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Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory disorder that causes pain, swelling and stiffness in the
joints, and negatively impacts the life of affected patients. The disease does not have a cure yet, as there
are still many aspects of this complex disorder that are not fully understood. While mathematical models
can shed light on some of these aspects, to date there are not many such models that can be used to better
understand the disease. As a first step in the mechanistic understanding of RA, in this study we introduce a new
hybrid mathematical modelling framework that describes pannus formation in a small proximal interphalangeal
(PIP) joint. We perform numerical simulations with this new model, to investigate the impact of different levels
of immune cells (macrophages and fibroblasts) on the degradation of bone and cartilage. Since many model
parameters are unknown and cannot be estimated due to a lack of experiments, we also perform a sensitivity
analysis of model outputs to various model parameters (single parameters or combinations of parameters). Finally,
we connect our numerical results with current treatments for RA, by discussing our numerical simulations in the
context of various drug therapies using, for example, methotrexate, TNF-inhibitors or tocilizumab, which can
impact different model parameters.

1 Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory disorder that affects over 1% of the worldwide population [73].
The characteristics of RA include persistent inflammation of joints, which contributes to the degradation of cartilage,
and damage to the bone(s) within the joint [15, 19]. Along with symptoms related to inflammation within joints,
RA can increase the risk of other health issues such as cardiovascular events [19, 75], reduced cognitive function in
the brain, fibrotic disease in the lungs, osteoporosis and a greater risk of cancers [35]. The main symptoms of RA
include inflammation, pain, swelling and stiffness of joints, fatigue and weight loss. Generally, the smaller joints in
the hands and feet are most likely to be affected [75], for example, proximal interphalangeal (PIP) joints, which are
the middle joints on the non-thumb fingers of the hand, are most commonly affected [33, 34, 86, 88]. A key aspect
of RA progression within a joint is the formation of a ‘pannus’ from the abnormally growing synovial membrane.
The pannus is made up of mainly fibroblast-like synoviocytes (FLSs) and macrophage-like synoviocytes (MLSs).
Through the production of inflammatory cytokines the proliferation, migration and cytokine secretion of these cell
types increases leading to further inflammation. These cells also produce matrix degrading enzymes, like MMPs,
which can breakdown cartilage and bone within a joint. In this work, we focus on these key features of pannus
formation and growth and the subsequent cartilage and bone degradation. In the following subsection we provide
further biological detail of these specific mechanisms. For more robust reviews of the biology of RA we direct the
reader to the following papers [28,35].

1.1 Key biological background

The synovial membrane is a soft connective tissue which lines synovial joints and allows for smooth movement
through the secretion of lubricating synovial fluid [19, 28]. This well vascularised tissue consists of a intimal layer
of evenly dispersed cells and a sub-lining comprised of extracellular matrix interspersed with collagen fibrils and
other matrix proteins [79]. The porous structure of the synovial membrane allows for the diffusion of nutrients,
oxygen and chemokines into the joint [8]. In a healthy joint, the intimal layer of the membrane is generally 1-
2 cells thick and consists of fibroblast-like synoviocytes (FLSs) and macrophage-like synoviocytes (MLSs) evenly
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distributed and in equal amounts [8, 79]. Following the onset of RA, the synovial membrane expands through
various inflammatory mechanisms, this growing membrane is known as a ‘pannus’ and can behave similarly to a
locally invasive tumour spreading within the joint [79]. Through both an increase in the proliferation of FLSs and
the infiltration of immune cells, such as bone-marrow derived macrophages, the synovial membrane can expand to
around 10-20 cells in thickness [17, 29, 35, 79, 97]. In this work, we focus on resident macrophages, or macrophage-
like synoviocytes, and resident fibroblasts, or fibroblast-like synoviocytes, which form the majority of the pannus.
However, the pannus can also consist of other immune cell types, including leukocytes, plasma cells, T cells and
mast cells. Pannus formation and growth is controlled through the expression of pro-inflammatory cytokines by
the cells, promoting further inflammation of the synovial membrane. The cytokines involved are vast and varied,
including those with roles in immune cell recruitment, immune cell activation, chemotaxis of cells and degradation
of the cartilage/bone. There can be a high level of heterogeneity in macrophage origin and function in the context
of RA [97], as well as FLS phenotypes and cytokine profiles [21]. In general, the pannus is heterogeneous consisting
of diverse cellular and molecular signatures [79]. In recent years, distinct patterns have been recognised primarily
according to composition, organisation and localisation of cellular infiltrates [79]. As a first approach, we consider
homogenous cell populations whereby each cell within a population will exhibit the same phenotypic characteristics.
However, we do implement stochasticity within the system through our modelling choices.

Cartilage is a connective tissue consisting of chondrocytes which produce a dense extra cellular matrix (ECM).
Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) mediate cartilage destruction
and are produced by B cells, FLSs and macrophages in the RA setting [17,19,28,35,105]. Cells within the pannus can
also stimulate cartilage degradation via direct cell contact mechanisms [19,29]. After cartilage has been damaged the
bone underneath can become exposed. Bone erosion can be induced by cytokines that promote osteoclasts within
the bone. In health, osteoclasts inhibit osteoblasts which produce new bone. In RA, the function of osteoclasts is
increased, reducing the levels of new bone being formed leading to a reduction in bone formation [17, 28, 35]. As
an initial formulation, for simplicity, we will consider both total cartilage and total bone densities rather than the
individual components of each of these tissues.

Once initiated the outcomes of RA cannot be reversed, however disease progression can be slowed and the
symptoms of the disease can be reduced through a variety of treatment approaches. There are several classes of
RA treatment drugs including non-steroidal anti-inflammatory drugs (NSAIDs), steroids and disease modifying anti-
rheumatic drugs (DMARDs). These drugs can be used alone or in conjunction with other treatment approaches.
Biological DMARDs are generally used in conjunction with conventional DMARDs, increasing their efficacy, and are
considered to have a strong benefit-to-risk profile [71, 92]. However, a large number of patients (approx. 40%) do
not respond to the therapy, while others respond initially and then lose response over time [22]. Switching biologics
is one approach considered for the patients with inadequate response to the initial treatment, although the second
biologic might not be more effective than the first one [22]. For a full description of the drugs used in rheumatoid
arthritis treatment we refer the reader to the following papers [38, 75, 87]. We discuss some specific drugs and the
effects they have in the RA context in Section 3.4.

1.2 Previous mathematical descriptions of RA

Mathematical modelling is a useful tool to aid in the understanding of biological process at multiple spatial and
temporal scales. In a recent review paper [58], we have considered existing mathematical models that aim to capture
the mechanisms of rheumatoid arthritis in a variety of contexts. We refer the reader to the review paper for the full
details, however we provide a short summary of the mathematical approaches reviewed here.

1.2.1 Summary of models reviewed in [58]

Systems of ordinary differential equations (ODEs), which are non-spatial deterministic continuous equations that
describe the time evolution of a variable of interest, are the most common modelling approach used to describe the
evolution of RA. Single compartment ODE models have been used to model joint erosion [103], the interactions
between generic pro- and anti-inflammatory cytokines [6], the role of the cytokine TNF-α [42, 63], the interactions
of immune cells within the RA environment and the drug Tocilizumab [77]. More complex, multi-compartment
ODE approaches have also been used to consider the circadian dynamics involved in the progression of rheumatoid
arthritis [82] and the inflammatory and invasive processes occurring at the cartilage-pannus interface [85]. Furthermore,
a number of ODE based approaches consider the pharmacokinetics and pharmacodynamics of various drugs used to
treat RA [45,46,52,54,67,72,74,95].
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To account for spatio-temporal features of RA, systems of partial differential equations (PDEs) have been utilised.
PDEs are deterministic continuous equations that can describe the spatial and temporal evolution of a variable of
interest. PDEs are less commonly used to describe RA specific processes, in comparison to ODEs. For example,
Moise et. al. [66] consider a three-compartment model to describe the spatio-temporal interactions between immune
cells, cytokines and drugs in the synovial membrane, synovial fluid and cartilage of a joint.

Deterministic methods such as ODEs and PDEs cannot capture the potential variability or stochasticity within a
biological system. Stochastic mathematical and computational models describe the interactions between the different
components of the system, or the transitions between different states of these components as probabilistic. Such
models have been mainly applied in the context of treatment decisions [90], to analyse RA incidence rates [84], or
to predict radiological progression within RA [39, 101]. Moreover, a subset of stochastic Markov chain models have
focused on assessing the cost-effectiveness of single or combined RA treatments [47,50,89,89,94].

1.2.2 Further stochastic and hybrid (deterministic-stochastic) modelling approaches

The few models existent in the literature are mainly deterministic and are given by differential equations. However
it has been suggested that accounting for stochasticity within RA may be key in understanding the evolution of
the disease [24,28] and predicting the success of RA treatments [26]. Along with the stochastic models described in
Section 1.2.1, a small number of studies have considered probabilistic Boolean network models for RA [65,104].

