) and caloric details are as described elsewhere (6). Prior to the study, all animals were 370 
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maintained on chow diet. For this study, 10 female vervet monkeys were fed with either chow (n=5) or 371 

HFr (n=5) diets for 6 weeks. Previous studies have shown sex-specific metabolic responses to a HFr diet 372 

(7); for this reason, all animals in the study were female. 373 

 374 

Clinical Measures 375 

Serum-based clinical measures, including total protein, albumin, globulin, albumin/globulin ratio, AST, 376 

ALT, ALK phosphatase, GGTP, total bilirubin, urea nitrogen, creatinine, BUN/creatinine ratio, 377 

phosphorus, glucose, calcium, magnesium, sodium, potassium, Na/K ratio, chloride, cholesterol, 378 

triglycerides, amylase, lipase, CPK, and hematological parameters including WBC, RBC, hemoglobin, 379 

hematocrit, MCV, MCH, MCHC, blood parasites, platelet count, platelet, EST, neutrophils, bands, 380 

lymphocytes, monocytes, eosinophils and basophil data were obtained from ANTECH Diagnostics (800-381 

872-1001, NC, USA).  382 

 383 

Transcriptomics: RNA Seq 384 

RNA Extractions and Sequencing: Total RNA was extracted from vervet monkey livers using the Zymo 385 

Direct-zol™ kit (Zymo Research) and each sample was subsequently quantified by Qubit assay 386 

(Thermo Fisher). RNA-Seq libraries were prepared from 500 ng of total RNA according to the Illumina 387 

TruSeq stranded mRNA protocol (Illumina), which specifically retains polyadenylated mRNAs by the 388 

oligo dT coated magnetic beads. Sequencing library concentrations were quantified using the KAPA 389 

library quantification kit (Kapa Biosystems). Clusters were generated by cBot (Illumina), and 2 × 100 390 

base paired-end sequencing libraries were sequenced using the Illumina HiSeq 2500 with v3 391 

sequencing reagents (Illumina). 392 

 393 

Data Analysis: Raw sequences were de-multiplexed using the Illumina pipeline CASAVA v1.8. The 394 

FastQC and FASTX toolkit were used for QC. Sequence reads with Phred scores ≥ Q30 were retained. 395 

Reads aligned against the vervet reference genome (ChlSab1.1) were annotated using the Ensembl 396 
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release 93 gene model. Abundance analysis was performed using our established RNA-Seq workflow in 397 

Partek Flow, which allowed calculation of transcript-level expression of a gene’s isoforms for alternative 398 

spliced transcripts (60, 61). Transcript abundances were quantified in Flow (Partek) using an expectation-399 

maximization algorithm similar to the reported (62) which quantifies isoform expression levels across the 400 

whole genome at the same time and normalizes by transcript length to account for the transcript 401 

fragmentation step in RNA-Seq. Transcripts without read counts across all samples were filtered out, and 402 

then normalized by the trimmed mean of M values method [Robinson MD and Oshlack A. Genome Biol. 403 

11:R25, 2010] Differentially expressed genes were identified by Analysis of Variance (ANOVA; 404 

unadjusted p < 0.05). Gene expression data were deposited in the National Center for Biotechnology 405 

Information’s Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) - GEO Series 406 

accession number GSE176576.  407 

 408 

Transcriptomics: small RNA Seq 409 

Sequencing: RNA extracted for RNA Seq was also used for small RNA Seq. Small RNA Seq methods 410 

are described in  (63). Briefly, small RNA sequencing libraries were prepared using the Illumina TruSeq 411 

Small RNA Sample Prep Kit and were pooled after cDNA synthesis. cDNA libraries were clustered using 412 

an Illumina Cluster Station and sequenced with an Illumina GAIIx sequencer. Raw sequence reads were 413 

obtained using Illumina's Pipeline v1.5. Extracted sequence reads were normalized, annotated and 414 

abundance determined using mirDeep2 (64).  415 

 416 

Data Analysis: 417 

Transcripts without read counts across all samples were filtered out, and then normalized by the trimmed 418 

mean of M values method. Differentially expressed genes identified by Analysis of Variance (ANOVA; 419 

unadjusted p < 0.05). Gene expression data were deposited in the National Center for Biotechnology 420 

