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Abstract 23 

Secondary metabolites produced by microorganisms are the main source of antimicrobials other 24 

pharmaceutical drugs. Soil microbes have been the primary discovery source for these secondary 25 

metabolites, often producing complex organic compounds with specific biological activities. 26 

Research suggests that secondary metabolism broadly shapes microbial ecological interactions, 27 

but little is known about the factors that shape the abundance, distribution, and diversity of 28 

biosynthetic gene clusters in the context of microbial communities. In this study, we investigate 29 

the role of nutrient availability on the abundance of biosynthetic gene clusters in soil-derived 30 

microbial consortia. We found that soil microbial consortia enriched in medium with 150 mg/L of 31 

glucose and 200 mg/L of trehalose (here defined as high sugar) had more biosynthetic gene cluster 32 

and higher inhibitory activity than soil microbial consortia enriched in medium with 15 mg/L of 33 

glucose + 20 mg/L of trehalose (here defined as low sugar). Our results demonstrate that laboratory 34 

microbial communities are a promising tool to study ecology of specialized metabolites. 35 

 36 

Introduction 37 

The chemical products of microbial secondary metabolism (also called natural products) modulate 38 

interactions within and between species and are thus a major means through which the microbial 39 

world communicates [1]. Secondary metabolites have had an enormous impact on modern 40 

medicine: they are the main source of antimicrobials used to treat infections, they have been used 41 

as therapeutics for cancer and other important human diseases, and as immunosuppressants that 42 

enable life-saving transplantation surgeries [2]. Soil microbes have been the primary discovery 43 

source for these secondary metabolites, often producing complex organic compounds with specific 44 

biological activities [3]. The enzymes that assemble microbial natural products are encoded by 45 
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genes located in biosynthetic gene clusters (BGCs). While it is widely hypothesized that secondary 46 

metabolism broadly shapes microbial ecological interactions, little is known about the factors that 47 

shape the abundance, distribution, and diversity of biosynthetic gene clusters in the context of 48 

microbial communities [4].  49 

Some studies have attempted to show the gross differences in biosynthetic potential 50 

between the microbial communities of different soil biomes, but these studies have limited 51 

extrapolative value, and little is known of how environmental factors can contribute to enrichment 52 

for secondary metabolism on finer scales. Comparisons between United States soil communities 53 

from New Hampshire and Arizona suggest that the arid desert soils of Arizona may harbor more 54 

antagonistic, inhibitory compounds than the forest soils of New Hampshire [5]. They observed a 55 

diversity of Nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) domains 56 

in arid soils when compared with forest soils. One hypothesis is that this is due to the harsh, nutrient 57 

poor conditions of the soil that may lead to increased pressures on nutrient acquisition and/or other 58 

means of competition. Even within soils sourced from the same rhizospheres, biosynthetic capacity 59 

sees shifts depending on soil depth [3]. BGCs and their producing organisms are found in almost 60 

every known microbial niche and covary with some environmental [6]. However, these studies are 61 

often limited to correlative descriptions subject to sampling biases and systematic assessments 62 

with sufficient experimental control remain lacking. 63 

Many bacteria dedicate very large portions of their genomes to BGCs, sometimes in excess 64 

of 25% of all genetic material [7], that is often maintained vertically over evolutionary timescales 65 

[8, 9], implying that they are important in their natural settings [8], yet under controlled laboratory 66 

conditions the producers of secondary metabolites often do not express their BGCs, therefore not 67 

producing their chemical products. A growing body of evidence is showing that a battery of 68 
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different culture conditions and/or perturbations is needed to the production of different elicit 69 

secondary metabolite [10]. Recently, Hurley et al. [11], observed that the taxonomy and inhibitory 70 

profile of the bacteria isolated from four United States soil samples used within the Tiny Earth 71 

project is strongly affect by the selective media used. Potato dextrose agar (PDA) enriched for 72 

strains that inhibited Acinetobacter baylyi and Pseudomonas putida, while tryptic soy agar (TSA) 73 

enriched for Erwinia carotavora inhibiting strains. Understanding the link between secondary 74 

metabolisms and nutrient availability has fundamental implications across microbial ecology, 75 

including the ecology of antagonism, community maintenance, invasion, niche construction, and 76 

niche defense. The aim of this study was to evaluate if carbon source availability can affect the 77 

biosynthetic potential of enriched microbial communities.  78 

 79 

Material and Methods 80 

Sample Collection and community enrichment 81 

Soil sample was collected from the Purgatory Creek Natural Area in San Marcos, Texas 82 