A different approach to incorporate stochasticity at a cellular level within mathematical models is to use an
individual-based (IB) (or agent-based) modelling approach [10, 100]. This approach allows each cell to be described
as an individual agent which follows a set of predetermined rules. These agents reside in a defined spatial domain.
This domain can be constrained as a lattice, where agents are restricted to moving between lattice positions, or more
realistically an off-lattice approach can be utilised where agents have freedom in direction of movement. Off-lattice
individual-based modelling has been used in multiple areas of mathematical biology research including modelling the
cellular immune response to viruses [7] and cancer [61]. Individual-based models can be computationally expensive
especially when modelling a large number of agents. This expense can be reduced by using a hybrid modelling
approach. For example, when modelling a chemical we may not necessarily be interested in modelling each individual
molecule but the total local concentration instead. To model these more continuous aspects a deterministic approach
can be used, where the total local concentration is described rather than each molecule, this can be viewed as
a tissue-level approach. To allow us to consider both the stochastic cellular level scale and deterministic tissue
level dynamics of the system we can use a hybrid multiscale modelling approach [62]. To model the deterministic
components we can use classical methods such as differential equations. Hybrid approaches have been used to model
various biological phenomena such as monocyte migration in the vasculature [5], the cellular immune response to
sepsis [20], inflammation in chronic obstructive pulmonary disease [9] or various mechanisms of cancer growth and
development [57,60,80,83]. In a similar way, in the context of rheumatoid arthritis, using multi-scale hybrid modelling
approaches may be valuable in modelling disease progression and predicting the success of RA treatment.
These hybrid modelling approaches allow for the dynamics of single cells within a system to be investigated while
chemical concentrations and tissue-level effects are modelled deterministically. This is useful in the context of
RA as it has been found that there exists high levels of phenotypic and spatial heterogeneity of cells within the
synovial membrane [69]. Moreover, understanding these single cell phenomena further has been highlighted as an
important step in the identification of treatment targets [13, 99, 102]. To investigate these single cell dynamics, we
propose a hybrid (stochastic-discrete) modelling method would be appropriate to describe the cellular dynamics in
the progression of RA.

1.3 Overview of paper

Building upon previous on-lattice hybrid models to describe interacting cell and chemical populations [12, 59], we
develop an off-lattice hybrid model as a first step towards building a more realistic model of arthritic destruction
within a small PIP joint. More specifically, we incorporate the dynamics of two resident cell populations, fibroblasts
(or fibroblast-like synoviocytes) and macrophages (or macrophage-like synoviocytes) through a stochastic off-lattice
individual-based modelling approach. The dynamics of cartilage and bone density, along with the evolution of
MMPs are described via a deterministic PDE approach. In the model we consider the simplified interactions of these
components which can lead to destruction of cartilage and subsequently the bone within the joint. The methods used
to implement each of the mechanisms described are those which could be used to include the necessary biological
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detail as the framework is improved upon in future iterations of the model. The paper is structured as follows. In
Section 2, we describe the details of the framework and how each biological mechanism is described mathematically.
In Section 3, as an example we highlight some initial results of the framework and perform a sensitivity analysis
to investigate the role of the parameters in the RA system. We additionally describe how the framework could be
related to current rheumatoid arthritis treatments. Finally in Section 4 we discuss the key outputs of our framework
and their biological relevance, the requirements to validate the framework and the plans for developing the framework
further.

2 The discrete model

In this section we introduce the hybrid modelling framework used to describe pannus formation in a joint affected
by rheumatoid arthritis. In the framework we consider 5 components: bone and cartilage densities, individual
resident fibroblasts (or fibroblast-like synoviocytes) and resident macrophages (or macrophage-like synoviocytes) and
the degrading proteases, matrix metalloproteinases (MMPs). Note, we include only fibroblasts and macrophages as
they contribute to the majority of the pannus, however further cell types could be considered in future iterations
of the modelling framework. We use an off-lattice individual-based modelling approach to describe the dynamics
of the cells, coupled with discretised PDEs to model cartilage density, bone density and MMP concentration. In
Section 2.1, we describe the set-up of the initial spatial domain to replicate a PIP joint. The mathematical methods
used to describe both fibroblast and macrophage dynamics are presented in Section 2.2. Section 2.3 contains the
mechanisms used to describe the evolution of MMPs in the system. The methods used to describe both cartilage
and bone density are given in Section 2.4. Finally, we describe how the on and off-lattice components of the model
are coupled in Section 2.5.

2.1 Set-up of the domain

Figure 1: The initial spatial domain of the hybrid model. Shaded grey area represents the areas where bone is
initially present, while shaded blue represents the areas where cartilage is initially present. The red and purple
circles represent macrophages and fibroblasts, respectively. Note, that the initial position of both cell types of cells
is randomised, so the positions here are just an example. The white space represents synovial fluid in which cells
can freely move and proliferate, e.g., essentially free space in the system. Each of the parameters W are shown on
the diagram represent the length, height or width of each of the areas within the domain. Note, the diagram is not
to scale.

We consider a 2D spatial domain with x ∈ [xl, xh] and y ∈ [yl, yh]. A schematic diagram of the spatial domain and
initial condition is provided in Figure 1. As described in Section 1.1, small joints in the hand are most commonly
affected by rheumatoid arthritis and can be affected in early stages of the disease. Therefore we formulate the model
in the context of rheumatoid arthritis within a small PIP joint. There would be no difficulty in reframing the model
in the context of other RA infected joints. To replicate a small joint we consider the joint space to contain two bone
ends, surrounded by cartilage with a small space between the two bones. As a simplification, in the model we consider
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the bone and cartilage domains to be rectangular initially. In healthy joints, the synovial membrane is around 1-
2 cells thick consisting of macrophages and fibroblasts which are evenly distributed and in equal amounts [8, 79].
Therefore, we position macrophages and fibroblasts randomly in two layers at the boundaries of the domain, where
the width of the membrane is approximately 2 cells thick. To define the spatial domain, we consider the width,
length or height of each of these areas by defining the following parameters W, the descriptions of these parameters
are available in Table 1.

Symbol Description
WB the height of bone protruding into the domain
WC the width of the cartilage that surrounds the bone
WJ the width of the joint space between the two bone ends
WM the initial width of the synovial membrane
WS the space between the cartilage and the edge of the domain

Table 1: Descriptions of the parameters used to set-up the initial spatial domain of the hybrid model as shown in
Figure 1.

2.2 Cell dynamics

Fibroblasts and macrophage populations are included in the model using an off-lattice individual-based modelling
approach. We track the total number of fibroblasts and macrophages over time, denoted by NF (t) and NM (t),
respectively. To take into account the physical size of the cells, each cell within both populations is tracked by the
spatial position of the cell centre and the radius of the cell. To allow for simplicity we consider all cells to be perfectly
spherical (i.e. the radius of the cell consistent) and we further consider that the cell size does not change over time.
We consider homogeneous populations of fibroblasts and macrophages, that have the radii RF for the fibroblasts and
RM for the macrophages.

Initially, we randomly place NF (0) fibroblasts and NM (0) macrophages in the areas denoted by width WM , as
shown in Figure 1. To ensure physical space is taken into account, for each cell a desired initial position is chosen
then checked for overlap with previously placed cells, cartilage, bone or the domain boundary as we consider a
volume-exclusion process, whereby only one cell can occupy a particular area of free space. If there is overlap, a new
position is chosen for that cell and the process repeats, until all cells are placed.

To replicate growth and invasion of the pannus into the joint space, we allow both cell types to undergo mechanisms
of random motion/migration and proliferation within the individual-based model, as described in the following
subsections. For simplicity, we consider both the fibroblast and macrophage populations to be homogeneous, that is
each fibroblast will have the same potential to divide, die or migrate and similarly, each macrophage will have the
same potential to divide, die or migrate. Furthermore, we impose zero-flux boundary conditions ensuring all cells
remain within the spatial domain. That is, we consider only cells that reside within the simulated joint and omit the
influx or recruitment of external immune cells into the domain.
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Figure 2: Schematic of the off-lattice cell movement mechanism. The solid black circle represents the initial cell
position where the cell has radius R. A desired position is chosen by selecting a random angle θ ∈ [0, 2π] and then
placing the cell centre at a distance of ∆x from the original position in the direction θ. The desired position (blue
dashed circle) is chosen as the cell’s updated position if no other cells, cartilage or bone overlap this spatial position.
If this position does overlap the cell movement process is aborted.

Cell movement We incorporate random cell movement for both fibroblasts and macrophages using the same
mechanism and allow different probabilities of movement for each cell type. At every time-step each cell can move
randomly with probability, λF or λM , if a fibroblast or macrophage, respectively. If the cell is permitted to move,
then a new direction is chosen from an angle θ between 0 and 2π for the cell to move in, as shown in Figure 2. The
new position is calculated as a jump of length ∆x, to ensure proper scaling of movement probabilities. The movement
to this desired position is only permitted if the new position is within the boundary, does not overlap with any other
cells or with cartilage/bone density. If any of these properties prevent movement, the movement jump is aborted.

Figure 3: Schematic of the off-lattice cell division mechanism. The solid black circle represents the original cell
position where the cell has radius R. The cell will divide into two identical daughter cells, one cell will remain on
the original cell’s position and the other will be placed at a desired position adjacent to the original cell’s position.
A desired position for the second daughter cell is chosen by selecting a random angle θ ∈ [0, 2π] and then placing
the cell centre at a distance of 2R, i.e., the cell’s diameter, from the original position in the direction θ. The desired
position (blue dashed circle) is chosen as the daughter cell’s position if no other cells, cartilage or bone overlap this
spatial position. If this position does overlap the cell division process is aborted and the original cell remains.