Information’s Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) - GEO accession 421 

number GSE178269. 422 
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 423 

Proteomics 424 

Proteomics data were generated by liquid chromatography-coupled tandem mass spectrometry using a 425 

Thermo Scientific Orbitrap Elite mass spectrometer. Details of sample preparation, mass spectral 426 

analysis, and data analysis using a proteogenomics approach in Morpheus were described previously 427 

(27). 428 

 429 

Data Analysis: 430 

For each animal, peptide spectrum intensities reported in Morpheus were summed across occurrences 431 

(i.e. across multiple transcript matches) based on Gene IDs. Proteins identified and quantified in at least 432 

3 animals per group (HFr and chow) retained for downstream analysis. Additionally, proteins that were 433 

quantified in all samples of one group but not in any of the samples of other group were also retained for 434 

subsequent analyses. Intensity values were log transformed, and missing data (at most 2 animals per 435 

group) were imputed using the NAguideR tool with the impseq approach (sequential imputation) 436 

separately for the two experimental groups (HFr or chow). 437 

 438 

Comparison of gene and protein abundance: 439 

Gene lists (Additional file 3) and protein lists (Additional file 4) were uploaded into Venny and Venn 440 

diagrams were generated showing commonly expressed and differentially expressed genes and proteins 441 

(65). Ratios of HFr to chow were used to determine directionality. 442 

 443 

Metabolomics 444 

GC−TOFMS Analysis  445 

Liver metabolites were analyzed with chemical derivatization following previously published protocols 446 

(66, 67). Extracted samples were spiked with two internal standard solutions (10 μL of L-2-447 

chlorophenylalanine in water, 0.3 mg/mL; 10 μL of heptadecanoic acid in methanol, 1 mg/mL), mixed, 448 

and extracted with 300 μL of methanol/chloroform (3:1). After centrifugation at 12 000g for 10 min, an 449 
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aliquot of the 300-μL supernatant was transferred to a glass sampling vial to vacuum-dry at room 450 

temperature. The residue was derivatized using a two-step procedure. First, 80 μL of methoxyamine (15 451 

mg/mL in pyridine) was added to the vial and kept at 30 °C for 90 min, followed by 80 μL of BSTFA (1% 452 

TMCS) at 70 °C for 60 min. 453 

 454 

Each 1-μL aliquot of the derivatized solution was injected in splitless mode into an Agilent 6890N gas 455 

chromatograph coupled with a Pegasus HT time-of-flight mass spectrometer (Leco Corporation, St. 456 

Joseph, MI). The CRC and control samples were run in the order of “control-CRC-control”, alternately, to 457 

minimize systematic analytical deviations. Separation was achieved on a DB-5ms capillary column (30 458 

m × 250 μm i.d., 0.25-μm film thickness; (5%-phenyl)-methylpolysiloxane bonded and cross-linked; 459 

Agilent J&W Scientific, Folsom, CA), with helium as the carrier gas at a constant flow rate of 1.0 mL/min. 460 

The temperature of injection, transfer interface, and ion source was set to 270, 260, and 200 °C, 461 

respectively. The GC temperature programming was set to 2 min isothermal heating at 80 °C, followed 462 

by 10 °C/min oven temperature ramps to 180 °C, 5 °C/min to 240 °C, and 25 °C/min to 290 °C, and a 463 

final 9 min maintenance at 290 °C. Electron impact ionization (70 eV) at full scan mode (m/z 30−600) 464 

was used, with an acquisition rate of 20 spectra/s in the TOFMS setting. 465 

 466 

GC−TOFMS Data Analysis  467 

The acquired MS files from GC−TOFMS analysis were exported in NetCDF format by ChromaTOF 468 

software (v3.30, Leco Co., CA). CDF files were extracted using custom scripts (revised Matlab toolbox 469 

hierarchical multivariate curve resolution (H-MCR), developed (68, 69) in the MATLAB 7.0 (The 470 

