1	Distinct neutralizing kinetics and magnitudes elicited by different SARS-CoV-2 variant
2	spikes
3 4	Yang Liu ^{1,*} , Jianying Liu ^{2,*} , Jing Zou ^{1,*} , Ping Ren ³ , Scott C. Weaver ^{2,4,5} , Xuping Xie ^{1,#} , Pei-Yong Shi ^{1,4,5,6,7,#}
5 6	¹ Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston TX, U.S.A.
7 8	² Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston TX, U.S.A.
9	³ Department of Pathology, University of Texas Medical Branch, Galveston, TX, U.S.A.
10 11	⁴ Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, U.S.A.
12 13	⁵ Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch Galveston, TX, U.S.A.
14	⁶ Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, U.S.A.
15	⁷ Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, U.S.A
16	
17	[*] These authors contributed equally to this work.
18	[#] Correspondence: X.X. (xuxie@UTMB.edu) or PY.S. (peshi@UTMB.edu)
19	

20 Abstract

21 The rapid evolution of SARS-CoV-2 mandates a better understanding of cross-protection 22 between variants after vaccination or infection, but studies directly evaluating such crossprotection are lacking. Here we report that immunization with different variant spikes elicits 23 24 distinct neutralizing kinetics and magnitudes against other SARS-CoV-2 variants. After 25 immunizing hamsters with wild-type or mutant SARS-CoV-2 bearing variant spikes from Alpha, 26 Beta, Gamma, or Epsilon, the animals developed faster and greater neutralization activities 27 against homologous SARS-CoV-2 variants than heterologous variants, including Delta. The 28 rank of neutralizing titers against different heterologous variants varied, depending on the 29 immunized variant spikes. The differences in neutralizing titers between homologous and

heterologous variants were as large as 62-, 15-, and 9.7-fold at days 14, 28, and 45 postimmunization, respectively. Nevertheless, all immunized hamsters were protected from challenges with all SARS-CoV-2 variants, including those exhibiting the lowest neutralizing antibody titers. The results provide insights into the COVID-19 vaccine booster strategies.

34

35 Introduction

The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 36 37 has caused >213 million infections and >4.4 million deaths (as of August 25, 2021 per https://coronavirus.jhu.edu/). Despite the unprecedented success of vaccine development for 38 coronavirus disease 2019 (COVID-19),¹ global control of the pandemic remains challenging 39 because of insufficient vaccine production and vaccine hesitancy, as well as the emergence of 40 new, more transmissible variants. Although coronaviruses have an intrinsic proofreading 41 mechanism to maintain their long RNA genomes,² SARS-CoV-2 continues to evolve, leading to 42 43 the emergence of variants. Since viral spike protein is responsible for binding to the cellular receptor angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 variants have accumulated 44 many of their mutations in the spike gene. Such spike mutations can alter transmission 45 46 efficiency and/or immune escape. The first prevalent substitution that underwent a selective 47 sweep, D614G, is located at the spike protein that enhances spike/ACE2 binding, making the virus more transmissible.³⁻⁷ Other substitutions, such as L452R and E484K in the spike 48 receptor-binding domain (RBD), confer resistance of SARS-CoV-2 variants to therapeutic 49 antibodies.^{8,9} Among the emerged variants, Beta (B.1.351) and Kappa (B.1.617.1) exhibit the 50 least sensitivity to neutralization by immune sera from vaccinated people.^{8,10-13} whereas Alpha 51 (B.1.1.7) and Delta (B.1.617.2) were associated with increased viral transmissibility.^{14,15} These 52 53 observations have prompted the desire to modify the vaccine sequence to match variants of 54 concern, such as Beta because of its reduced neutralization sensitivity to the current vaccine

sera.^{8,10} However, one critical question about this modified vaccine approach is whether the new vaccine elicits potent neutralizing activities against other co-circulating variants. Along the same line, cross-protection among different variants after natural infection remains to be studied in unvaccinated populations.