Cell proliferation We incorporate cell division and death for both fibroblasts and macrophages using the same
mechanism and allow different probabilities of division and death for each cell type. It has been shown that a major
factor controlling cell division is a random event controlled by a transition probability [91]. Therefore, to incorporate
cell division into our model we allow for this random event by allocating a probability of division at each time-step to
each cell. This random event occurs once the cell has reached a minimum size, however for simplicity in this model
we do not incorporate cell cycle or cell size, these details could be explicitly considered in future developments of the
model. At every time-step, each cell has a probability of dividing given by αF or αM , for fibroblasts or macrophages
respectively. If the cell is permitted to divide, then the cell splits into two identical daughter cells. One is placed on
the parent cell’s original position and the other is placed in a chosen position adjacent to this, as shown in Figure 3.
This adjacent position is chosen from an angle θ between 0 and 2π. The new position is set at a length of twice the
radius of the cell RF or RM , i.e., the cell’s diameter. This new cell is only placed on this position if the position is
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within the boundary, does not overlap with any other cells or with cartilage/bone density. If any of these properties
prevent division, the process is aborted and the parent cell remains in the original position.

Furthermore, at every time-step, each cell has a probability of dying. The probability of dying is given by κF
or κM , for fibroblasts or macrophages respectively. If the cell is assigned to die at a given time-step, it is simply
removed from the simulation instantly.

2.3 MMP dynamics

Since matrix metalloproteinases (MMPs) produced by fibroblasts and macrophages mediate cartilage destruction
and bone destruction we include the dynamics of MMPs in to the mathematical model. We describe the dynamics of
MMPs in the system as a deterministic process, as we are interested in the total local concentration of MMPs rather
than each individual molecule. We use a similar approach to Moise et. al. [66] and include the diffusion, production
and decay of MMPs. As MMPs are secreted by both fibroblasts and macrophages, we consider the density of cells
to contribute to the local MMP concentration. In the RA setting, tissue inhibitors of metalloproteinases (TIMPs)
regulate the activity of MMPs, however for simplicity, we take into account the actions of TIMPs implicitly by
including a decay rate of MMPs and imposing a local limit on the concentration of MMPs at any spatial position to
ensure the local concentration is bounded. Mathematically these assumptions can be captured by the PDE,

∂CMMP

∂t
= λCMMP∇2CMMP + (βF ρF + βMρM ) (1− CMMP )− κCMMPCMMP, (2.1)

where CMMP = CMMP (x, t) is the local concentration of MMPs at position x at time t, λCMMP is the diffusivity of
MMPs, βF and βM are the rates of production of MMPs by fibroblasts and macrophages, respectively, ρF = ρF (x, t)
and ρM = ρM (x, t) are the cell densities of fibroblasts and macrophages, respectively, and κCMMP is the decay rate
of MMPs. We solve the PDE with zero-Neumann boundary conditions to allow all MMPs to remain within the
domain. We note that as MMPs are a small molecule, MMPs can enter the areas of cartilage and bone density freely
and there are no spatial restrictions on the MMPs diffusion within the domain.

2.4 Cartilage and Bone dynamics

In the model, we are interested in the destruction of cartilage and bone by MMPs. Therefore, we consider the
density of cartilage and bone within the spatial domain over time. For simplicity, we do not include the biological
components of cartilage or bone, and consider these tissues as a whole. We model the evolution of cartilage and bone
through the PDEs,

∂ρC
∂t

= −κρCρC CMMP, (2.2)

∂ρB
∂t

= −κρBρB CMMP, (2.3)

where ρC = ρC(x, t) and ρB = ρB(x, t) are the densities of cartilage and bone, respectively. Here, κρC and κρB are
the rates of degradation of cartilage and bone by MMPs, CMMP = CMMP (x, t), respectively. We solve these
equations with zero-Neumann boundary conditions to ensure all components remain within the spatial domain. As
an initial formulation of the model, we do not allow for the growth of cartilage or bone which could be incorporated
by adding more levels of complexity.

2.5 Linking the individual-based and PDE components of the model

As the modelling framework utilises a hybrid approach (i.e. a stochastic off-lattice model for cell dynamics and
deterministic PDEs for MMPs, cartilage and bone evolution) we have to ensure that the two approaches allow
for interactions between the stochastic and deterministic components. For numerical simulations of the model we
discretise Equations (2.1)-(2.3) such that each of these densities is defined on a discrete lattice, the discretisation
method is provided in A. The description of how the off-lattice components are then coupled with the discrete lattice
components are described in the following paragraphs.

Secretion of MMPs In Equation (2.1) at the tissue-level scale, the production of MMPs is dependent on the
density of fibroblasts and macrophages. At the cellular level scale, this translates to the secretion of MMPs by each
of the cells. For simplicity, we assume that cells produce MMPs at the centre position of the cell. To allow the
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concentration of MMPs to remain on our discretised grid, we calculate the nearest grid-position to the cell centre,
and add the desired MMP concentration to this grid position.

Volume-exclusion To ensure that the cells do not move or divide onto areas of the domain that contains bone
or cartilage we need to evaluate the position of the whole cell on the grid. If no cartilage or bone degradation has
occurred we simply check whether the new desired position is within ±R (radius) of the initial areas of the domain
containing cartilage or bone, as depicted in Figure 1. That is, we check any part of the cells circumference will be
within the initial cartilage or bone domain areas. If bone or cartilage degradation has occurred then we want to
ensure that the cell can now move into this free space. To do this we find equally distributed points on each cell’s
circumference and then calculate the nearest grid-position of each of these points. We then check whether there is
cartilage or bone present on those positions, to ensure the cell is able to move. Note, here we make the assumption
that a cell can only inhabit an area of space if the cartilage and bone density is zero, however in future work we
could allow cells to inhabit areas if these densities are below some threshold value, if appropriate.

3 Numerical simulations and sensitivity analysis

To visualise the hybrid modelling framework developed in Section 2 we run numerical simulations using Matlab,
the details of the explicit method used to solve the PDEs is given in A. Every iteration of the simulation is run with
the same initial condition. Each simulation is run over a 20 day time-frame as differences in the outcome of the
model between runs with different parameter set-ups could be observed over this time-frame. A schematic overview
of the key components, biological mechanisms and key parameters in the model is provided in Figure 4. To run these
simulations we have to choose values for the parameters within the model, we display these parameters in Table 2 .
We then provide some example results of the model focusing on the aggressiveness of pannus growth through varying
the division probabilities of macrophages and fibroblasts in Subsection 3.2. To investigate the role of each parameter
within the model we perform a one-at-a-time sensitivity analysis in Subsection 3.3. Different therapeutic treatments
can target specific mechanisms within the formation of the pannus and destruction of the joint, implicitly we can
relate these therapeutics to varying single parameters within the model or varying combinations of parameters, we
discuss this in Subsection 3.4.
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Figure 4: Schematic describing the components, mechanisms and parameters included in the hybrid model. Here,
αF and αM represent the probability of cell division for fibroblasts and macrophages, respectively, while κF and
κM , represent the probability of cell death. The probability of cell movement for fibroblasts and macrophages is
given by λF and λM , respectively. The MMP secretion rates of fibroblasts and macrophages are given by βF and
βM , respectively. The MMPs decay naturally at the rate κCMMP and can diffuse in the spatial domain at the rate
λCMMP . The MMPs additionally degrade both cartilage and bone at the rates κρC and κρB , respectively.

3.1 Parameterising the model

To parameterise the model, where possible, we use data from the literature and previous mathematical models.
The parameters used in the numerical simulations of the model, unless stated otherwise are those shown in Table 2.
We provide in C a full description of the choices of these parameters and how they are calculated.

3.2 Increasing the division probabilities of macrophages and fibroblasts

As an example of the simulation results of the model we consider the cases where all parameter values are taken to be
the values given in Table 2 (the baseline case). The simulation results for the first 20 days are shown in Figure 5. We
plot the spatial distributions of cells, bone and cartilage at four time-points in the left-hand panels. We additionally
plot the average number of fibroblasts, average number of macrophages, average global MMP concentration, average
global cartilage density and average global bone density from 5 runs of the simulation in the right-hand plots. Here,
global concentration/density refers to the sum of the MMP concentration or cartilage/bone densities across the whole
spatial domain. We show the standard deviation between the 5 runs as the shaded area on each plot. We can see
from these results that in this case, the cartilage density does decrease as MMP concentration increases, however no
bone degradation occurs. In all of the line plots the standard deviation between runs is relatively low, especially in
MMP concentration and the cartilage density plots.
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Symbol Description Value
∆tchem time-step length for deterministic components 1× 10−4 days
∆tcells time-step length for stochastic components 1× 10−2 days
∆x grid-step length in x direction 1× 10−3 cm
∆y grid-step length in y direction 1× 10−3 cm
WB initial thickness of bone 0.1 cm
WC initial thickness of cartilage 0.04 cm [86]
WJ initial width of joint space 0.01 cm [33,88]
WM initial width of synovial membrane 0.004 cm [79]
WS initial width between edge of domain and the cartilage 2WM cm
xl minimum x value of domain 0 cm
xh maximum x value of domain 0.3 cm
yl minimum y value of domain 0 cm
yh maximum y value of domain WJ + 2WC + 2WB cm
αF probability of a fibroblast dividing 0.33∆tcells [27, 66]
αM probability of a macrophage dividing 0.33∆tcells