MathWorks, Inc.) for data pretreatment procedures such as baseline correction, denoising, smoothing, 471 

alignment, time-window splitting, and multivariate curve resolution (based on multivariate curve resolution 472 

algorithm) (68). The resulting data set includes sample information, peak retention time and peak 473 

intensities. Compound identification was performed by comparing the mass fragments with National 474 

Institute of Standards and Technology (NIST) 05 Standard mass spectral databases in NIST MS search 475 
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2.0 (NIST, Gaithersburg, MD) software with a similarity of more than 70% and finally verified by available 476 

reference compounds. 477 

 478 

2D GC-ToF-MS Analysis 479 

Gas chromatography-mass spectrometry was performed as described (70). Metabolite extracts were 480 

dried under vacuum in cold, and were then sequentially derivatized with methoxyamine hydrochloride 481 

(MeOX) and N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) (70). One microliter of the derivatized 482 

sample was injected in splitless mode using an autosampler (VCTS, Gerstel™, Linthicum, MD, USA) into 483 

a GC-MS system consisting of an Agilent© 7890 B gas chromatograph (Agilent Technologies, Palo Alto, 484 

CA, USA) with Pegasus ® 4D ToF-MS instrument (LECO Corp., San Jose, CA, USA) equipped with an 485 

electron impact (EI) ionization source. Injection of the sample was performed at 250 °C with helium as a 486 

carrier gas and flow set to 2 mL min-1. GC was performed using a primary Rxi®-5Sil MS capillary column 487 

(Cat. No. 13623-6850, Restek, Bellefonte, PA, USA) (30 m × 0.25 mm × 0.25 μm) and a secondary 488 

Rtx®-17Sil capillary column (Cat. No. 40201-6850, Restek, Bellefonte, PA, USA). The temperature 489 

program started isothermal at 70 °C for 1 min followed by a 6 °C min-1 ramp to 310 °C and a final 11 min 490 

hold at 310 °C. The system was then temperature-equilibrated at 70 °C for 5 min before the next injection. 491 

Mass spectra were collected at 20 scans/s with a range of m/z 40-600. The transfer line and the ion 492 

source temperatures were set to 280 °C. QC standards were injected at scheduled intervals for tentative 493 

identification and monitoring shifts in retention indices (RI). 494 

 495 

2D GC-ToF-MS Data Analysis  496 

The GC-MS data were pre-processed, cleaned, aligned, and processed using ChromaToF version 497 

4.50.8.0 (LECO Corp., Michigan, USA) following settings from (71). Briefly described settings viz. S/N: 5; 498 

peak width: 0.15, base line offset: 1; m/z range: 50-800. The aligned data were also deconvoluted using 499 

Automated Mass Spectral Deconvolution and Identification System (AMDIS, NIST, USA) interface to 500 

match against the freely available MSRI spectral libraries of the Golm Metabolome Database available 501 

from Max-Planck-Institute for Plant Physiology, Golm, Germany (http://csbdb.mpimp-502 
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golm.mpg.de/csbdb/gmd/gmd.html) by matching the mass spectra and RI (72). Metabolites were 503 

identified by comparing fragmentation patterns available in both the Golm database as well as NIST Mass 504 

Spectral Reference Library (NIST11/2011; National Institute of Standards and Technology, USA) library. 505 

Peak finding and quantification of selective ion traces were accomplished using AMDIS software. Base 506 

peak areas of the mass fragments (m/z) were normalized using median normalization and log2 507 

transformation. Peak areas were normalized by dividing each peak area value by the area of the internal 508 

standard for a specific sample, and were further median normalized.  509 

 510 

Liquid Chromatography-Time of Flight Mass Spectrometry (LC-TOFMS) 511 

Plasma samples were processed as reported before (73). A volume of 100 µL supernatant was mixed 512 

with 400 µL of a mixture of methanol and acetonitrile (5:3). Liver tissue homogenate was added to 500 513 