(GPS coordinates 29.882029, -97.982068). The sample came from small field off of a trail 83 

surrounded by a wooded area. Once the sample was taken back to the lab it was passed through a 84 

sieve washed with 70% ethanol to filter out larger particles, the remaining sample was weighed 85 

and then suspended in sterile PBS at a concentration of 1.5 mL of PBS per 0.1 g of soil sample. 86 

Once the suspension had been made it was then used to inoculate six Erlenmeyer flasks containing 87 

50 mL of M63 Minimal Media with a 5 mL/L concentration of SPV-4 Trace elements and a 1 88 

mL/L concentration of MgSO4. The three low sugar group flasks (Media LS) contained 15 mg/L 89 

of glucose and 20 mg/L of trehalose while the high sugar group flasks (Media HS) contained 150 90 

mg/L of glucose and 200 mg/L of trehalose. Media LS concentrations of glucose and trehalose 91 
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were based on Jenkins et al. (2017) [12]. The inoculated flasks were cultured at 30℃ and 225 rpm, 92 

the OD600 of the culture was measured every 24 hours to monitor growth stage, the samples grown 93 

in the lower nutrient flasks were called PCA1-3 while those in the higher nutrient flaks were called 94 

PCB1-3. Once stationary phase had been reached samples of each of the flasks were gathered and 95 

then centrifuged, the cell pellets were frozen at -80℃ while the supernatant was kept refrigerated 96 

to be used with certain microbes in a 96-well growth assay to determine antimicrobial potential.  97 

 98 

Inhibition assays 99 

To determine if the metabolites produced in the six cultures at stationary phase had 100 

antimicrobial properties an inhibitory assay was developed that measured the inhibitory activity of 101 

the metabolites at different concentrations against a panel of selected bacteria. The bacterial target 102 

panel selected was compromised of bacterial species Pseudomonas fluorescens (ATCC13525), 103 

Klebsiella pneumoniae (ATCC23357), Bacillus Subtilis (ATCC6051), and Salmonella 104 

typhimirium LT2 (Nickerson-Arizona State). Target bacteria were grown on a 96 well plate 105 

containing 10μL sterile Thermo Scientific Iso-Sensitest broth + 90μL microbial community 106 

supernatant in quadruplicate for each treatment. Growth was measured using optical density at 625 107 

nm via a BioTek plate reader and Gen5 software. Readings were taken at timepoints 0, 24 and 48 108 

hours after inoculation, plates were grown at 37℃ and 26℃ depending on which bacterial species 109 

was being tested (P. fluorescens and B. subtilis at 26℃, K. pnuemoniae and S. typhimirium at 110 

37℃). Controls were frown with 90μL of sterile M63 minimal medium with carbon source + 10μL 111 

sterile Thermo Scientific Iso-Sensitest. The optical density data measured from the control was 112 

then used in comparison to the data from each respective community supernatant to determine if 113 
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the supernatants contained metabolites with inhibitory effects since the growth recorded from the 114 

control plates was in the presence of no antimicrobial metabolites 115 

 116 

Metagenomic DNA Extraction, Sequencing and Analysis 117 

DNA extraction and purification were performed for all six samples using the QIAamp 118 

BiOstic Bacteremia DNA Kit and protocol (QIAGEN). The purified sample DNA was sequenced 119 

at the Microbial Genome Sequencing Center (MiGS) core facility in Pittsburgh on the Illumina 120 

NextSeq platform. Sequence reads were filtered and trimmed using the default settings of fastp 121 

(Chen et al., 2018). Filtered reads were taxonomically classified using the Kaiju software using 122 

the NCBI BLAST nr+euk database [13]. Co-occurrence network was built using the SparCC [14] 123 

program implements in the MicrobiomeAnalyst platform [15] based on the Spearman correlation 124 

between genus distribution across the datasets. Metagenomes were assembled using SPAdes 125 