βF concentration of MMPs produced by fibroblasts 13.912× 10−5∆tcells [66]
βM concentration of MMPs produced by macrophages 5.2717× 10−5∆tcells [66]
κF probability of a fibroblast undergoing apoptosis 0.03∆tcells [66, 70]
κM probability of a macrophage undergoing apoptosis 0.033∆tcells [41, 66]

λF probability of a fibroblast moving via undirected motion ∆tcells

∆2
x

8.64× 10−7 [66, 106]

λM probability of a macrophage moving via undirected motion ∆tcells

∆2
x

8.64× 10−7 [66, 106]

NF (0) initial number of fibroblasts 200 cells.
NM (0) initial number of macrophages 200 cells.
RF radius of a single fibroblast 6.5× 10−4 cm [31].
RM radius of a single macrophage 10.5× 10−4 cm [48]
λCMMP diffusivity of MMPs 6.59× 10−2 cm2 day−1 [66, 106]
κCMMP natural decay rate of MMPs 0.138 day−1 [66, 98]

κρC decay rate of cartilage by MMPs 4.44×103

1.15 ρC(0) day−1 [66]
κρB decay rate of bone by MMPs 0.1 κρC

Table 2: The parameters used in numerical simulations of the model. Unless a reference is given the parameters are
estimated or calculated. Descriptions of how each value is chosen are provided in C.
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Figure 5: Example results where all parameters are those given in Table 2. Left-hand plots: Panels show the
visualisation of spatial results of one of the runs of the simulation at the time-points t={0,5,10,20} days. The red
dots are macrophages, the purple dots are fibroblasts, the blue-green surface is cartilage density and the black-grey
surface is bone density. White space represents space in which cells can move freely in the joint, e.g., synovial fluid.
Right-hand plots: The plots show the cell number, concentration or density over time averaged over 5 simulation
runs with the standard deviation shaded. The number of fibroblasts is given in purple, the number of macrophages
in red, the global MMP concentration in green, the global cartilage density in blue and the global bone density in
black.

We can also consider cases where we expect slightly more immune cells in the affected joint system, to replicate
a case where immune activity has been amplified. As an example, in Figure 6 we show results of the case where
immune cell proliferation is increased ten-fold. From these results, we observe a larger increase in the number of
fibroblasts and macrophages over time as expected. We also see that the concentration of MMPs is increased in
comparison to the case shown in Figure 5. In this case, the cartilage degradation is more severe than the previous
case, however the bone density is retained. Once again, we observe low standard deviation between runs for all of
the line plots.
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Figure 6: Example results where all parameters are those given in Table 2 except αF and αM which are ten times the
given value. Left-hand plots: Panels show the visualisation of spatial results of one of the runs of the simulation
at the time-points t={0,5,10,20} days. The red dots are macrophages, the purple dots are fibroblasts, the blue-green
surface is cartilage density and the black-grey surface is bone density. White space represents space in which cells
can move freely in the joint, e.g., synovial fluid. Right-hand plots: The plots show the cell number, concentration
or density over time averaged over 5 simulation runs with the standard deviation shaded. The number of fibroblasts
is given in purple, the number of macrophages in red, the global MMP concentration in green, the global cartilage
density in blue and the global bone density in black.

Finally, we consider a case where we expect many more immune cells in the affected joint, to replicate an aggressive
form of rheumatoid arthritis, where immune cell activity has been greatly amplified. As an example, we show results
of the case where immune cell proliferation is increased one hundred-fold in Figure 7. Here, we observe a larger
increase in the number of fibroblasts and macrophages over time as expected. We also see that the concentration
of MMPs is increased in comparison to the previous cases. Furthermore, the cartilage degradation is more severe
than the previous cases and we begin to see bone degradation occurring. Here, the standard deviation is much larger
in the cell numbers. Interestingly though there is still very low standard deviation in the MMP concentration, and
cartilage and bone densities. This suggests, from a modelling perspective, that even stochasticity in the number or
spatial position of cells, we still expect similar levels of cartilage and bone degradation. We confirm this by plotting
the final spatial distributions of each run of the simulation for the case shown in Figure 7, in Figure 8, where we
observe a variety of spatial patterns arising from the cell dynamics, which do not appear to affect the overall outputs
of the model.
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Figure 7: Example results where all parameters are those given in Table 2 except αF and αM which are one hundred
times the given value. Left-hand plots: Panels show the visualisation of spatial results of one of the runs of the
simulation at the time-points t={0,5,10,20} days. The red dots are macrophages, the purple dots are fibroblasts, the
blue-green surface is cartilage density and the black-grey surface is bone density. White space represents space in
which cells can move freely in the joint, e.g., synovial fluid. Right-hand plots: The plots show the cell number,
concentration or density over time averaged over 5 simulation runs with the standard deviation shaded. The number
of fibroblasts is given in purple, the number of macrophages in red, the global MMP concentration in green, the
global cartilage density in blue and the global bone density in black.

Figure 8: Panels show final visualisations of the 5 individual simulation runs to compare the spatial distributions of
cells. The red dots are macrophages, the purple dots are fibroblasts, the blue-green surface is cartilage density and
the black-grey surface is bone density. White space represents space in which cells can move freely in the joint, e.g.,
synovial fluid. Here, all parameters are base case except αF and αM which are one hundred times the base value.

3.3 Single parameter sensitivity analysis

The initial parameter choices of our model are taken or estimated from a range of theoretical and experimental
work, as described in C. However, this method of parameter estimation can lead to uncertainties. Therefore, it is
useful to investigate how sensitive the outputs of the model are to changes in the parameter value inputs. Sensitivity
analysis techniques can help identify the key parameters within the model and identify which parameters require
more accurate values to ensure accuracy of the model output [36, 81]. We perform a local ‘robustness’ sensitivity
analysis where one single input parameter is varied while all others are kept at fixed values. We keep all parameter
values to be constant, choosing the values given in Table 2 and then testing scaled values of the parameter under
investigation. For each sensitivity analysis we incorporate a vector S to represent scalar values to multiply the
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parameter under investigation, where,

S = [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100]. (3.1)

We use the notation Sn = S(n) for n = 1, . . . , 11 to denote the value of each component. The maximum value of S
is chosen to ensure all probabilities are less than or equal to 1. We then investigate parameters by setting,

Θn = SnΘ for n = 1, . . . , 11,

where Θ is the parameter investigated. The model outputs that we focus on are the total number of fibroblasts and
macrophages over time, along with the global MMP concentration, global cartilage density and global bone density
over time. Where global concentration/density refers to the sum of the concentrations/densities across all spatial
positions in the domain. Each parameter setting is run 5 times and the average is plotted along with the standard
deviation of these runs.

Figure 9: Sensitivity analyses of the movement probability of fibroblasts λF , (top row), or the movement probability
of macrophages λM , (bottom row). The five columns represent the five key outputs of the model: the total number
of fibroblasts over time, the total number of macrophages over time, the global MMP concentration over time, the
global cartilage density over time and the global bone density over time. In each subplot the results for each scalar
value of Sn is plotted as indicated by the legend, where the original values of λF or λM are multiplied by Sn in
each case. The solid line is the average of five runs of the simulation and the shaded area in the same colour is the
standard deviation between runs.

In Figure 9, we consider the movement probabilities of fibroblasts and macrophages, λF and λM . In the case
where we vary λF only (top row), for Sn ≤ S7 = 1 there is no significant difference in all 5 outputs. However, for other
values (i.e., Sn ≥ S8 = 5) there is a gradual increase in the number of fibroblasts and global MMP concentrations as
λF increases. For larger values of Sn ≥ S10 = 50 we additionally observe an increase in the degradation of cartilage,
however for all Sn there is no significant difference in total macrophage number or bone degradation levels. In the
case where we vary λM only (bottom row), for Sn ≤ S7 = 1 there is no significant difference in all 5 outputs.
For the values of Sn ≥ S8 = 5 we observe an increase in the number of macrophages, an increase in global MMP
concentration and a decrease in the number of fibroblasts in the system over time as we increase λM . Furthermore,
for values Sn ≥ S10 = 50 we additionally observe an increase in both cartilage and bone degradation over time. In
both cases, for varying λF or λM , the standard deviation between runs is relatively low. These results suggest that
although varying the movement probability of fibroblasts or macrophages may alter the immune cell numbers, varying
these parameters does not significantly alter the cartilage and bone degradation unless large values are chosen. As
each cell can only move and proliferate into free space around them increasing their movement probability allows
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them to find areas of free space quicker, which subsequently allows them to proliferate more freely resulting in higher
numbers of cells permitted in the system, as observed.

Figure 10: Sensitivity analyses of the division probability of fibroblasts αF , (top row), or the division probability of
macrophages αM , (bottom row). The five columns represent the five key outputs of the model: the total number
of fibroblasts over time, the total number of macrophages over time, the global MMP concentration over time, the
global cartilage density over time and the global bone density over time. In each subplot the results for each scalar
value of Sn is plotted as indicated by the legend, where the original values of αF or αM are multiplied by Sn in
each case. The solid line is the average of five runs of the simulation and the shaded area in the same colour is the
standard deviation between runs.