59

60 Results

61 To examine cross-protection among different variant spikes, we prepared a panel of four 62 chimeric SARS-CoV-2 (Extended Data Fig. 1a), each bearing a distinct variant spike gene from Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), or Epsilon (B.1.429) in the backbone of an early 63 64 virus strain USA-WA1/2020 [isolated in January 2020 and defined as wild-type (WT)]. The four variants were selected based on their high prevalence at the onset of the project. Each variant 65 66 spike contained a distinct set of mutations (Fig. 1a). An additional substitution E484K was 67 added to the original Alpha variant (Alpha+E484K) as this mutation occurred in many clinical isolates.¹⁶ The spike genes from all recombinant viruses were sequenced to ensure no aberrant 68 69 mutations. Comparable ratios of viral RNA copies versus plaque-forming units (RNA/PFU) were 70 found for both WT and chimeric viruses when produced and analyzed on Vero E6 cells (Extended Data Fig. 1b), suggesting equivalent specific infectivity of the viral stocks. 71

To analyze the immunogenicity of different variant spikes, we intranasally immunized hamsters with 10^6 PFU of recombinant WT or variant-spike virus (**Fig. 1b**). The immunized animals developed different degrees of weight loss in the order of Alpha+E484K-spike > Betaspike \approx Gamma-spike > WT \approx Epsilon-spike (**Extended Data Fig. 2a**). The weight loss results were consistent with the clinical scores, with the Alpha+E484K-spike virus causing the most severe disease (**Extended Data figure 2b**). These results suggest that Alpha+E484K-spike is the most pathogenic virus in the hamster model. Sera were collected on days 14, 28, and 45

79 post-immunization and measured for neutralizing titers against homologous and heterologous variant-spike viruses, including the currently prevalent Delta-spike virus (Extended Data Fig. 1). 80 To increase assay throughput, we developed a "fluorescent foci" reduction neutralization test 81 82 (FFRNT) by using mNeonGreen (mNG) reporter viruses (Extended Data Fig. 3a). The mNG gene was engineered into the open-reading-frame-7 (ORF7) of the viral genome.¹⁷ The 83 protocols for the conventional plaque reduction neutralization test (PRNT) and FFRNT 84 85 (Extended Data Fig. 3b) were similar except that the latter quantifies "fluorescent Foci" using a high-content imager in a high-throughput manner (Extended Data Fig. 3c). The two assays 86 yielded comparable neutralizing titers for the same set of BNT162b2-vaccinated human sera 87 (Extended Data Fig. 3d,e), validating the utility of FFRNT for neutralization test. 88

FFRNT analysis of immunized hamster sera showed distinct neutralizing profiles against 89 homologous and heterologous SARS-CoV-2 variants (Summary in Fig. 1c and details in 90 91 Extended Data Fig. 4 and Extended Data Tables 1-3). (i) Each variant spike elicited faster and higher neutralizing titers against its homologous SARS-CoV-2 variant than heterologous 92 93 variants; (ii) The magnitudes and ranks of neutralizing titers against different heterologous variants varied depending on the immunized variant spikes; (iii) Unlike other variant spike-94 95 immunized groups, the Alpha-spike-immunized animals did not seem to increase the 96 neutralizing titers against heterologous variants from days 14 to 45 post-immunization. It is 97 notable that from days 14 to 45 post-immunization, homologous neutralization titers increased by \leq 2.32-fold, whereas heterologous neutralization titers could increase up to 22-fold when 98 99 Gamma-spike-immunized sera were tested against epsilon-spike SARS-CoV-2 (Fig. 1c). On 100 days 14, 28, and 45 post-immunization, the differences in neutralizing titers between 101 homologous and heterologous variants could be as large as 62-, 15-, 9.7-fold, respectively (Fig. 102 **1c**). Collectively, the results demonstrate that vaccination of hamsters with different variant

spikes elicits distinct kinetics, magnitudes, and ranks of neutralizing titers against homologous
 and heterologous SARS-CoV-2 variants.

