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Abstract

Host-microbiome interactions and the microbial community have broad impact in human
health and diseases. Most microbiome based studies are performed at the genome level
based on next-generation sequencing techniques, but metaproteomics is emerging as a pow-
erful technique to study microbiome functional activity by characterizing the complex and
dynamic composition of microbial proteins. We conducted a large-scale survey of human gut
microbiome metaproteomic data to identify generalist species that are ubiquitously expressed
across all samples and specialists that are highly expressed in a small subset of samples associ-
ated with a certain phenotype. We were able to utilize the metaproteomic mass spectrometry
data to reveal the protein landscapes of these species, which enables the characterization of
the expression levels of proteins of different functions and underlying regulatory mechanisms,
such as operons. Finally, we were able to recover a large number of open reading frames
(ORFs) with spectral support, which were missed by de novo protein-coding gene predictors.
We showed that a majority of the rescued ORFs overlapped with de novo predicted protein-
coding genes, but on opposite strands or on different frames. Together, these demonstrate
applications of metaproteomics for the characterization of important gut bacterial species.
Results are available for public access at https://omics.informatics.indiana.edu/GutBac.

Author summary

Many reference genomes for studying human gut microbiome are available, but knowledge
about how microbial organisms work is limited. Identification of proteins at individual species
or community level provides direct insight into the functionality of microbial organisms. By
analyzing more than a thousand metaproteomics datasets, we examined protein landscapes
of more than two thousands of microbial species that may be important to human health and
diseases. This work demonstrated new applications of metaproteomic datasets for studying
individual genomes. We made the analysis results available through the GutBac website,
which we believe will become a resource for studying microbial species important for human
health and diseases.

Introduction

It is now well established that microbial species inhabit many ecologies, which drives diver-
sity due to the need to adapt to these environments1. Molecular diversity and robustness
also allows these species to inhabit microbiomes that are host associated, such as the human
gut2–7. Due to its importance to human health and disease, the human gut microbiome
has been extensively sequenced, leading to the identification of more than a thousand dis-
tinct species, with knowledge about diversity increased by every new study8. Culture based
whole genome sequencing techniques9,10 have identified a few hundred human gut associated
genomes. Culture free techniques, revolutionized by metagenomics coupled with computa-
tional genome binning methods, have resulted in many more metagenome-assembled genomes
(MAGs)1,3,5,8–11. A unified genome catalog contains more than 200,000 reference genomes
from the human gut microbiome8. Maintaining a comprehensive genomic catalog of bacteria
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and archaea will provide the basis needed to perform large scale multi-omic comparative
genomic studies. Large scale studies based on whole genome sequences will be central in
understanding details about mechanisms of microbial interactions with each other and with
their environments and hosts. These studies will also be critical for uncovering details about
metabolic pathways and key functions at the protein level by examining proteome landscapes
and employing various data-mining techniques to identify genes and functions of interest,
such as CRISPR-cas systems12 and anti-CRISPRs13.

Recent progress has dramatically increased the collection of microbial species that are re-
lated to human health and diseases, most notably the accumulation of MAGs, many of which
represent new species. Experimental studies of these new species in terms of their expression
and functions remains scarce. Computational gene predictors have become an essential first
step in the annotation of these new genomes. De novo gene prediction techniques are com-
monly used because they are not constrained by sequence similarity with known ones14,15. De
novo gene prediction remains a unsolved problem, with different tools, such as FragGeneS-
can, prokka, and GenMark, producing largely consistent but not perfect predictions because
most of the predicted genes remain hypothetical without functional annotations. Proteomic
studies have been used to improve understanding of the microbial world beyond genomics.
Proteomics allows correction of bad gene predictions, and the discovery of protein prod-
ucts from the regions of the genome not yet predicted to be coding areas16. Proteomics
has been used a tool for studying bacterial virulence and antimicrobial resistance17. The
Multidimensional Protein Identification Technology (MudPIT) approach was used to study
Pseudomonas aeruginosa membrane-associated proteins, which contribute to P. aeruginosa
cells’ antibiotic resistance and is involved in their interaction with host cells18.