We next consider the probability of cell division for fibroblasts and macrophages, αF and αM , respectively, and
each sensitivity analysis result is displayed in Figure 10. For the cases where we vary αF (top row), for the values
Sn ≤ S7 = 1 there is no significant difference in all 5 outputs. For the other values, Sn ≥ S8 = 5, we observe
an increase in the total number of fibroblasts, an increase in the global MMP concentration and a decrease in the
total number of macrophages as we increase αF . For the larger values of Sn ≥ S10 = 50, we additionally observe
a significant increase in the cartilage and bone degradation levels as we increase fibroblast cell division. Similarly,
for the cases where we vary αM (bottom row), for the values Sn ≤ S7 = 1 there is no significant difference in all 5
outputs. When Sn ≥ S8 = 5 we observe a decrease in the number of fibroblasts, an increase in the total number of
macrophages and an increase in MMP global concentration as we increase αM . For the larger values of Sn ≥ S10 = 50,
we additionally observe a significant increase in the cartilage and bone degradation levels as we increase fibroblast
cell division. Once again, in both cases, for varying αF or αM , the standard deviation between runs is relatively low.
The results of these sensitivity analyses highlight that the values of αF and, to a lesser extent, αM can significantly
alter the output in terms of cartilage and bone degradation. The results also highlight the competition for space
between the two cell populations, where an increase in the number of fibroblasts leads to a decrease in the number
of macrophages, and vice versa, in some of the parameter settings shown.
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Figure 11: Sensitivity analyses of the MMP secretion rate of fibroblasts βF , (top row), or the MMP secretion rate
of macrophages βM , (bottom row). The five columns represent the five key outputs of the model: the total number
of fibroblasts over time, the total number of macrophages over time, the global MMP concentration over time, the
global cartilage density over time and the global bone density over time. In each subplot the results for each scalar
value of Sn is plotted as indicated by the legend, where the original values of βF or βM are multiplied by Sn in
each case. The solid line is the average of five runs of the simulation and the shaded area in the same colour is the
standard deviation between runs.

In Figure 11, we display the results of sensitivity analyses for varying the values of the MMP secretion rates of
both fibroblasts and macrophages, βF and βM . For all values of Sn the total number of fibroblasts and macrophages
is consistent, as expected, as both macrophage fibroblast movement and proliferation is unaffected by βF and βM .
When varying βF (top row), for the values of Sn ≤ S7 = 1 there is no significant change in the global MMP
concentration levels, however we observe an increase in these levels once Sn ≥ S8 = 5. Furthermore, as we increase
βF , for values Sn ≥ S5 = 0.1, there is an increase in the degradation of cartilage. There is no change in the bone
degradation levels, until Sn ≥ S10 = 50 where there is a slight increase in bone degradation. In the case where we
vary βM only (bottom row), for Sn ≥ 5 we observe that the global MMP concentration increases as we increase the
value of βM , and the cartilage density decreases over time faster as we increase βF for values Sn ≥ S5 = 0.1. There is
additionally a small increase in bone degradation as we increase βM for values of Sn ≥ S10 = 50. Once again, in both
cases, for varying βF or βM , the standard deviation between runs is relatively low. The results of these sensitivity
analyses highlight that the values of βF and βM can significantly alter the output in terms of cartilage degradation,
but not bone degradation significantly over the time-frame considered. The results also highlight that increasing the
secretion rate of fibroblasts seems to have a larger effect on cartilage degradation than increasing the secretion rate
of macrophages, this could be due to the larger size of macrophages and the modelling choice that MMPs are only
secreted at the centre of the cell.
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Figure 12: Sensitivity analyses of the apoptosis probability of fibroblasts κF , (top row), or the apoptosis probability
of macrophages κM , (bottom row). The five columns represent the five key outputs of the model: the total number
of fibroblasts over time, the total number of macrophages over time, the global MMP concentration over time, the
global cartilage density over time and the global bone density over time. In each subplot the results for each scalar
value of Sn is plotted as indicated by the legend, where the original values of κF or κM are multiplied by Sn in
each case. The solid line is the average of five runs of the simulation and the shaded area in the same colour is the
standard deviation between runs.

The sensitivity analysis results for varying the apoptosis probabilities of fibroblasts or macrophages, κF and
κM , are displayed in Figure 12. For the case where we vary κF only (top row), for the values of Sn ≤ S5 = 0.1
there is no difference in the 5 outputs and for all values of Sn there is no change in the bone density levels over
the time investigated. For the values of Sn ≥ S6 = 0.5 we observe a decrease in fibroblasts cell number and a
decrease in MMP concentration levels as we increase κF . For the values of Sn ≥ S8 = 5 there appears to be an
increase in the total number of macrophages and a small decrease in cartilage degradation as we increase κF . When
considering the sensitivity analysis for varying κM (bottom row), we observe that for all values of Sn there is no
significant difference in the global MMP concentration, cartilage density or bone density outputs. For values of
Sn ≥ S8 = 5 there is an increase in the total number of fibroblasts as κF increases, while for values of Sn ≥ S6 = 0.5
the total number of macrophages decreases as κF increases. The results of these sensitivity analyses on κF and
κM suggests that the values of κF and κM will not significantly alter the output in terms of cartilage degradation
or bone degradation. However, these parameters can play a role in MMP concentration and the total number of
fibroblasts and macrophages. As we increase the probability of death of one cell type, this allows the other cell type
to proliferate more freely due to the increased free space, as observed in the figures displayed. As with previous
sensitivity analyses, the results are robust as we observe small standard deviation between runs for all cases.
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Figure 13: Sensitivity analyses of the diffusion rate of MMP λCMMP , (top row), or the MMP decay rate κCMMP ,
(bottom row). The five columns represent the five key outputs of the model: the total number of fibroblasts over
time, the total number of macrophages over time, the global MMP concentration over time, the global cartilage
density over time and the global bone density over time. In each subplot the results for each scalar value of Sn is
plotted as indicated by the legend, where the original value of λCMMP is multiplied by Sn in each case. The solid
line is the average of five runs of the simulation and the shaded area in the same colour is the standard deviation
between runs.

Next we consider the diffusion rate of MMPs, λCMMP , and the decay rate of MMPs, κCMMP , and perform
sensitivity analyses with the results displayed in Figure 13. When varying λCMMP (top row), for all values of Sn,
there is very little difference in the total number of fibroblasts, macrophages and global MMP concentrations in the
model outputs. For the values of Sn ≥ S4 = 0.05 there is significant increase in the cartilage degradation levels
as we increase λCMMP , while for values of Sn ≥ S8 = 5 we additionally observe an increase in bone degradation
as λCMMP increases. Considering the sensitivity analysis of the decay rate of MMPs, κCMMP (bottom row), we
observe that for all values of Sn there is no significant change in the 5 model outputs. These results suggest that
κCMMP not a key parameter in determining the model results, while varying λCMMP can significantly impact the
output in terms of cartilage degradation or bone degradation. As we increase the diffusion rate of the MMPs, this
allows the concentration in the cartilage and bone space significantly faster, promoting increased degradation. As
with previous sensitivity analyses, the results are robust as we observe small standard deviation between runs for all
case
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Figure 14: Sensitivity analyses of the MMP degradation rate of cartilage κρC , (top row), or the MMP degradation
rate of bone κρB , (bottom row). The five columns represent the five key outputs of the model: the total number
of fibroblasts over time, the total number of macrophages over time, the global MMP concentration over time, the
global cartilage density over time and the global bone density over time. In each subplot the results for each scalar
value of Sn is plotted as indicated by the legend, where the original values of κρC or κρB are multiplied by Sn in
each case. The solid line is the average of five runs of the simulation and the shaded area in the same colour is the
standard deviation between runs.

Finally, we perform sensitivity analyses on the degradation rates of cartilage and bone by MMPs, κρC and κρB ,
the results of which are displayed in Figure 14. From the results of the sensitivity analysis on κρC (top row) we
observe that for all values of Sn there are no significant differences in the total number of fibroblasts, the total
number of macrophages, the MMP concentrations or bone density levels as the values of κρC are varied. However,
for all values of Sn we observe an increase in cartilage degradation as we increase κρC . From the results of the
sensitivity analysis on κρB (bottom row) we observe that for all values of Sn there are no significant differences in
the total number of fibroblasts, the total number of macrophages, the MMP concentrations or cartilage density levels
as the values of κρB are varied. However, for values of Sn ≥ S10 = 50 we observe a very slight increase in bone
degradation as we increase κρB . These results suggest that κρC and κρB only affect the output levels of cartilage and
bone, respectively, and not the other outputs of the model. Furthermore, varying κρC has a larger effect on affected
outputs than κρB , for the time-frame considered. As with previous sensitivity analyses, the results are robust as we
observe small standard deviation between runs for all case

3.4 Relating our results to RA treatments

The modelling framework simulates a situation where no intervention (e.g. treatment) is included, however the
results shown in Subsections 3.2 and 3.3 can be implicitly related to to several therapies currently used to treat
rheumatoid arthritis. Without adding drugs explicitly to the model, we can consider the effects of treatment by
varying the parameters within the model according to the mechanism targeted by the drugs. Below we discuss
briefly some of commonly used treatments for RA. An overview of the drugs we could consider and the mechanisms
that they promote or inhibit are given in Figure 15.
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Figure 15: Schematic describing the mechanisms and parameters included in the hybrid model (Figure 4) with
potential therapy affects included. TNF-α inhibitors (Gold) can inhibit fibroblast division, inhibit MMP secretion
by both macrophages and fibroblasts and inhibit both cartilage and bone degradation in the RA setting. Tocilizumab
(Dark orange) can inhibit both cartilage and bone degradation in the RA setting. Methotrexate (Pale Blue) can
inhibit macrophage division, promote MMP decay and inhibit MMP secretion by fibroblasts in the RA setting. Gene
therapy (Dark Red) can promote fibroblast apoptosis and celastrol (Pale green) can promote macrophage apoptosis
and inhibit fibroblast division in the RA setting.