3.13.0 [16].  Biosynthetic gene clusters (BGCs) were annotated with antiSMASH 5.0 using the 126 

default settings [17]. Contigs with BGCs were taxonomic classified using a Last Common 127 

Ancestor (LCA) approach implemented in the Contig Annotation Tool (CAT) [18]. The short reads 128 

of the metagenome datasets used in this study were deposited in the NCBI Short Read Archive 129 

(SRA) accession numbers from SRR15633242- SRR15633247.  130 

 131 

Results and Discussion 132 

In this study, soil microbial communities were enriched in minimal medium containing 133 

either 15 mg/L of glucose + 20 mg/L of trehalose (here defined as low sugar, LS) or 150 mg/L of 134 

glucose and 200 mg/L of trehalose (here defined as high sugar, HS). The supernatant of the 135 

microbial communities enriched on the high sugar (HS) medium was able to inhibit the growth of 136 
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B. subtilis (t=5.413, df=3, p=0.012), K. pneumoniae (t=3.846, df=3, p=0.031), P. fluorescens 137 

(t=9.565, df=3, p=0.002) and S. typhimurium (t=5.249, df=3, p=0.13). While the supernatant of 138 

the microbial communities enriched on the low sugar (LS) medium was able to inhibit the growth 139 

of K. pneumoniae (t=4.65, df=3, p=0.019) and S. typhimurium (t=4.801, df=3, p=0.017) (Figure 140 

1). Some studies have found that high concentrations of nutrient, such as glucose, inhibit the 141 

production of secondary metabolites in some bacteria [19]. However, it seems that different carbon 142 

sources can have different effects on the production of secondary metabolites in different bacteria 143 

[20]. To our knowledge, our study is the first to evaluate the effect of glucose and trehalose 144 

concentrations on the inhibitory activity of an undefined microbial consortia. While the approach 145 

used in this study does not enable the identification of the major producers of inhibitory molecules 146 

it allows to study how nutrient availability shapes interspecies interactions. 147 

The number of reads in the metagenomic datasets after quality filtering and trimming 148 

ranged from 9 to 10 million. Metagenomic assemblies ranged from 51 to 390 Mb (Table 1). 149 

Taxonomic classification of reads showed that the HS microbial communities were dominated by 150 

fungi, while LS microbial communities were dominated by bacteria (Figure 2a). Previous studies 151 

have evaluated the effect of nutrient availability on microbial community diversity, abundance, 152 

and composition. Experiment with soils amended with glucose found that concentrations higher 153 

than 8mg C/g of soil favored the growth of fungi over bacteria, which the authors attribute to 154 

difference in optimal osmotic potential [21].  155 

Functional annotation of the contigs in Clusters of Orthologous Genes (COG) categories 156 

revealed that genes in the “Chromatin structure and dynamics” (t=8.214, df=4, p=0.007) and 157 

“Secondary metabolites biosynthesis, transport, and catabolism” (t=5.915, df=4, p=0.018) 158 

categories were overrepresented in the HS microbial communities, while genes in “Signal 159 
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transduction mechanisms” (t=4.156, df=4, p=0.021) were overrepresented in the LS microbial 160 

communities (Figure 3). Most biosynthetic gene clusters (BGCs) were overrepresented in the HS 161 

microbial communities. Type I Polyketide Synthetase (T1PKS) and Non-Ribosomal Peptide 162 

Synthetase (NPRS) biosynthetic gene clusters were more abundant in the HS communities, while 163 

BGCs encoding bacteriocins and siderophores were more abundant in the LS communities (Table 164 

2). Correlation analysis of microbial genera in the communities revealed many negative 165 

correlations between the two most abundant fungal genera Trichoderma and Fusarium (both 166 

belonging to the Sordariomycetes class) and bacteria belonging to the Enterobacteriaceae family, 167 

such as Salmonella (Figure 4a). Most of BGCs in the HS microbial communities were classified 168 

to the Sordariomycetes taxonomic class, while most of BGCs in the LS microbial communities 169 

were classified to the Actinobacteria taxonomic class (Figure 4b). 170 

Microbial communities with more BGCs were showed more inhibitory activity towards the 171 

bacterial pathogens used in this study. Traditionally, inhibition assays and other screening assays 172 

for antimicrobial activity are performed with axenic cultures, and the use of mixed cultures for 173 

antibiotic discovery is still in its early days [22, 23]. It has been hypothesized that co-culture can 174 

activate silent biosynthetic gene clusters and facilitate the discovery of new natural products [24, 175 