105 To directly evaluate cross-protection, we selected variant viruses exhibiting the lowest 106 neutralizing titers for each immunized group to challenge the hamsters on day 49 post-107 immunization. Specifically, animals immunized with WT, Alpha-, Beta-, Gamma-, or Epsilonspike were challenged with 10⁴ PFU of Beta-, Delta-, Epsilon-, Epsilon-, and Gamma-spike 108 109 SARS-CoV-2, respectively. Compared with PBS-immunized, challenged animals, all variant spike-immunized hamsters were protected from the challenge and developed significantly lower 110 111 viral loads in nasal washes (82- to 10,112-fold), tracheas (955- to 120,000-fold), and lungs 112 (57,000- to 490,000-fold) (Fig. 1d).

113

114 Discussion

Our study provided experimental evidence against the need to modify vaccine 115 116 sequences to match the currently circulating SARS-CoV-2 variants of concern. Our results 117 showed distinct cross-neutralizing profiles elicited by different variant spikes, underscoring the heterogenicity in neutralization titers against different variants for any modified spike vaccines. 118 119 Such modified vaccines may pose logistic challenges for vaccine implementation because (i) 120 multiple variants often cocirculate and (ii) the constellation of variants may differ at different 121 geographic regions and change rapidly over time, such as the recent replacement of the Alpha 122 by the Delta variant in many regions; these replacements have generally not been predictable. 123 Although different vaccine choices should be prescribed depending on the prevalence of specific variants, the prescribed vaccine should also be effective against other co-circulating 124 125 variants. Our results, together with the observation that BNT612b2-immunized sera remained active in neutralizing all tested variants,¹⁰⁻¹² support the strategy to continue the currently 126

127 approved BNT612b2 vaccine for global immunization. This strategy is further bolstered by the 128 real-world effectiveness of two BNT612b2 doses at efficacy rates of 89.5%, 75%, and 88% against Alpha, Beta, and Delta variants, respectively^{18,19}. When protective immunity wanes over 129 130 time, a third BNT612b2 booster could be administered to enhance the overall neutralizing titers 131 to prevent infection and disease due to new variants. However, this strategy is contingent on the 132 sensitivity of future variants to the immunity elicited by the current vaccine. As herd immunity 133 continues to increase through natural infection and vaccination, selective pressures for the 134 evasion of immunity may rise. The long-term strategy should include (i) surveillance of immune 135 escape of new variants and (ii) preparedness for changes to vaccine strains with immune 136 escape capability.

A limitation of this study is the use of chimeric viruses rather than the use of clinically 137 138 approved vaccine platforms for expressing variant spikes or clinical variant isolates for the 139 challenge. The neutralizing profile elicited by chimeric viruses may differ from that elicited by the clinically approved vaccine platforms. In chimeric virus-immunized hamsters, immune 140 141 responses to non-spike viral proteins may provide added protection when compared with animals immunized with spike-alone vaccines such as mRNA and adenovirus-expression 142 143 platforms. Despite this limitation, it is conceivable that the relative rank of neutralizing levels would be preserved against different SARS-CoV-2 variants. 144

In summary, increasing global immunization with the currently available safe and effective vaccines, together with boosters when needed, is the strategy to end the COVID-19 pandemic. The design of the booster vaccines depends on whether the newly emerged variants can escape the immunity generated by the current vaccines or natural infections. Potential immune escape of any new variants should be closely monitored by laboratory studies and realworld breakthroughs in vaccinated and infected individuals.