Disease modifying anti-rheumatic drugs (DMARDs) can target specific mechanisms within RA. For example,
methotrexate, which is the most commonly prescribed drug in the UK [35, 56], has been shown to modify the
cytokine profile of patients. More specifically, reducing IL-6 levels, which play a role in promoting macrophage
division [23], inhibiting secretion of MMPs by fibroblasts [23, 35] and increasing the levels of TIMPs which inhibit
MMPs [23]. Other drugs target specific cytokines within rheumatoid arthritis. Tumour necrosis factor-α (TNF-α)
plays a role in promoting the inflammatory mechanisms within RA. TNF-α inhibitors, such as infliximab, adalimumab
and etanercept are commonly prescribed biological disease modifying anti-rheumatic drugs (DMARDs) that target
TNF-α. In untreated RA, TNF-α can promote secretion of MMPs by both fibroblasts and macrophages [35], promote
fibroblast cell division [35] and promote cartilage and bone degradation [28, 35]. Therefore TNF-α inhibitors, can
reduce these effects within the RA environment. Tocilizumab is another biological DMARD which targets and
inhibits the IL-6 receptor which is produced by several immune cell types. Among other things, IL-6 can promote
cartilage and bone degradation [28, 35, 78]. By blocking IL-6 receptors, tocilizumab can reduce the effects of this
cytokine. Less commonly used therapies such as chemotherapy through celastrol have promisingly been shown to
reduce the aggressive proliferation of fibroblasts [27] and increase apoptosis in macrophages [25]. Gene therapies can
also be used to target specific cell surface receptors [76], for example, genes can be delivered that induce apoptosis
in RA fibroblasts, such as with the intra-articular delivery of vectors containing PUMA, a down-stream effector of
p53 and an effective inducer of apoptosis [18,40].

The drugs considered above can be implicitly considered within our mathematical modelling framework by
increasing or decreasing the parameter(s) that controls the specified mechanism. We provide in Table 3 an overview
of the mechanisms which each drug targets, the relevant parameter in the model and the corresponding sensitivity
analysis results from Subsection 3.3 that correspond to increasing or decreasing that specific parameter without
considering specific values for these parameters.

Where data is available, we can consider these drugs in more specific detail within the model. For example,
in [27] it was found that when celastrol is added the fibroblast proliferation rate changed from approximately 0.33
day−1 to 0.27 day−1. We can replicate this in our model by setting αF = 0.27∆tcells rather than the original value
of αF = 0.33∆tcells, we show the results in Figure 16. From the figure we observe that this small reduction in αF
does lead to less fibroblasts in the joint, and less MMPs secreted over time. However, this change is not enough to
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modify the cartilage degradation levels over the time-frame considered. Therefore these results suggest that using
celastrol alone, will be beneficial in reducing immune cell number, but not the overall disease outcomes and further
treatments may be required to be used in conjunction with this.

Figure 16: Comparing the key outputs of the model for αF = 0.27∆tcells (black) to replicate a setting where the
drug celastrol is used, compared to the original results for αF = 0.33∆tcells (red). The five panels represent the five
key outputs of the model: the total number of fibroblasts over time, the total number of macrophages over time, the
global MMP concentration over time, the global cartilage density over time and the global bone density over time.
The solid line is the average of five runs of the simulation and the shaded area in the same colour is the standard
deviation between runs.
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3.4.1 Sensitivity analysis of combined characteristics

As detailed above, treatments for rheumatoid arthritis can target several mechanisms underlying the disease, rather
than just a single mechanism. Therefore, it is beneficial to understand how affecting more than one mechanism within
the modelling framework would affect the model output. We consider two combined sensitivity analyses focusing on
the mechanisms of action of celastrol and tocilizumab.

We first consider the effects of the drug celastrol. As described above celastrol decreases the division rate of
fibroblasts [27] and increases apoptosis of macrophages [25]. In our model this relates to decreasing the probability
of fibroblast division αF and increasing the probability of macrophage cell death κM . We perform a combined
sensitivity analysis where we investigate the key outputs of the model when varying both these parameters, the
results are displayed in Figure 17. The five panels represent the five key outputs of the model at the final time-step
(t = 20): the total number of fibroblasts, the total number of macrophages, the global MMP concentration, the global
cartilage density and the global bone density. In each panel the value of each output for each parameter setting is
displayed as a surface plot, where low values are shown in blue increasing towards high values in yellow. Each square
within the panels represents a different parameter setting. We investigate 14 values for SαF < 1, where in the model
αF = SαF ᾱF where ᾱF is the original value of αF given in Table 2. The values chosen are displayed below the figure
as SαF (.) = L(.). Similarly, we investigate 17 values for SκM > 1, where in the model κM = SκM κ̄M where κ̄M is
the original value of κM given in Table 2. The values chosen are displayed below the figure as SκM (.) = M(.). We
run 5 simulations for each value of SαF and SκM and average the results to understand how altering both value will
alter the model outputs. The results of the figure highlight that there is no correlation between the average number
of fibroblasts and the value of κM , and as expected there is correlation between value of αF and the number of
fibroblasts where we expect the population to have a net increase from the original value of NF (0) = 200 for values
of SαF > 0.25. That is, for values of SαF < 0.25 we observe that the population of fibroblasts will be maintained at
or below the initial populations size. Similarly, there is no correlation between the average number of macrophages
and the value of αF , and as expected there is correlation between value of κM and the number of macrophages where
we expect the population to increase from the original value of NM (0) = 200 for values of SκM ≤ 3. For larger values
of κM we observe extinction of the macrophage population. There is correlation of the global MMP concentration
for both parameters where we expect lower concentrations of MMPs for higher values of κM and lower values of αF ,
with the larger values of αF having slightly more control over MMP levels. For both cartilage and bone densities
we see similar correlations with the two parameters where yellow represents higher densities (less destruction) and
blue represents lower densities (more destruction). Here, we observe that for lower values of κM (SκM ≤ 30), that is
when apoptosis of macrophages is lower, the effects of fibroblasts proliferation αF have less effect on the destruction
of both bone and cartilage as there appears to be similar levels of destruction for all values of SαF . When SκM ≥ 30
we see less destruction of both cartilage and bone, except for high values of SαF . These results allow us to find
the regions of parameter space that we expect the drug celastrol to control and where in those parameter spaces we
would expect a better outcome (less destruction of cartilage and bone).
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La = L(a) = [0 0.001 0.0025 0.005 0.0075 0.01 0.025 0.05 0.075 0.1 0.25 0.5 0.75 1]
Ma = M(a) = [1 3 5 7 9 10 30 50 70 90 100 300 500 700 900 1000 3000]

Figure 17: Combined sensitivity analysis of decreasing the division probability of fibroblasts (αF ) and increasing
the apoptosis probability of macrophages (κM ). The five panels represent the five key outputs of the model at the
final time-step: the total number of fibroblasts, the total number of macrophages, the global MMP concentration,
the global cartilage density and the global bone density. In each panel the averaged results for each scalar value of
SαF and SκM are displayed as a surface plot, where the original values of αF or κM are multiplied by SαF and SκM ,
respectively, in each case. The values investigated are given, where values of SαF are taken from the vector L, and
values of SκM are taken from the vector M . The results shown are the average of five runs of the simulation.

We next consider the effects of the drug tocilizumab. As described above, tocilizumab blocks IL-6 promoted
cartilage and bone degradation [28, 35, 78]. In our model this relates to decreasing both the decay rate of cartilage
by MMPs κρC and the decay rate of bone by MMPs κρB . We perform a combined sensitivity analysis where we
investigate the key outputs of the model when varying both these parameters, the results are displayed in Figure 18.
The five panels represent the five key outputs of the model at the final time-step (t = 20): the total number of
fibroblasts, the total number of macrophages, the global MMP concentration, the global cartilage density and the
global bone density. In each panel the value of each output for each parameter setting is displayed as a surface plot,
where low values are shown in blue increasing towards high values in yellow. Each square within the panels represents
a different parameter setting. We investigate here, 8 values for both SκρC < 1 and SκρB < 1, that is decreasing values
for both parameters. The simulations are run such that κρC = SκρC ¯κρC and κρB = SκρB ¯κρB where ¯κρC and ¯κρB are
the original decay rates given in Table 2. The values investigates are displayed below the figure as SκρC (.) = L(.)
and SκρB (.) = L(.). The results of the figure highlight that there is no significant change in the average number of
fibroblasts, the average number of macrophages or the average MMP concentration when altering the decay rates of
cartilage and bone. The small differences in these panels can be related to the stochasticity within the system. As
shown in the panel of cartilage density, we observe clear correlation between the decay rate of cartilage by MMPs and
the remaining cartilage at time t = 20 while as expected, there is no correlation between cartilage destruction and
the decay rate of bone by MMPs (which we would only expect to affect bone density). Inversely, when considering
the bone density we observe clear correlation between the decay rate of bone by MMPs and the remaining cartilage
at time t = 20. However, the decay rate of cartilage by MMPs does not seem to have any effect on bone density.
These results allow us to find the regions of parameter space that we expect the drug tocilizumab to control and
where in those parameter spaces we would expect a better outcome (less destruction of cartilage and bone).
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Figure 18: Combined sensitivity analysis of decreasing the decay rate of cartilage by MMPs (κρC ) and decreasing
the decay rate of bone by MMPs (κρB ). The five panels represent the five key outputs of the model at the final
time-step: the total number of fibroblasts, the total number of macrophages, the global MMP concentration, the
global cartilage density and the global bone density. In each panel the averaged results for each scalar value of SκρC
and SκρB are displayed as a surface plot, where the original values of κρC or κρB are multiplied by SκρC and SκρB ,
respectively, in each case. The values investigated are given, where values of SκρC and SκρB are both taken from the
vector L. The results shown are the average of five runs of the simulation.