Motivated by recent expansion of microbial genome catalogues, our previously defined
reference based peptide identification pipeline (HAPiID)19, and the increasing number of
publicly available gut metaproteomics datasets, we conducted a large scale survey of metapro-
teomics data of the human gut microbiome to study the proteome landscapes of the various
microbial species dominating the human gut. Our aim was to mimic targeted proteomics
studies, which traditionally focused on single cultured species, by leveraging the available
metaproteomics datasets. We were able to identify species that are ubiquitously expressed
across all samples spanning various phenotypes. Furthermore, by focusing on the most highly
expressed genome sequences at the protein level, we represented the expressed proteome as
a network and extracted co-abundant protein modules. We used such network information
to study the various metabolic pathways that a protein with unknown function might be
involved in and also identified modules that were expressed in hosts with specific phenotypes.
We also leveraged proteome information to identify and annotate potential operon structures
within genomes and recover open reading frames (ORFs) with spectral evidence that were
otherwise missed by computational protein coding gene predictors. Operon structures have
been exploited for computational functional predictions (guilt by association)20,21. We made
the results from our analysis available at a publicly accessible website, providing the protein
expression and putative operon structures with spectral support for many human gut related
microbial species for the first time.
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Results

Not all highly-expressed species are equal: some are generalist and
some are specialist

Taking advantage of the large number of metaproteomics datasets, we were able to identify
a total of 2,511 distinct genomes that were expressed in at least one out of the total 1,276
samples (see Table 1). A total of 13,460,264 spectra were matched to peptides, out of
which 12,950,155 spectra (96.2%) were matched to the 2,511 highly abundant genomes.
The remaining 510,109 identified spectra were not considered further in this study. Figure
1 summarizes the spectral support for these genomes with x-axis showing the number of
supporting samples and y-axis showing the total number of identified spectra for each genome
(a data point in the plot).

Table 1: Summary of the metaproteomics datasets that were analyzed.

Study # of samples phenotypes type of sample

Rechenberger et al. 201922 424 AL single pass
Tanca et al. 201523 5 healthy single pass
Cerdo et al. 201824 56 healthy infants single-pass

Gavin et al. 201825 101
healthy/seronegative

T1D/seropositive
single-pass

Long et al. 202026 39 colorectal cancer/healthy single-pass

Lehmann et al. 201927 77
healthy/CD/UC/IBS

colon adenoma
gastric carcinoma

single-pass

Zhang et al. 201828 202 healthy/CD/UC single-pass
Zhang et al. 202029 48 healthy/CD single-pass
Zhang et al. 201630 8 healthy single-pass
Lloyed et al. 201931 641 healthy/CD/UC single-pass
Zhang et al. 201732 45 healthy/CD/UC fractionated
Hick et al. 201933 30 healthy fractionated

Young et al. 201534 118 female preterm infant fractionated
Blakeley et al. 201935 624 CD(resection surgery) fractionated

We saw variation in metaproteomic support for the different genomes with the most
highly expressed genome having over one million supporting spectra. The average number
of spectra expressed by each genome was 4,780 and the mean was 385 spectra per genome,
which indicates very few highly expressed genomes and many low expression genomes at
the protein level. To improve coverage at the protein level, we focused on the top 100 most
abundant genomes for the rest of this section. The top 100 most abundant genomes (less than
4% of the total number of expressed genomes) contributed more than 61% of the identified
spectra (7,327,171 spectra). Figure 2 summarizes the taxonomic composition at the genus
level of these top 100 genomes. These 100 genomes represent a total of 34 genera in five most
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Figure 1: Scatter plot summarizing the expression of human associated microbial species in
different samples. X-axis shows the number of samples in which each genome was observed,
and y-axis shows the total support spectra for each genome. The four genomes that are
highly expressed and/or broadly distributed are highlighted in red with their species names
shown in the plot, followed by the number of samples supporting their expression in the
parenthesis.

abundant phyla of the human gut Bacteriodetes, Firmicutes, Actinobacteria, Proteobacteria
and Verrucomicrobiota (Supplementary Figure S1).