µL of a chloroform, methanol, and water mixture (1:2:1, v/v/v). These samples were then mixed and 514 

centrifuged at 13,000 rpm for 10 min at 4°C. A 150 µL aliquot of supernatant was transferred to a sampling 515 

vial. The deposit was re-homogenized with 500 µL methanol followed by a second centrifugation. Another 516 

150 µL supernatant was added to the same vial for drying and then reconstituted in 500 µL of ACN: H2O 517 

(6:4, v/v) before separation. 518 

 519 

An Agilent HPLC 1200 system equipped with a binary solvent delivery manager and a sample manager 520 

(Agilent Corporation, Santa Clara, CA, USA) was used with chromatographic separations performed on 521 

a 4.6 × 150 mm 5 µm Agilent ZORBAX Eclipse XDB-C18 chromatography column. The LC elution 522 

conditions are optimized as follows: isocratic at 1% B (0–0.5 min), linear gradient from 1% to 20% B (0.5–523 

9.0 min), 20–75% B (9.0–15.0 min), 75–100% B (15.0–18.0 min), isocratic at 100% B (18–19.5 min); 524 

linear gradient from 100% to 1% B (19.5–20.0 min) and isocratic at 1% B (20.0–25.0 min). For positive 525 

ion mode (ESI+) where A = water with 0.1% formic acid and B = acetonitrile with 0.1% formic acid, while 526 

A = water and B = acetonitrile for negative ion mode (ESI−). The column was maintained at 30 °C as a 5 527 

µL aliquot of sample is injected. Mass spectrometry is performed using an Agilent model 6220 MSD TOF 528 

mass spectrometer equipped with a dual sprayer electrospray ionization source (Agilent Corporation, 529 
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Santa Clara, CA, USA). The TOF mass spectrometer was operated with the following optimized 530 

conditions: (1) ES+ mode, capillary voltage 3500 V, nebulizer 45 psig, drying gas temperature 325 °C, 531 

drying gas flow 11 L/min, and (2) ES− mode, similar conditions as ES+ mode except the capillary voltage 532 

was adjusted to 3000 V. During metabolite profiling experiments, both plot and centroid data are acquired 533 

for each sample from 50 to 1,000 Da over a 25 min analysis time. Data generated from LC-TOFMS were 534 

centroided, deisotoped, and converted to mzData xml files using the MassHunter Qualitative Analysis 535 

Program (vB.03.01) (Agilent). Following conversion, xml files are analyzed using the open source XCMS 536 

package (v1.16.3) (http://metlin.scripps.edu), which runs in the statistical package R (v.2.9.2) 537 

(http://www.r-project.org), to pick, align, and quantify features (chromatographic events corresponding to 538 

specific m/z values and elution times). The software is used with default settings as described 539 

(http://metlin.scripps.edu) except for xset (bw = 5) and rector (plottype = “m”, family = “s”). The created 540 

.tsv file is opened using Excel software and saved as .xls file. Compound identification was performed by 541 

comparing the accurate mass and retention time with reference standards available in our laboratory, or 542 

comparing the accurate mass with online database such as the Human Metabolome Database (HMDB). 543 

Metabolomic LC/GC-TOFMS data was analyzed using principle component analysis (PCA) and OPLS 544 

analysis between groups. The differential metabolites were selected when they meet the requirements 545 

of variable importance in the projection (VIP) >1 in OPLS model and p < 0.05 from student t-test. The 546 

corresponding fold change shows how these selected differential metabolites varied from control. Final 547 

data analysis between control HFr-diet groups for each metabolite was conducted using independent t-548 

test analysis with a p < 0.05 significance threshold. 549 

 550 

Pathway and Network Analyses 551 

For individual omic datasets, all quality molecules for the dataset were uploaded to Ingenuity Pathway 552 