151

152 **References**

- 153 1 Walsh, E. E. *et al.* Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. *N* 154 *Engl J Med* **383**, 2439-2450, doi:10.1056/NEJMoa2027906 (2020).
- 1552Smith, E. C., Blanc, H., Surdel, M. C., Vignuzzi, M. & Denison, M. R. Coronaviruses lacking156exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and157potential therapeutics. *PLoS Pathog* **9**, e1003565, doi:10.1371/journal.ppat.1003565 (2013).
- 1583Korber, B. et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases159Infectivity of the COVID-19 Virus. Cell, doi:10.1016/j.cell.2020.06.043 (2020).
- 1604Yurkovetskiy, L. *et al.* Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein161Variant. *Cell* **183**, 739-751, doi:10.1016/j.cell.2020.09.032 (2020).
- 162
 5
 Plante, J. A. *et al.* Spike mutation D614G alters SARS-CoV-2 fitness. *Nature* **592**, 116-121,

 163
 doi:10.1038/s41586-020-2895-3 (2021).
- 1646Hou, Y. J. *et al.* SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission165in vivo. Science, doi:10.1126/science.abe8499 (2020).
- 166
 7
 Zhou, B. *et al.* SARS-CoV-2 spike D614G change enhances replication and transmission. *Nature*

 167
 592, 122-127, doi:10.1038/s41586-021-03361-1 (2021).
- 1688Chen, R. E. *et al.* Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-169derived polyclonal antibodies. Nat Med 27, 717-726, doi:10.1038/s41591-021-01294-w (2021).
- 170
 9
 Xie, X. et al. Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by

 171
 BNT162b2 vaccine-elicited sera. Nat Med 27, 620-621, doi:10.1038/s41591-021-01270-4 (2021).
- 10 Liu, Y. *et al.* Neutralizing Activity of BNT162b2-Elicited Serum. *N Engl J Med* 384, 1466-1468,
 173 doi:10.1056/NEJMc2102017 (2021).
- 17411Liu, Y. et al. BNT162b2-Elicited Neutralization against New SARS-CoV-2 Spike Variants. N Engl J175Med, doi:10.1056/NEJMc2106083 (2021).
- 176
 12
 Liu, J. et al. BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants. Nature,

 177
 doi:10.1038/s41586-021-03693-y (2021).
- 17813Edara, V. V. et al. Infection and Vaccine-Induced Neutralizing-Antibody Responses to the SARS-179CoV-2 B.1.617 Variants. N Engl J Med, doi:10.1056/NEJMc2107799 (2021).
- 180
 14
 Liu, Y. et al. The N501Y spike substitution enhances SARS-CoV-2 transmission. bioRxiv,

 181
 doi:10.1101/2021.03.08.434499 (2021).
- Hanada, K., Suzuki, Y. & Gojobori, T. A large variation in the rates of synonymous substitution for
 RNA viruses and its relationship to a diversity of viral infection and transmission modes. *Mol Biol Evol* 21, 1074-1080, doi:10.1093/molbev/msh109 (2004).
- 18516Moustafa, A. M. et al. Comparative Analysis of Emerging B.1.1.7+E484K SARS-CoV-2 Isolates.186Open Forum Infect Dis 8, ofab300, doi:10.1093/ofid/ofab300 (2021).
- 18717Xie, X. et al. An Infectious cDNA Clone of SARS-CoV-2. Cell Host Microbe 27, 841-848 e843,188doi:10.1016/j.chom.2020.04.004 (2020).
- 18 Abu-Raddad, L. J., Chemaitelly, H., Butt, A. A. & National Study Group for, C.-V. Effectiveness of
 the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants. *N Engl J Med* 385, 187 189, doi:10.1056/NEJMc2104974 (2021).
- 192
 19
 Lopez Bernal, J. *et al.* Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. N

 193
 Engl J Med **385**, 585-594, doi:10.1056/NEJMoa2108891 (2021).
- 194
 20
 Xie, X. et al. Engineering SARS-CoV-2 using a reverse genetic system. Nature Protocols 16, 1761

 195
 1784, doi:10.1038/s41596-021-00491-8 (2021).
- 19621Muruato, A. E. et al. A high-throughput neutralizing antibody assay for COVID-19 diagnosis and197vaccine evaluation. Nature Communications 11, 4059, doi:10.1038/s41467-020-17892-0 (2020).
- 198

199 Methods

Ethics statement. Hamster studies were performed under the guidance of the Care and Use of Laboratory Animals of the University of Texas Medical Branch (UTMB). The protocol was approved by the Institutional Animal Care and Use Committee (IACUC) at UTMB. All the hamster operations were performed under anesthesia by isoflurane to minimize animal suffering.