The top two most abundant species belong to the genus Phocaeicola (Phocaeicola vulgatus
and Phocaeicola dorei, which expressed more than 11.9% of the total number of spectra in
a total of 543 and 308 samples respectively. We refer to these two species as generalists
herein forward. These two species share similar phenotype expression patterns because they
both appear in many healthy samples and in similar disease samples, including AL, T1D,
CD, CD, IBS, colon adenoma and CD (followed by resection surgery), with the exception
of gastric carcinoma where only Phocaeicola vulgatus was found to be expressed. We also
identified two species belonging to the Lactobacillaceae genus (Lactobacillus amylovorus and
Limosilactobacillus mucosae), which were the 4th and the 11th most highly expressed genomes
but are only expressed in 25 and 16 samples respectively. We refer to these two species as
specialists. The latter two species were not found to be expressed in a single healthy sample,
but both were highly expressed in CD (followed by resection surgery) patients, and the
former was also found in AL patients with high abundance.

We next checked whether or not these two pairs of species have similar functional profiles
when compared with each other, over the samples in which they are expressed. To do that,
we annotated their expressed proteins, as much as possible, with COG terms (see methods
for more details). For each of the four genomes mentioned above, we computed the relative
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Figure 2: Piechart summarizing the taxonomic composition at the genus level for the top
100 highly expressed genomes.

Figure 3: Barplot summarizing the relative abundances of the COG functional categories of
the two generalist (blue/green) and two specialist (red/orange) highly abundant genomes

abundances for the COG terms associated with their expressed protein sequences. We sum-
marize the distribution of the high level single COG categories, represented by 25 single letter
groups, in Figure 3. We noticed that, overall, the two generalist species share more similar
functional profiles, and the two specialist genomes share more similar functional profiles (Fig-
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ure 3). The two specialist genomes had significantly higher relative protein expression levels
for the COG categories G (carbohydrate transfer and metabolism), J (translation, including
ribosome structure and biogenesis) and T (signal transduction). On the other hand, the two
generalist species had relatively higher expression levels in the COG categories P (inorganic
ion transport and metabolism), M (cell wall/membrane/envelope biogeneis), C (energy pro-
duction and conversion), U (intracellular trafficking, secretion, and vesicular transport) and
W (extracellular structures). It should be noted that the latter functional category W had
no observed expression within the two specialist species.

Protein co-expression modules and their applications

We focused on the top 100 most highly expressed genomes in this section to assess the pres-
ence/expression of their proteins among the different host phenotypes (see Supplementary
Figure 2 for the summary). We derived groups of proteins (protein co-expression modules)
that had similar presence/expression patterns across samples and were mostly found in one of
the 13 phenotypes. We extracted a total of 854 such modules, composed of 3,697 protein se-
quences (see Table 2). Figure 4 shows two such protein modules. The first module containing
proteins that were mostly exclusively expressed in CD patients followed by resection surgery
and the second one contains proteins mostly expressed in patients with acute leukemia. We
noticed that many of the proteins within the modules lack functional annotations but have
connections to those whose functions are previously characterized.

Table 2: Phenotype specific protein co-expression modules

Phenotype # of modules # of proteins
AL 232 1,250
CD 96 307

CD (resection surgery) 225 816
colon adenoma 6 17

gastric carcinoma 9 23
healthy 169 873

healthy infant 25 92
IBS 6 26

preterm infants 0 0
T1D 12 45
UC 74 248

We explored the possibility of suggesting functions for proteins that lack COG or KEGG
annotations, but are co-expressed with other annotated proteins (guilt-by-association). We
report pathway associations when such proteins share edges with other annotated ones within
the modules. By doing so we were able to suggest potential pathways for a total of 7,682
proteins using COG annotations and 5,800 proteins using KEGG annotations (9,566 receiv-
ing either COG or KEGG pathway). On the other hand, there were a total of 3,747 proteins
using COG annotations and 2,080 proteins using KEGG annotations respectively, that ei-
ther had no edges with any other annotated proteins or were found in modules that were
completely composed of un-annotated protein sequences.
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(a)
(b)

Figure 4: Protein co-abundant modules extracted from (a) Bifidobacterium longum that is
mostly expressed in CD (followed by resection surgery) patients and (b) Escherichia flexneri
mostly expressed in acute leukemia patients.