Analysis (IPA; QIAGEN). Gene symbols were used for genes and proteins, which are conserved between 553 

human and vervet. Pathway and network enrichment analyses used differentially abundant molecules 554 

and the IPA Knowledge Base, and requiring direct connections based on experimental evidence among 555 

differentially abundant molecules. Right-tailed Fisher's exact test was used to calculate enrichment of 556 
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differentially expressed genes in pathways, p< 0.01(61). Regulatory network prediction required previous 557 

experimental validation of direct connections in liver or liver cells. 558 

 559 

Integrated Omic Analyses 560 

Multi-omic data analysis combined the total gene, protein, and/or metabolite lists for all molecules that 561 

passed quality filters as appropriate for the data type. Lists included molecule ID, direction of change, 562 

fold change, and p-value. Pathway and network enrichment used the same parameters and statistical 563 

tests as for individual omic datasets, requiring experimentally validated direct connections for differentially 564 

abundant molecules.  565 

 566 

miRNA – Gene/Protein pairing 567 

Current pathway and network enrichment tools in IPA do not provide the means to filter direct connections 568 

based on inverse abundance between a miRNA and its target. In order to integrate our miRNA data, we 569 

performed miRNA – gene pairing in IPA for our miRNA, gene and protein datasets, requiring opposite 570 

expression for experimentally validated or highly predicted interactions (e.g., HFr miRNA up-regulated 571 

and HFr gene down-regulated compared with chow). Using the gene and protein IDs in this list, we 572 

merged it with the list of genes and proteins in all significantly enriched pathways and networks. This 573 

analysis does not provide the means to statistically evaluate the significance of miRNA addition to a given 574 

pathway or network; however, this approach provides evidence of an epigenetic component of the liver 575 

response to HFr diet. 576 

 577 

Identification of pathway and network genes previously associated with NASH/NAFLD related 578 

traits 579 

The following search terms, with all variation of names in the GWAS catalog, were used to query the 580 

current GWAS catalog (74): alkaline phosphatase, aspartate aminotransferase, body mass index, body 581 

weight, fasting blood glucose, fasting blood insulin, fat body mass, fatty acid, glucose, HbA1c, HDL 582 
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cholesterol change, insulin, insulin resistance, insulin sensitivity, LDL cholesterol change, lipid, liver fat, 583 

liver disease biomarker, liver fibrosis, low density lipoprotein cholesterol, non-alcoholic fatty liver disease, 584 

non-alcoholic steatohepatitis, obesity, omega-3 polyunsaturated fatty acid, omega-6 polyunsaturated 585 

fatty acid, total cholesterol, triglyceride, type II diabetes mellitus, very low density lipoprotein cholesterol. 586 

Genes with associations, based on the GWAS catalog, to any of these traits were compared to the list of 587 

all differentially expressed miRNAs, genes and proteins from our transcriptomic and proteomic datasets, 588 

and compared with the genes in proteins in multi-omic significant networks and pathways.  589 

 590 

LIST OF ABBREVIATIONS 591 

HFr: high fructose  592 

PPARA: peroxisome proliferator activated receptor alpha  593 

DHA: docosahexaenoic acid  594 

NHP: nonhuman primates  595 

NASH: nonalcoholic steatohepatitis  596 

NAFLD: nonalcoholic fatty liver disease  597 

GEO: Gene Expression Omnibus  598 

H-MCR: hierarchical multivariate curve resolution  599 

MeOX: methoxyamine hydrochloride  600 

MSTFA: N-methyl-N-trimethylsilyl-trifluoroacetamide  601 

EI: electron impact  602 

RI: retention indices  603 

AMDIS: Automated Mass Spectral Deconvolution and Identification System  604 

NIST: National Institute of Standards and Technology  605 

LC-TOFMS: Liquid Chromatography-Time of Flight Mass Spectrometry  606 

HMDB: Human Metabolome Database  607 

PCA: principle component analysis  608 

VIP: variable importance in the projection  609 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.09.02.458361doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.02.458361