Animals and Cells. The Syrian golden hamsters (HsdHan:AURA strain) were purchased from Envigo (Indianapolis, IN). Vero E6 cells, an African green monkey kidney epithelial cell line (ATCC, Manassas, VA, USA), were cultured in Dulbecco's modified Eagle's medium (DMEM; Gibco/Thermo Fisher, Waltham, MA, USA) with 10% fetal bovine serum (FBS; HyClone Laboratories, South Logan, UT) plus 1% ampicillin/streptomycin (Gibco). The authenticity of Vero E6 cells was verified using Short Tandem Repeat profiling by ATCC. The cells were tested negative for mycoplasma.

Construction of chimeric SARS-CoV-2s with variant spikes and mNeonGreen 211 212 (mNG) reporter viruses. All spike mutations from different variants were engineered into an 213 infectious cDNA clone of an early SARS-CoV-2 isolate USA-WA1/2020 using a standard PCR-214 based mutagenesis method. The protocol for the construction of recombinant SARS-CoV-2 was reported previously.^{17,20} To construct the mNG reporter viruses with variant spikes, the mNG 215 216 gene was engineered into the open-reading-frame-7 (ORF7) of the viral genome. The full-length 217 cDNAs of the viral genome containing the variant spike mutations were assembled by in vitro 218 ligation. The resulting genome-length cDNAs served as templates for in vitro transcription of full-219 length viral RNAs. The full-length viral RNA transcripts were electroporated into Vero E6 cells. 220 On day 2 post electroporation (when the electroporated cells developed cytopathic effects due 221 to recombinant virus production and replication), the original viral stocks (P0) were harvested 222 from the culture medium. The P0 viruses were amplified on Vero E6 cells for another round to

223 produce working viral stocks (P1). The complete spike genes from the P1 viruses were
224 sequenced to ensure no undesired mutations. The P1 viruses were used for the following study.

Plaque assay. Approximately 1.2×10⁶ Vero E6 cells were seeded to each well of 6-well 225 226 plates and cultured at 37°C, 5% CO₂ for 16 h. The virus was serially diluted in DMEM with 2% 227 FBS and 200 µl diluted viruses were transferred onto the monolayer of Vero E6 cells. The viruses were incubated with the cells at 37°C with 5% CO₂ for 1 h. After the incubation, 2 ml of 228 229 overlay medium (DMEM medium supplemented with 1% agar) was added to the infected cells per well. The overlay medium contained DMEM with 2% FBS, 1% penicillin/streptomycin, and 1% 230 231 sea-plaque agarose (Lonza, Walkersville, MD). After a 2-day incubation, plates were stained with neutral red (Sigma-Aldrich, St. Louis, MO) and plaques were counted on a lightbox. 232

Quantitative real-time RT-PCR assays. RNA copies of SARS-CoV-2 samples were detected by quantitative real-time RT-PCR (RT-qPCR) assays were performed using the iTaq SYBR Green One-Step Kit (Bio-Rad) on the LightCycler 480 system (Roche, Indianapolis, IN) following the manufacturer's protocols. The absolute quantification of viral RNA was determined by a standard curve method using an RNA standard (*in vitro* transcribed 3,480 bp containing genomic nucleotide positions 26,044 to 29,883 of SARS-CoV-2 genome).