Putative operon structures with spectral support

We applied the described pipeline to extract potential operon candidates from genomes that
were expressed in relatively high number of samples (see Methods for more details). Two lists
of potential operons were produced: one with spectral support (as described in the methods
section), and the other one of operons without consideration of spectral information. In
total, we analyzed 278 genomes, and made the results available on the GutBac website.
From these genomes, a total of 4,089 potential operon structures with spectral support and
36,633 suggested operon structures with or without spectral support were identified. We
compared our predictions with those predicted using fgenesB for the top 10 most highly
expressed genomes, and the results are summarized in Table 3. The number of potential
operons with spectral support were always lower than those predicted by fgeneB and those
suggested by our pipeline without spectral support. However, on average there was slightly
better agreement between the fgenesB predictions and those with spectral support ( > 92%)
compared to the suggestions without spectral support (88%). It should be noted that the
increase in the difference between the reported numbers is expected in this case, as we
included more genomes with decreasing spectral coverage.

Recovery of missed ORFs with spectral support

Here we incorporated metaproteomics datasets to recover ORFs with spectral support which
were otherwise missed by de novo gene predictors mentioned in the methods section above.
Novel ORFs in comparison to the two computational gene/protein prediction methods
(FragGeneScan and prokka) were extracted as explained in Methods. There were a total
of 2,463 distinct genomes that were identified to be highly expressed at the protein level
in at least 1 sample. A total of 23,949 putative ORFs were identified which were otherwise
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Table 3: Summary of predicted operons by fgenesB and our approaches using spectral sup-
port and without spectral support for selected genomes.

genome id fgenesB predicted operons * supported operons **

GCF 003475695.1 875 817 (699) 421 (375)

20287 6 9 1038 878 (759) 378 (349)

BackhedF 2015 SID70 4M bin 5 675 533 (492) 185 (174)

GCF 003465905.1 454 301 (279) 125 (117)

LiJ 2017 H2M414927 bin 20 486 374 (353) 154 (143)

12718 7 31 910 766 (650) 289 (265)

GCF 003471795.1 747 549 (478) 274 (244)

GCF 000169015.1 835 694 (586) 299 (267)

GCF 000209425.1 560 400 (362) 114 (111)

GCF 003433995.1 667 511 (476) 164 (152)

* putative operons with/without spectral support
** putative operons with spectral support
*** numbers in parentheses reflect the number of opersons we predicted that overlap with
fgenesB predictions

missed, when FGS was employed for gene prediction. Similarly, a total of 22,658 novel ORFs
were recovered when prokka was used for gene prediction. The majority of these recovered
ORFs were overlapping (at 84%); a more detailed results for this comparison is summarized
in Supplementary Figure 3. Unsurprisingly, there is positive correlation between the num-
ber of ORFs recovered for genomes with their protein expression levels in both cases, as
shown in Supplementary Figure 4. This further suggests potential improvement in bacterial
annotations with the increase in the throughput of metaproteomics.

We examined the relationship of the rescued ORFs with respect to the protein coding
genes predicted by FGS or prokka. We found that among the rescued ORFs (22,573), the
majority of them are either on the opposite strands (11,955, 53%) of already predicted protein
coding genes, or the same strand but of different frames (7,347, 33%). The genome that has
the most number of rescued ORFs is Phocaeicola vulgatus (accession ID: GCF 003475695.1),
one of the two generalists we discussed above. A total of 426 ORFs were recovered (comparing
to prokka prediction), among which 232 cases were found on the opposite strands of genes
predicted by prokka, and 97 were found to be encoded by a different frame of overlapping
gene. Figure 5 shows plots of three regions in this genome that contain rescued ORFs
with spectral support (together with predicted operons). The first example (illustrated on
the top in Figure 5) involves two rescued ORFs, among which one is a large ORF that
was missed by prokka (but was predicted as a protein coding gene by FragGeneScan), and
could be re-identified using metaproteomic data (we note this ORF was missed by prokka
probably because it overlaps with a tRNA gene, shown as a red arrow in the plot). The
second example (shown in the middle in Figure 5) also contains two rescued ORFs, and
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we note the first ORF (from 86972 to 87128 bp in NP QRPW01000005.1) was missed by
both FragGeneScan and prokka but we found metaproteomic evidence for this ORF. In
fact, this ORF is part of a large operon that involves genes encoding ribosomal proteins,
and hmmscan search (https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan) shows that
the rescued ORF is ribosomal protein S11. In the last example, the larger rescued ORF of
199aa overlaps (on the opposite strand) with two putative protein coding genes. This ORF
is supported by one peptide of 2 PSMs but similarity search (using hmmscan search) did not
return similar sequences, so further investigation could be needed.