24 
 

IPA: Ingenuity Pathway Analysis 610 

 611 
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Gene Pro Met Networks: Enrichment analysis combining genes, proteins, and metabolites with p-value 702 

< 0.05. 703 

 704 

Additional file 17  705 

miRNA List: miRNAs passing quality filters and p-values < 0.05 for HFr versus CON. 706 

 707 

Additional file 18  708 

Gene-Pro with miRNA pairs: miRNA pairing with target genes and proteins either highly predicted or 709 

experimentally validated for differentially expressed miRNAs, genes and proteins for HFr versus CON (p-710 

value <0.05). 711 

 712 

Additional file 19  713 

Diff Gene Pro GWAS: List of GWAS hits of differentially expressed genes and proteins for HFr versus 714 

CON. 715 
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Table 1: Morphometric and Clinical Measures            

Diet 
Age 

(years) 
BW  
(Kg) 

Waist 
(cm) 

CRP 
(ng/ul) 

SBP 
(mmHG) 

DBP 
(mmHg) 

INS 
(U/L) 

HOMA  
(AU) 

Glu 
(mg/dL) 

TPC 
(mg/dL) 

TG 
(mg/dL) 

AST  
(U/L) 

ALT  
(U/L) 

ALP  
(U/L) 

GGTP  
(U/L) 

Liver TG  
(mg/ug 
prot) 

CON 
Mean 11.70 5.54 36.36 6.75 123.76 71.08 28.91 2.67 33.80 145.40 44.00 41.00 71.00 98.80 32.20 41.80 

CON SD 6.42 0.78 4.34 4.26 26.17 16.43 14.30 2.02 18.85 23.14 9.14 11.40 54.99 27.26 8.14 14.99 
HFr Mean 15.70 5.44 36.46 14.63 100.08 65.80 41.93 9.08 73.80 220.60 75.60 65.40 286.20 147.80 84.00 43.80 
HFr SD 5.62 1.46 9.56 11.70 9.46 13.13 16.79 10.88 61.34 62.56 65.58 26.10 115.47 27.09 38.76 25.72 
p-value 0.325 0.894 0.984 0.195 0.094 0.590 0.223 0.231 0.201 0.036 0.317 0.092 0.006 0.021 0.019 0.884 

                 
Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure; BW, body weight; CRP, C-reactive protein; INS, insulin; HOMA, homeostatic model 
assessment; Glu, glucose; TPC, total plasma cholesterol; TG, triglycerides; AST, aspartate transaminase; ALT, alanine aminotransferase; ALP, alkaline phosphatase; and 
GGTP, gamma-glutamyl transpeptidase. 
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Table 2: Pathways for each omic data type and integrated omics data 
  p-value   Number of Molecules 

Ingenuity 
Canonical 
Pathways  Gene Protein Metabolite 

Gene & 
Protein 

Gene, Protein 
& Metabolite  Gene Protein Metabolite 

Gene 
& 

Protein 
Gene, Protein 
& Metabolite 

Gene, 
Protein, 

Metabolite & 
miRNA 

Sirtuin 
Signaling 0.0214 0.0182 0.0891 0.00021 0.00014   11 5 4 19 23 26 

Remodeling of 
Epithelial 
Adherens 
Junctions 

0.0087 0.0004 - 0.00006 0.00004  5 4 - 9 9 11 

Necroptosis 
Signaling  0.0093 0.1959 - 0.00759 0.00603  8 2 - 10 10 11 

Reg Cell 
Mechanics by 
Calpain 
Protease 

0.1600 0.0447 - 0.00295 0.00229   3 2 - 7 7 7 

Integrin 
Signaling 0.3648 0.0001 - 0.00363 0.00229   5 7 - 13 13 18 
Actin 
Nucleation by 
ARP-WASP 
Complex 

- 0.0005 - 0.00479 0.00355  1 4 - 7 7 7 

Paxillin 
Signaling 0.3258 0.0025 - 0.00676 0.00490  3 4 - 8 8 12 
Protein 
Ubiquitination 0.2477 0.0001 - 0.01148 0.00813  7 8 - 14 14 15 
Leukocyte 
Extravasation 
Signaling 