4 Discussion and conclusions

As a first step towards building a more realistic model of arthritic destruction within a small PIP joint, in this study
we introduced an off-lattice hybrid model to describe the growth and development of the pannus in the context of
rheumatoid arthritis (RA) within the PIP joint. The model combined an off-lattice individual-based approach for cell
dynamics with a continuum PDE approach for MMPs, cartilage and bone dynamics. As mentioned this model is an
initial formulation and a first step towards building a more realistic model of pannus formation within a rheumatoid
arthritis affected joint. Therefore at this stage the model cannot be used to predict progression of disease accurately.
However, the model can be used to understand the effects that altering the mechanisms included on the simulation
results, highlighting the key parameters that require further validation.

We first provided some initial results that considered three scenarios with increasing proliferation rates of cells to
highlight different contexts of rheumatoid arthritis (Figures 5-7). These results further highlighted from a modelling
perspective that even when we observed spatial heterogeneity between simulation results (Figure 8), we still obtain
low standard deviation in the global MMP concentrations, global cartilage density and global bone density outputs.
This result highlighted that observing varied spatial patterns in the simulated pannus, can still result in the same
outcomes and rate of degradation in the joint. This initial model is not yet at a stage where direct comparisons to
clinical and experimental data can be made. However, once extended to contain appropriate levels of complexity
and validated with more accurate data the model could be used to investigate the patterns of cell populations within
joints affected by RA, such as those seen within studies that image the progression of RA [1,2, 4, 14,96].

To identify the role of the key parameters within the model and their affects on the outputs of the model,
we performed a one-at-a-time sensitivity analysis. The results highlighted that varying the immune cell movement
probabilities (Figure 9), varying the apoptosis rates of cells (Figure 12), varying the decay rate of MMPs (Figure 13) or
varying the degradation rate of bone by MMPs (Figure 14) did not significantly affect cartilage and bone degradation
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over the time-frame considered. On the other hand, the results showed that bone and cartilage density can be
significantly reduced when we increase the division probability of cells (Figure 10), the MMP secretion rates of cell
(Figure 11), the diffusion rate of MMPs (Figure 13) or the degradation rates of cartilage (Figure 14). Overall, these
sensitivity results identify the parameters that cause the greatest variations in cartilage or bone density degradation
levels. Further experimental and clinical studies will have to be performed to estimate better these parameter values.
The sensitivity analysis results presented help us to identify which parameters require more accurate values for a
biologically relevant parameterisation of the model (i.e. the parameters that the model outputs are most sensitive
too).

In Section 3.4, we discussed the above sensitivity analysis results in the context of current therapeutic approaches
for RA. In particular, we emphasised the model parameters that could be varied to investigate (implicitly) the effects
of different drug therapies, and how these changes in model parameters were captured by our numerical simulation
from the sensitivity analysis. Furthermore, focusing on the mechanisms targeted by celastrol and tocilizumab, we
briefly investigate combined sensitivity analyses to investigate the affects of altering more than one parameter on
model output(s). We note that the specific inclusion of the dynamics of these drugs into the mathematical model,
which was not the purpose of this particular study, could lead to more complex dynamics due to potential nonlinear
effects between different system components. This will be the focus of a future study.

4.1 Future work

As described in Section 1.1, there are various layers of biological complexity that have not been included in the model
so far. This simple framework can be easily extended using the current methods to incorporate further biological
complexity. We provide some suggested extensions to the model here.

The current model considers only resident cells within the joint space, however immune cells can also be recruited
from the circulatory system and promote angiogenesis promoting this recruitment [17, 29, 35]. We can extend the
model to allow new immune cells to enter the domain at the boundaries, or more specifically introduce vasculature
a the boundaries of the domain and allow the cells to enter through blood vessels. Moreover, in RA, the growth of
the pannus can result in local hypoxia driving angiogenesis which can further promote an influx of pro-inflammatory
immune cells entering the joint [29]. If we include vasculature we can also consider the influx of oxygen and nutrients
into the system, modelling these chemicals in as similar way to the MMPs in this work. The recruitment of cells
through vasculature could be incorporated using methods similar to individual-based approaches used to model the
metastasis of tumour cells through vasculature [30].

Currently we focus on homogeneous populations of immune cells, where all cells within the population exhibit
the same probabilities of migration and proliferation. However, the phenotype of fibroblasts can be altered to a more
tumour-like state where cell division is increases, apoptosis is decreased and migration is more invasive [11,14,21,68].
There can be similar heterogeneity within the macrophage populations [97]. We can incorporate this within the
model by tracking the phenotype of each fibroblast and macrophage and allow the cells to alter their phenotypes
over time.

In the model we consider only resident fibroblasts and resident macrophages, and not subsets of these populations
or other immune cell types. Further immune cells can play a role in the progression of rheumatoid arthritis such
as T cells and B cells [17, 64]. These immune cells, their mechanisms and their interactions with components of
the joint could be included within the model using the same methods as those used to incorporate fibroblasts and
macrophages.

As mentioned in Section 2.3, we implicitly take into account the effects of tissue inhibitors of MMPs (TIMPs)
by including decay of MMPs and limitations on the local concentration of MMPs. We could take explicitly include
TIMPs, using PDEs and further investigating the activator-inhibitor like mechanisms of MMPs with TIMPs. To do
this we could utilise a system of equations similar to that used in [66] to model MMP and TIMP dynamics.

Cartilage and bone densities are considered at a tissue-level scale within the framework. However we could
explicitly incorporate the cellular-level components of these tissues. For example, the role of chondrocytes and the
highly organised extracellular matrix (ECM) within cartilage [17, 19, 28, 35] could be considered. Furthermore, the
(im)balance between osteoclasts, which degrade bone, and osteoblasts, which produce bone, within the bone [17,28,35]
could also be investigated in the RA context further. To incorporate these features we could consider method similar
to those used to previously model cartilage growth [93] or bone remodelling [3, 16,32,43,49,55].

All of the above mechanisms that can be incorporated into the model would extend the complexity of the model
and the number of parameters required. Therefore, to incorporate this biological complexity and to obtain biological
relevance, we would require recent clinical and experimental data to validate the modelling choices and parameter
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settings investigated.
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A Discretisation of PDEs

We require an on-lattice approach for numerical simulations of the PDE components of the model, to perform
simulation we discretise the PDEs in space and time to allow for this. We consider the lattice to have spatial
index positions i ∈ [1, . . . , Nx] and j ∈ [1, . . . , Ny], and consider the time to be discretised so that the time-step
k = t/∆tchem where ∆tchem is some time-step length. We can then discretise the PDE in Equation (2.1) using a
fully explicit form to be written as,

ck+1
MMPi

= ckMMPi
+ ∆tchem

(
λCMMPL(ckMMPi

) +
(
βF ρ

k
F i + βMρ

k
Mi

)
(1− ckMMPi

)− κCMMP c
k
MMPi

)
, (A.1)

where ckMMPi
is the concentration of MMP at spatial position i at time-step k, ∆tchem is the time-step length and

L is the finite difference Laplacian, such that,

L(ckMMPi
) =

ckMMP(i+1,j)
+ ckMMP(i−1,j)

− 2ckMMP(i,j)

∆2
xchem

+
ckMMP(i,j+1)

+ ckMMP(i,j−1)
− 2ckMMP(i,j)

∆2
ychem

.

Here, ∆xchem and ∆ychem are the space-step lengths in the x and y direction, respectively. Similarily, the discrete
forms of bone and cartilage equations Equations (2.2) and (2.3), can be written as,

ρk+1
Ci

= ρkCi
−∆tchemκρCρ

k
Ci
ckMMPi

, (A.2)

ρk+1
Bi

= ρkBi
−∆tchemκρBρ

k
Bi
ckMMPi

, (A.3)

where ρkCi
and ρkBi

are the densities of cartilage and bone at spatial position i at time-step k, and ∆tchem is the
time-step length.

B Code availability

The full code used to perform the numerical simulations in Matlab is available upon request via email to the
corresponding author or can be accessed on GitHub at: https://github.com/frm3-st-andrews/Arthritis.

C Parameter estimation

C.1 Time and space-steps of numerical simulations

For the off-lattice description of cells we arbitrarily choose the time-step of simulations to be,

∆tcells = 1× 10−2 days.

For the discretised PDEs describing MMPs, cartilage and bone we impose a time-step ∆tchem and space-steps in the
x and y spatial directions, ∆x,y, for the numerical simulations such that the finite difference method [51] used to
solve the equations are stable. We choose,

∆tchem = 1× 10−4 days, ∆x = ∆y = 1× 10−3 cm.

Note that, we choose a different time-step for the deterministic part of the model than the stochastic. This choice is
made to speed up the simulations where possible, as a smaller time-step is not required for the stochastic parts.