Figure 5: Selected cases of rescued ORFs using metaproteomic data in P. vulgatus genome.
The three blocks of arrows represent genes predicted from three regions in this genome: from
the top to the bottom are contigs with IDs of NZ QRPW01000017.1, NZ QRPW01000005.1,
and NZ QRPW01000002.1, respectively. Genes predicted by FGS and/or prokka are shown
as arrows in dark purple and light purple for genes with spectral support in at least two
metaproteomic datasets, or only one metaproteomic dataset, respectively (the red small ar-
row represents a tRNA gene predicted by prokka) around the central lines, each representing
a segment of the genome. Rescued ORFs are shown as green arrows above the lines. Genes
in the same putative operon structure are surrounded in orange squares.

Discussions

By taking advantage of the availability of many metaproteomics datasets, we were able
to probe the protein landscapes for many human-associated microbial species. However,
due to the relatively low throughput of metaproteomics comparing to metagenomics (and
metatranscriptomics), the number of genomes we studied (in depth) was rather limited, even
though a huge number of reference genomes for human gut microbiome were available. The
HAPiID pipeline includes more than 6000 genomes for peptide and protein identification
from metaproteomic data, and we were only able to provide genome-level protein landscape
analysis for 40% of these genomes.
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Using metaproteomic data, we were able to identify a large number of ORFs that had
spectral support but were missed by de novo gene predictors. Many of these rescued ORFs
are relatively short (otherwise they are unlikely to be missed by protein coding gene pre-
dictors), and we want to emphasize that they need to be interpreted cautiously. Some of
them could be false identifications and some of them may reflect translation that does not
result in proteins with biological significance. In the case of the 199aa ORF discussed in the
results, evidence of this ORF was based on a single peptide of 2 PSMs and more focused
mass spectrometry analysis (higher throughput techniques or a focus on this species) could
be used to improve support for this existence of this ORF and eliminate the possibility of it
being a false identification. Finally, we hope the finding of “rescued” ORFs (such as the one
that overlaps with a tRNA gene) and their analysis can inspire ideas for improving de novo
protein coding gene predictions.

With the increasing number of microbial genomes being sequenced, functional annotation
becomes an immediate need. Numerous genomes are being computationally assembled as a
result of these metagenomic sequencing efforts coupled with emerging computational genome
assembly and binning tools. This is expanding the gap between the amount of whole micro-
bial genomes recovered and the fraction of annotation the community has concerning these
newly discovered genomes. While metaproteomics based techniques are still low throughput
compared to the sequencing base techniques, we believe there is great value in studying the
proteome of these microbial communities directly within their environment and augmenting
a third level of information on top of metagenome and metatranscriptome, to capture such
microbial interactions at a more granular scale, i.e., both functional and pathway levels,
rather than a mere interpretation of the genome abundance levels of the different microbial
entities at some taxonomic level.

We hope that our results would serve as a resource for the study of gut microbial com-
munity in particular to cast more light over the microbial dark matter, and broaden our
understanding at the functional level. Furthermore, we also hope that this work would in-
spire others and serve as an example on how to utilize metaproteomics as a tool for large
scale analysis to study the microbial functional landscapes, especially as metaproteomics
throughput improves and different mass spectrometry methods that may improve results,
such as multiplexing and data independent approaches, become more common.

Materials and Methods

Metaproteomics samples

Human gut metaproteomic datasets were obtained from the publicly accessible proteome
exchange database36. We extracted a total of 2,418 Thermo Fisher RAW files, from 14
recent studies, spanning 12 distinct phenoypes22–35. A more detailed summary of the datasets
used can be found in Table 1. Four of the studies were based on fractionation approaches to
increase sequencing depth. For peptide-spectral-matching and to identify expressed proteins,
we ran these individual samples through our previously developed HAPiID pipeline19. For
fractionated samples, we performed peptide spectral matching for each individual fraction
separately and then combined the identification results from every fraction into results for a
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single sample.