Hamster infections. Four- to six-week-old male golden Syrian hamsters, strain 239 240 HsdHan:AURA (Envigo, Indianapolis, IN), were intranasally immunized with 10⁶ PFU 241 recombinant WT or variant spike virus on day 0. The immunized animals were weighed and monitored for signs of illness daily. Sera were collected on days 14, 28, and 45 post-242 immunization and measured for neutralizing titers against homologous and heterologous 243 variant-spike viruses. On day 49, animals from each immunized group were challenged with 10⁴ 244 245 PFU of selected variant viruses exhibiting the lowest neutralizing titers. Specifically, animals 246 immunized with WT, Alpha-, Beta-, Gamma-, or Epsilon-spike were challenged with the Beta-, 247 Delta-, Epsilon-, Epsilon-, and Gamma-spike SARS-CoV-2, respectively. Nasal washes were collected in 400 µl sterile DPBS at indicated time points. Animals were humanely euthanized for
organ collections after 2 days of the challenge. The harvested tracheae and lungs were placed
in a 2-ml homogenizer tube containing 1 ml of maintenance media (DMEM supplemented with 2%
FBS and 1% penicillin/streptomycin) and stored at -80°C. Samples were subsequently thawed,
lung or tracheae were homogenized using TissueLyser II (Qiagen, Hilden, Germany) for 1 min
at 26 sec-1, and debris was pelleted by centrifugation for 5 min at 16,100×g. Infectious titers
were determined by plaque assay.

Human serum specimens. The research protocol regarding the use of human serum specimens was reviewed and approved by the University of Texas Medical Branch (UTMB) Institutional Review Board. The approved IRB protocol number is 20-0070. All human serum specimens were obtained from the vaccinated subjects at the UTMB. All specimens were deidentified from patient information.

260 Fluorescent foci reduction neutralization assay. Neutralization titers of human and hamster sera were measured by fluorescent foci reduction neutralization assay (FFRNT) using 261 the mNG SARS-CoV-2. Briefly, Vero E6 cells (2.5×10^4) were seeded in each well of black 262 CLEAR flat-bottom 96-well plate (Greiner Bio-one™). The cells were incubated overnight at 263 264 37°C with 5% CO₂. On the following day, each serum was 2-fold serially diluted in the culture 265 medium with the first dilution of 1:10. The diluted serum was incubated with 100 PFU of mNG 266 SARS-CoV-2 at 37 °C for 1 h (final dilution range of 1:20 to 1:5120), after which the serum-virus 267 mixtures were inoculated onto Vero E6 cell monolayer in 96-well plates. After 1 h of infection, 268 the inoculum was removed and 100 µl of overlay medium (DMEM supplemented with 0.8% 269 methylcellulose, 2% FBS, and 1% P/S) was added to each well. The plates were incubated at 37°C for 20 h. The raw images were acquired using Cytation[™] 7 (BioTek) armed with 2.5× 270 objective and processed using the default software setting. The foci in each well were counted 271 272 and normalized to the non-serum-treated controls to calculate the relative infectivities. The

curves of the relative infectivity versus the serum dilutions (log10 values) were plotted using
Prism 9 (GraphPad). A nonlinear regression method was used to determine the dilution fold that
neutralized 50% of mNG SARS-CoV-2 (defined as FFRNT). Each serum was tested in
duplicates.

277 Plague reduction neutralization test (PRNT). A conventional 50% plague-reduction neutralization test (PRNT₅₀) was performed to measure the serum-mediated virus suppression 278 as reported previously²¹. Individual sera were 2-fold serially diluted in culture medium with a 279 280 starting dilution of 1:40 (dilution range of 1:40 to 1:1280). The diluted sera were incubated with 281 100 PFU of USA-WA1/2020 (WT) or mutant SARS-CoV-2. After 1 h incubation at 37°C, the serum-virus mixtures were inoculated onto 6-well plates with a monolayer of Vero E6 cells pre-282 seeded on the previous day. The minimal serum dilution that suppressed >50% of viral plaques 283 284 is defined as PRNT₅₀.