C.2 Set-up of the spatial domain

We define the full domain of the grid to be x ∈ [xl, xh] and y ∈ [yl, yh]. We consider the length of the domain in the
y direction depends on the choices of the sub-domain sizes described in Table 1. Therefore we set,

xl = yl = 0 cm, xh = 0.3 cm and yh = WJ + 2WC + 2WB cm.

We arbitrarily choose the height of bone in the y direction protruding into the top and bottom of the domain to be,

WB = 0.1 cm.
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In [86], the authors use high resolution MRI (magnetic resonance imaging ) to evaluate the cartilage of the 2nd
and 3rd, metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints in hand osteoarthritis patients and
healthy controls. Based in the Netherlands, 41 OA patients and 18 healthy controls were evaluated. The patients
were all female, the OA patients were between 40-80 years old, while the healthy individuals were between 18-31
years old. For healthy controls the cartilage thickness in the PIP joint varied between 0.2mm and 0.7mm, with a
mean of 0.4mm and standard deviation of 0.1mm. This mean and standard deviation was the same with the OA
patients, but they exhibited higher levels of variation. Therefore, we consider that prior to pannus formation, the
cartilage width in our simulated PIP joint will be approximately 0.4mm, as this was the average of healthy controls.
Therefore, we consider the cartilage to be uniform width surrounding the bone and set,

WC = 0.04 cm.

In [33], the authors use radiographs to assess the joint space width (JSW) in undamaged MCP and PIP joints of
patients with early rheumatoid arthritis (RA). The mean JSW of the 4 fingers on both hands was measured for
the each of the 38 patients that were assessed. The cohort was made up of 29 females and 9 males, 13 patients
were under 50 years old, 8 patients were 50-60 years old, and 17 were over 60 years old. In the males the average
joint space width was 1.28 mm (±0.1mm for the 95% confidence interval), while females were 0.99mm (±0.05mm).
The averages between the age groups were all roughly the same, (1.1mm, 1.06mm, 1.02mm, respectively). Similarly,
in [88] the authors use radiographs to validate the joint space width (JSW) calculations in undamaged MCP and
PIP joints of patients with early rheumatoid arthritis (RA). Two dutch data sets were used to validate the method,
where radiographs were taken every 6 months of the patients. They authors use data from the 4 fingers on each
hand, of each patient (omitting the thumbs). For the 1st data set, the average PIP joint in undamaged cases (527
images tested) was 1±0.2 mm, while in the 2nd data set (570 images tested) the average was 0.9±0.2mm. Therefore,
we consider that prior to pannus formation, in our simulated PIP joint we would expect the initial joint width to be
approximated as,

WJ = 0.01 cm,

where we assume the spacing to be uniform across the width of the joint. In health, the synovial membrane contains
relatively few cells consisting of an intimal layer of 1-2 cell thickness and a distinct sublining [79]. Therefore we
initially want to allow around 2 layers of cells in the membrane, so we choose

WM = 0.004 cm,

This value is set so that an approximate maximum thickness of two macrophages is possible for the cell membrane.
We arbitrarily then choose the space between the cartilage and the edge of the domain in the x-direction to be,

WS = 2WM cm.

C.3 Cell parameters

Cell radii In [48], the authors show that the average diameter of human alveolar macrophages from the lung of
10 participants was 21.2±0.3 µm in diameter. They also highlight that the diameter of human macrophages is much
large than that of other species. Furthermore, in [31] it was shown that the average diameter of a fibroblast is
between 10-15µm, while for a macrophage the average diameter can be as large as 20-80µm. Therefore, we choose
the diameter of a macrophage to be approximately 21µm and the diameter of a fibroblast to be approximately 13µm,
that is we set,

RM ≈
21

2
µm = 10.5× 10−4 cm and RF ≈

13

2
µm = 6.5× 10−4 cm.

Initial condition In a healthy joint, the intimal layer of the membrane is generally 1-2 cells thick and consists
of fibroblast-like synoviocytes (FLSs) and macrophage-like synoviocytes (MLSs) evenly distributed and in equal
amounts [8, 79]. Therefore we set the initial number of both cell types to be equal as,

NF (0) = 200 cells and NM (0) = 200 cells.

Cell division In [27], the authors study the effects of celastrol, and anti-inflammatory chemical, on the proliferation
rates of fibroblast-like synoviocytes from RA patients. In the untreated case the approximate doubling time of FLSs
is 2.1 days. This can be used to estimate an approximate growth rate through the equation for exponential growth,
DT = 70

r , with DT being the doubling time and r the % growth rate. Using this we can estimate the FLSs will have
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a proliferation rate of approximately 0.33 day−1, which corresponds to the probability of a fibroblast dividing at any
time-step as,

αF ≈ 0.33∆tcells.

The authors in [66] also use a similar value for fibroblast division and estimate that macrophage division will be
similar. Therefore, we use in our simulations that,

αM = αF = 0.33∆tcells.

Note, that these probabilities are within the context of the cell having available space. As macrophages are larger
than than fibroblasts, they are less likely to find available space to divide within the simulations, and therefore the
probability of a macrophage dividing will be inherently lower than that of fibroblasts. This is consistent with the
suggestion that while the proliferation of both macrophages and fibroblasts within the pannus increases, fibroblasts
may exhibit a particularly aggressive phenotype and have higher proliferation rates [11,14,68].

Cell death In [70], the authors use experimental methods to detect apoptotic cell death in synovial tissues biopsied
from 6 patients with RA, and 3 with OA as controls. They found that 30% of the RA fibroblast like-synoviocytes
were susceptible to apoptosis. The authors of [66], use this value and the assumption that apoptosis takes 24hrs to
estimate that the apoptosis rate of fibroblast like-synoviocytes is around 0.3 day−1. This would lead to the probability
of a fibroblast undergoing apoptosis to be,

κF = 0.3∆tcells.

This value results in proliferation and decay being very close (similar to a homeostatic situation) but leads to
extinction due to stochasticity. At the moment we choose a value of 10% of this, to prevent fibroblast extinction
and assume the value would be similar to macrophage apoptosis rates. In the review paper [41], the authors discuss
the key phenotypes of monocytes and macrophages. Specifically, they discuss mouse model results, where Ly6C+
intestinal monocytes that have a half-life of 3 weeks. The authors of [66], use this mouse model value and assume
that apoptosis of macrophages occurs at the rate of 0.033 day−1. Therefore, we set the probability of a macrophage
undergoing apoptosis to be,

κM = 0.033∆tcells.

Cell migration In many mathematical modelling works animal cell movement is estimated to be of order 1×10−11

cm2 sec−1 [37, 44, 53, 66, 106]. This estimate translates to a diffusion rate of 8.64 × 10−7cm2 day−1, which through
scaling corresponds to a probability of moving of ∆tchem

∆2
xcells

8.64× 10−7. Therefore, we set for fibroblasts,

λF =
∆tcells

∆2
x

8.64× 10−7,

and similarly for macrophages,

λM =
∆tcells

∆2
x

8.64× 10−7.

We note that these are just estimates and, as macrophages are larger, they may have a lower movement probability.
Also note that λ is not the total probability, but contributes to this probability as we also consider a volume exclusion
process whereby cells cannot overlap in space with each other or with cartilage or bone. This probability relies on
∆tchem and ∆xcells = ∆x which have to be chosen such that λ ≤ 1.

C.4 Parameters for MMPs, cartilage and bone

MMP secretion rates of cells In the mathematical model described in [66], the authors estimate the MMP
secretion rates of both fibroblasts and macrophages. For our initial simulations we use these values and set,

βF = 13.912× 10−5∆tcells and βM = 5.2717× 10−5∆tcells.

Diffusion and decay of MMPs The parameters for the mechanisms of MMPs in the joint are taken to be those
used in [66]. They estimate the diffusion rate of MMPs, using [106], to be,

λCMMP = 6.59× 10−2 cm2 day−1.

Furthermore, they estimate, using [98], the natural decay rate of MMPs to be,

κCMMP = 0.138 day−1.

35

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 24, 2022. ; https://doi.org/10.1101/2021.09.02.458714doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.02.458714


Degradation of cartilage and bone by MMPs In [66], they only consider cartilage degradation, which they
estimate to occur at the rate,

κρC =
4.44× 103

1.15
ρC(0) day−1.

We make the assumption that the decay rate of bone will be lower, and for simulations, take the value,

κρB =
κρC
10

=
4.44× 103

11.5
ρC(0) day−1.

36

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 24, 2022. ; https://doi.org/10.1101/2021.09.02.458714doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.02.458714

	Introduction
	Key biological background
	Previous mathematical descriptions of RA
	Summary of models reviewed in macfarlane2020quantitative
	Further stochastic and hybrid (deterministic-stochastic) modelling approaches

	Overview of paper

	The discrete model
	Set-up of the domain
	Cell dynamics
	MMP dynamics
	Cartilage and Bone dynamics
	Linking the individual-based and PDE components of the model

	Numerical simulations and sensitivity analysis
	Parameterising the model
	Increasing the division probabilities of macrophages and fibroblasts 
	Single parameter sensitivity analysis
	Relating our results to RA treatments
	Sensitivity analysis of combined characteristics 


	Discussion and conclusions
	Future work

	Discretisation of PDEs
	Code availability
	Parameter estimation
	Time and space-steps of numerical simulations
	Set-up of the spatial domain
	Cell parameters
	Parameters for MMPs, cartilage and bone