Peptide identification and proteome quantification

To identify peptides and quantify proteome content of our proteomics dataset, we first ran
each individual sample through our previously implemented HAPiID proteomics framework
(https://github.com/mgtools/HAPiID)19. Default parameters were used over all samples.
For the peptide spectral matching step, the MSGF+ search engine was used with the follow-
ing settings37: high-resolution LTQ as the instrument type, precursor mass tolerance of 15
PPM, isotope error range between -1 and 2, a maximum of 3 fixed modifications, variable ox-
idation of methionine, fixed carboamidomethyl of cysteine, maximum charge of 7 and a mini-
mum charge of 1, and allowing for semi-tryptic fragmentation up to two missed-cleavages. A
protein database from proteomes of 6,160 non-redundant microbial whole genome sequences
was used as a reference to compute theoretical spectra, for peptide spectral matching. The
microbial genomes were collected from five recent studies3,5,9–11, and then filtered and derepli-
cated by dRep38, using 90% sequence identity for the primary clusters, and 99% sequences
identity for the secondary clusters with a minimum of 60% genome alignment coverage. A
strict FDR cutoff at 1% was enforced by using target-decoy database approach with reverse
protein sequences as decoy. A final set of samples was maintained by discarding the ones
where we identify less than 1,000 unique peptide sequences. After combining fractions for
the fractionated samples, our final dataset was composed of 1,276 samples.

Highly abundant genomes at the protein level for each sample was defined as the list of
top N genomes that were able to cover 80% of the identified spectra in the first step based
on the greedy approach defined in the HAPiID pipeline19 (see19 for more details). After
selecting a list of highly expressed genomes for each sample, identified spectra gets redis-
tributed across these genomes. Initially, all uniquely mapped spectra get assigned to their
corresponding genomes, followed by partial allocations of the multi-mapped (i.e. shared)
spectra. Quantities from unique spectra to genomes are used for weighted assignment of the
multi-mapped spectra shared between multiple genomes, similar to the approach proposed
in Qin et al.39. Genome to absolute spectral counts were later normalized by the respec-
tive proteome sizes (calculated as the total combined lengths of protein sequences for each
genome), and then normalized by the total number of spectra for each sample to account for
sequencing depths and allow for cross sample comparisons.

Protein function annotation

We used both COG40 and KEGG41 databases to assign functional annotations to protein
sequences. The latest version of clusters of orthologs (COG) database (release 2020), was
used to assign COG terms, with significant hits, to the predicted protein sequences from
whole genome sequences. A COG protein reference database was first created from the
curated list of 3,213,025 protein sequences with COG assignments. Diamond blast42, with
the –more-sensitive setting, was employed to assign COG terms to our query sequences.
A protein sequence was annotated with a COG term if the alignment between the query
protein sequence and the reference protein sequence covers at least 50% of the total length
of the COG domain, with a minimum e-value score of 0.01. A total of 10,546,105 protein
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sequences (out of 15,072,008 protein sequences), each had at least one COG hit, using these
criteria. Protein sequences that did not receive any COG hit were assigned to the category
S (i.e., no COG-term assignments). We also performed COG based pathway annotation,
for protein sequences with COG hits that participate in certain pathways. To transfer
KEGG annotations to our protein sequences we first annotated protein sequences with KO
terms using KEGG’s blast-Koala tool, over the latest version of KEGG database41, followed
by mapping putative pathways that each protein participates in using KEGG’s pathway
mapper tool. Furthermore, we post-processed protein to KEGG pathway maps by using our
previously developed tool, MinPath43, to overcome potential overestimation of pathways by
the naive function-to-pathway mapping method.

Inference of protein co-expression network

For the top 100 most highly expressed genomes, we created protein expression profile M x N
matrices where M represents the list of expressed proteins and N represents the list of samples
where the particular genome is expressed in, and a particular entry mi, nj represents the
number of spectra expressed by the protein mi in the sample nj. From this matrix, protein
expression profile vectors were then extracted for each expressed protein and all against all
pairwise correlation coefficients were calculated using the program fastspar44, which is a fast
and scalable implementation of the original sparCC correlation measure45. The resulting
M x M correlation matrix is used to construct a protein co-abudnance network. Based
on author recommendations, we used a minimum sparCC correlation coefficient of 0.3 or
higher to infer an edge between two expressed proteins. To extract proteome connected
components, we developed an in house script using python’s networkX module46. A graph
node in this context is an expressed protein sequence, and an edge between two protein
sequences represents a sparCC correlation coefficient of 0.3 or higher, between the expression
profile of these two proteins. We first identified all the maximum cliques within the network
by an iterative approach. For all the remaining nodes that did not form cliques, we identified
the best candidate connected components, by adding them to the clique where they share
the highest number of edges with. The latest version of cytoscape was used for network
visualization47.