0.2917 0.0037 - 0.01148 0.00955   5 5 - 11 11 13 

Superpathway 
of Cholesterol 
Biosyn 

0.4207 0.0004 - 0.00617 0.15704   1 3 - 4 4 5 

Iron 
homeostasis 
signaling 

0.0011 0.5105 - 0.00912 0.01202  9 1 - 9 9 11 

Stearate 
Biosynthesis I 0.0631 0.0257 - 0.00832 0.01820  3 2 - 5 5 6 

Cell Cycle 
Control of 
Chromosomal 
Rep 

0.0038 - - 0.01445 0.01148  5 - - 5 5 8 

Cholesterol 
Biosyn - 0.0020 - 0.04266 0.25293  - 2 - 2 2 3 

Zymosterol  
Biosyn - 0.0014 - 0.00933 0.09772   - 2 - 2 2 3 
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Table 3: Regulatory Networks for each omic data type and integrated omics data 
      p-value       Number of Molecules 

Upstream 
Regulator Molecule Type 

Pred. Act. 
State Gene Protein Metabolite 

Gene & 
Protein 

Gene,  Protein 
& Metabolite   Gene 

Gene & 
Protein 

Gene, Protein 
& Metabolite 

Gene, Protein, 
Metabolite & 

miRNA 
PPARA ligand-dep nuclear rec Activated 0.032 - - 5.64E-03 3.04E-03 

 
16 23 25 27 

XBP1 transcription regulator Activated 0.071 - - 0.018 0.012 
 

9 13 13 14 
MITF transcription regulator Activated - - - 4.64E-04 2.53E-04 

 
0 17 17 23 

KLF15 transcription regulator Activated - - - 9.66E-04 7.33E-04 
 

0 6 6 6 
HDAC1 transcription regulator Inhibited - - - 0.029 0.020   0 13 13 16 
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Table 4: Pathway and Network Genes and Proteins with GWAS SNPs 
 
Gene 
Symbol Pathway or Network Trait 
APOA1 HDAC1 Network 

PPARA Network 
XBP1 Network 

Very low-density lipoprotein 
cholesterol 

ATG7 KLF15 Network 
Sirtuin Signaling Pathway 

Fat body mass 

CLIP1 Remodeling of Epithelial Adherens Junctions Body mass index 
FABP1 HDAC1 Network 

PPARA Network 
Non-alcoholic fatty liver disease 
Hepatic fibrosis 

GOT2 Sirtuin Signaling Pathway Triglycerides 
Aspartate aminotransferase 

MET MITF Network 
Remodeling of Epithelial Adherens Junctions 

Triglycerides 

MITF MITF Network Low-density lipoprotein cholesterol 
Triglycerides 

PNPLA2 PPARA Network Body fat distribution 
PPARA PPARA Network Type II Diabetes  

Total cholesterol 
Low-density lipoprotein cholesterol 
Triglycerides 

RAC1 Actin Nucleation by ARP-WASP Complex 
Integrin Signaling 
Leukocyte Extravasation Signaling 
Paxillin Signaling 

Low-density lipoprotein cholesterol 

RAP1GAP Leukocyte Extravasation Signaling Alkaline phosphatase 
SORT1 MITF Network Type II Diabetes  

Coronary artery disease 
LDL cholesterol change 

TNFRSF11B Necroptosis Signaling Pathway Alkaline phosphatase 
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Figure 1: Venn diagram showing common A) expressed and B) differentially expressed genes and proteins. 
 

A.                                                                                                  B. 
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Figure 2: Regulatory network up-regulated in HFr livers compared with chow. Red fill indicates increased abundance, green fill decreased 
abundance, light orange fill indicates predicted activation, green outline genes, blue outline proteins, gray outline miRNAs, purple outline 
metabolites, green lines indicate inhibition and red lines activation. 
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