285

286 Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

289

290 Acknowledgments

We thank Phillip R. Dormitzer for his helpful discussions during the study. P.-Y.S. was supported by NIH grants HHSN272201600013C, Al134907, Al145617, and UL1TR001439, and awards from the Sealy & Smith Foundation, the Kleberg Foundation, the John S. Dunn Foundation, the Amon G. Carter Foundation, the Gilson Longenbaugh Foundation, and the Summerfield Robert Foundation. S.C.W. was supported by NIH grant R24 Al120942. P.R. and

296 X.X. were partially supported by the Sealy & Smith Foundation. J.L. was supported by James W.

297 McLaughlin Fellowship Fund.

298

299 Author contributions

300	Conceptualization,	Y.L., S.C.W.	, X.X., PY.S	.; Methodology	, Y.L. J.L., J	.Z., X.X.,	PY.S;

- 301 Investigation, Y.L., J.L., J.Z., S.C.W., X.X., P.-Y.S.; Resources, P.R., S.C.W., P.-Y.S.; Data
- 302 Curation, Y.L., J.L., J.Z., X.X., P.-Y.S.; Writing-Original Draft, Y.L., X.X., P.-Y.S.; Writing-Review
- 303 & Editing, Y.L., J.L., J.Z., P.R., S.C.W., X.X., P.-Y.S.; Supervision, S.C.W., X.X., P.-Y.S.;
- 304 Funding Acquisition P.-Y.S..

305

306 **Competing financial interests**

307 X.X. and P.-Y.S. have filed a patent on the reverse genetic system. Other authors 308 declare no competing interests.

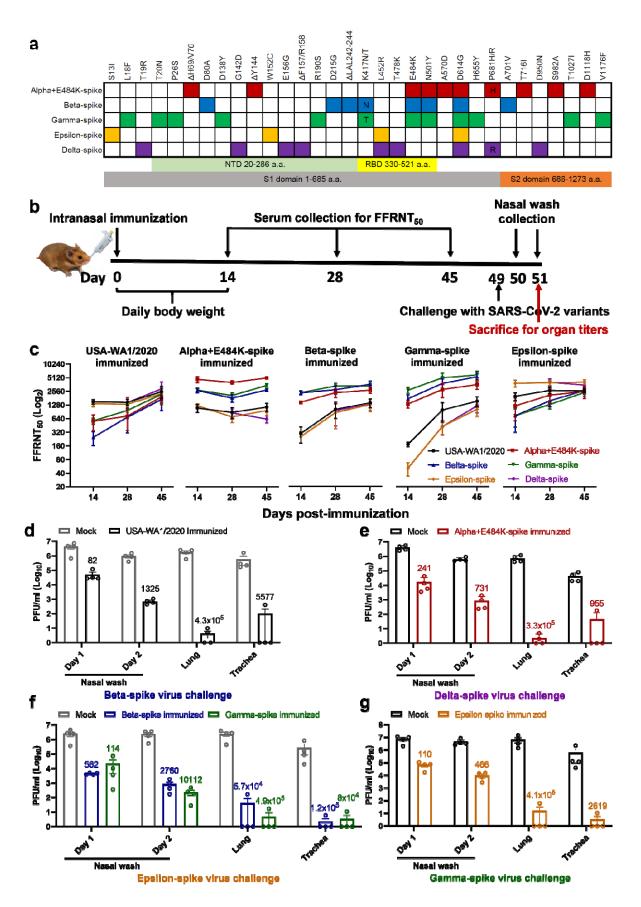
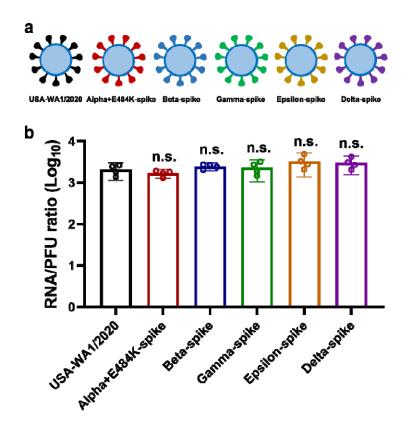
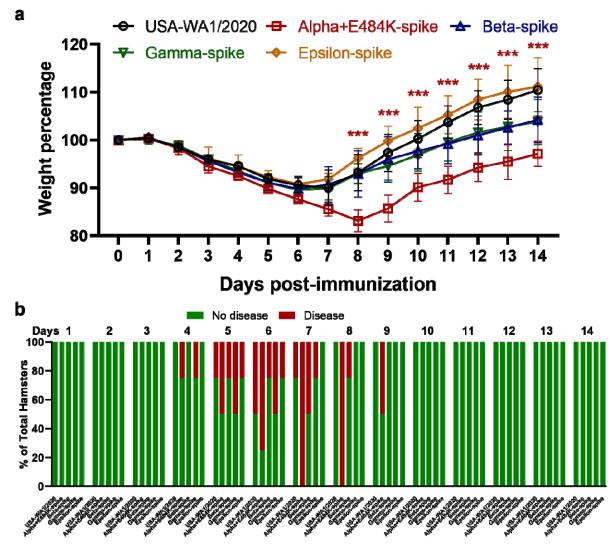