Host phenotype specificity of gut bacterial proteins

To quantify if a protein’s expression is only observed in gut microbiomes with a specific
host phenotype or broadly found in samples with different phenotypes, we defined the host
phenotype specificity (HPS) of a protein using Shannon’s entropy measure48, as following:

−
N∑
j=1

pijlogNpij

where N is the total number of possible phenotypes that a protein i was found to be ex-
pressed, and pij represents the proportion of the protein i being expressed in sample with
phenotype j. The proportions for each protein to be found expressed in a phenotype is calcu-
lated based on the spectral counts, normalized by sequencing depth, for a protein across the
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the samples with different phenotypes. Using this metric, proteins with phenotypic entropy
closer to zero indicates phenotype specific expression patterns, and those with values closer
to 1 indicate more broadly distributed protein expressions, likely to be expected in a broad
range of phenotypes.

Inference of operon structures with protein expression support

Protein spectral support was integrated with genomic context to extract potential candidates
for operon structures within highly expressed genomes. For each genome, we extracted
clusters of proteins from the same contig and strand containing member protein sequences
within 100 bases. We integrated spectral support to filter out clusters that did not have
at least half of its protein members expressed in 2 or more samples and required at least 2
spectra per sample. To validate our results, we also predicted operon structures using the
fgenesB program49,50. FgenesB is a bacterial operon and gene prediction program, based on
pattern Markov chains. The FgenesB software suite, however, only provides a web interface
with limited submissions per day per user, therefore an automated method to detect operon
structures, that could be integrated in pipelines and run offline would be highly desirable.
For comparison, we counted a predicted operon as overlapping with those of fgenesB if the
two suggested operon regions on the genome overlap by more than 70%.

Recovering of proteins missed by gene predictors but are supported
by metaproteomics data

FragGeneScan (FGS)51 was used to predict protein coding genes for the genomes used in
our reference protein database. For each of the highly abundant genomes identified in each
sample, by selecting top N genome sequences covering 80% of the identified spectra in step
1 of our HAPiID pipeline (see19 for more details), we construct a protein database using
6 frame genome translation sequences instead of predicted protein sequences as a reference
database. We then identified peptides from each sample based on this method of database
construction. For each new peptide we extracted open reading frames (ORFs) that surround
them, and then filtered out those that did not have a blast hit of 70% or higher with the
respective predicted protein predicted by FragGeneScan. Similarly, we repeated the same
task by using prokka52 for protein prediction instead of FragGeneScan.

Availability of the results

Results are available through the GutBac website at https://omics.informatics.indiana.
edu/GutBac/. The website includes GFF files with predicted proteins for each genome, FNA
and FFN files containing relevant genomic sequences, GFF files containing both the predicted
proteins and the missed ORFs for each genome, and CSV files containing the list of predicted
operons for each genome. The website includes contig-specific plots generated by DNA Fea-
tures Viewer53 containing the missed ORFs, predicted proteins, and predicted operons for
both FGS and prokka. The website also features genome-specific searching and filtering.
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M., Suárez, A., Campoy, C.: Gut microbial functional maturation and succession during
human early life. Environmental microbiology 20(6), 2160–2177 (2018)

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.09.02.458484doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.02.458484
http://creativecommons.org/licenses/by/4.0/
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Supporting Information Legends

Figure S1: Piechart summarizing the taxonomic composition at the genus level for the top
100 highly expressed genomes.
Figure S2: Boxplots summarizing the host phenotype specificity of expressed proteins
encoded by the top 100 most abundant genomes. Gray line indicates the average host
phenotype specificity of the proteins in each genome.
Figure S3: Venn diagram summarizing the overlap between the rescued ORFs that were
missed by FragGeneScan and prokka.
Figure S4: Scatter plots showing the relationship between the expression levels of the
different genomes at the protein level with the total number of rescued ORFs. (A) rescued
ORFs missed by FragGeneScan; (B) rescued ORFs missed by prokka.
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