25]. In this study we demonstrate that enriched microbial communities derived from environments 176 

with complex microbial communities, such as soil and feces, could be screened for the production 177 

of novel antibacterial compounds. 178 

 179 

Conclusion 180 

In conclusion, in this study we show that laboratory microbial communities are a promising 181 

tool to study ecology of specialized metabolites. Future studies involving fraction libraries, 182 
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metatranscriptomic, and metabolomic approaches will contribute to our understanding of the 183 

environmental and nutritional conditions that are favorable for production and/or selection of novel 184 

secondary metabolite.  185 
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 196 

Figure 1. Effect of spent media of soil-derived microbial communities on the growth of 197 

Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas fluorescens and Bacillus subtilis. 198 

Absorbance at 600 nm was measured after 48h and results shown as average of three experiments. 199 

Asterisks (*) refers to significant comparisons (T-test, p<0.05) between spent media of soil-200 

derived microbial communities growing on low and high sugar medium and the fresh medium 201 

control. 202 

 203 

 204 
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 205 

Figure 2. Taxonomic profile of metagenomic reads. Relative abundance of the top 5 phyla. 206 

Samples PCA1-3 are biological replicates of the low sugar treatment and PCB1-3 are biological 207 

replicates of the high sugar treatment. 208 

 209 
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 210 

Figure 3. Percentage of genes in COG categories in the low and high sugar microbial communities 211 

(coverage adjusted). Values of the categories marked with an asterisk (*) were significantly 212 

different between the treatments (T-test, p-values<0.05). 213 
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 214 

Figure 4. A. Co-occurrence network where nodes are microbial genera and edges are Spearman 215 

correlation values > 0.8 and with p-value < 0.01. Node size is proportional to genus abundance 216 

and the average distribution of each genus in the low sugar treatment is shown in orange and in 217 

the high sugar treatment is shown in green. Negative (blue) and positive (red) correlations of 218 

Trichoderma, Fusarium and Penicillium are highlighted.  B. Distribution of biosynthetic gene 219 

clusters (BGCs) across microbial class. Contigs with BGCs were taxonomic classified using a Last 220 

Common Ancestor (LCA) approach. NRPS = Nonribosomal peptide synthetase; PKS = polyketide 221 

synthase; RiPP = Ribosomally synthesized and post-translationally modified peptide; 222 

 223 

  224 
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Table 1. Metagenome information. 

Treatment Sample 
# of 

million 
reads 

# of 
Contigs 

Assembly 
length in Mb GC % # of 

BGCs 
Total length 
of BGC's in 

Mb 
% of base 

pairs in BGCs 

 PCA1 9,7 1,092,758 390.8 0.4975 64 0.431052 0.11027591 
Low sugar PCA2 9,8 759,937 326.9 0.4535 65 0.703316 0.2150899 

 PCA3 9,2 81,499 51.4 0.5892 51 0.355935 0.69244013 
 PCB1 10,7 3,98,017 237.9 0.4856 139 3.543708 1.48934092 

High sugar PCB2 10,7 621,134 325.1 0.4785 122 1.336774 0.41122777 
 PCB3 10,7 373,335 236.8 0.4902 168 1.54994 0.65444703 

BGCs= Biosynthetic gene clusters 

Table 2. Distribution of biosynthetic gene cluster (BGC) classes across the metagenomic datasets. 

 Low sugar High sugar 
BGC class PCA1 PCA2 PCA3 PCB1 PCB2 PCB3 
NRPS 15 13 12 58 55 91 
NRPS-like 5 5 6 23 32 22 
terpene 21 16 8 16 13 17 
T1PKS 1 1 1 32 15 27 
bacteriocin 7 9 6 0 0 0 
siderophore 3 6 3 0 2 0 
NRPS|T1PKS 0 1 0 4 3 3 
other 12 14 15 6 2 8 
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