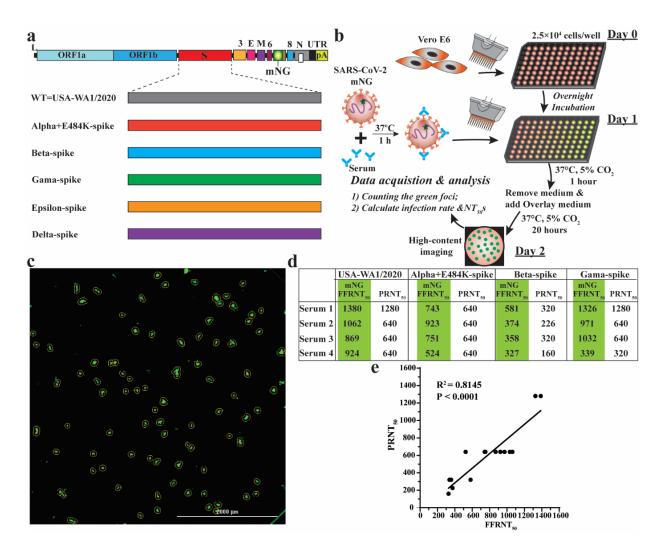
Figure 1. Variant spikes elicit neutralizing antibodies that cross-protect hamsters from 311 challenges with SARS-CoV-2 variants. a, Amino acid substitutions in the spike protein among 312 313 SARS-CoV-2 variants. The sequence of the spike from USA-WA1/2020 strain was used as a 314 reference. NTD, N-terminal domain; RBD, Receptor binding domain. b, Experimental scheme of immunization and challenge in hamsters. The hamsters (n=4 per group) were intranasally 315 immunized with 10⁶ PFU of WT or variant-spike SARS-CoV-2. Serum specimens were 316 measured for FFRNT₅₀ values on days 14, 28, and 45 post-immunization. On day 49 post-317 immunization, the hamsters were intranasally challenged by the indicated variant-spike SARS-318 319 CoV-2 (10⁴ PFU). The nasal washes were quantified for viral titers on days 1 and 2 postchallenge. All the hamsters were sacrificed on day 2 post-challenge for viral titers detection. c, 320 Neutralization titers of hamster sera against SARS-CoV-2 spike variants on days 14, 28, and 45 321 322 post-immunization. Means ± standard errors of the mean are shown. d-g, Protection of 323 immunized hamsters from the challenge of SARS-CoV-2 spike variants. The immunized hamsters and age-matched non-immunized hamsters (Mock) were challenged with selected 324 variant viruses exhibiting the lowest neutralizing titers. The viral loads in the nasal wash (NW. 325 days 1 and 2), lung, and trachea (day 2) were detected by plaque assays. The numbers above 326 327 individual columns indicate the fold decrease in viral loads by comparing the means from the 328 immunized group with that from the non-immunized mock group. Means ± standard errors of the mean are shown. The assay limit is 10 PFU/ml. 329



330

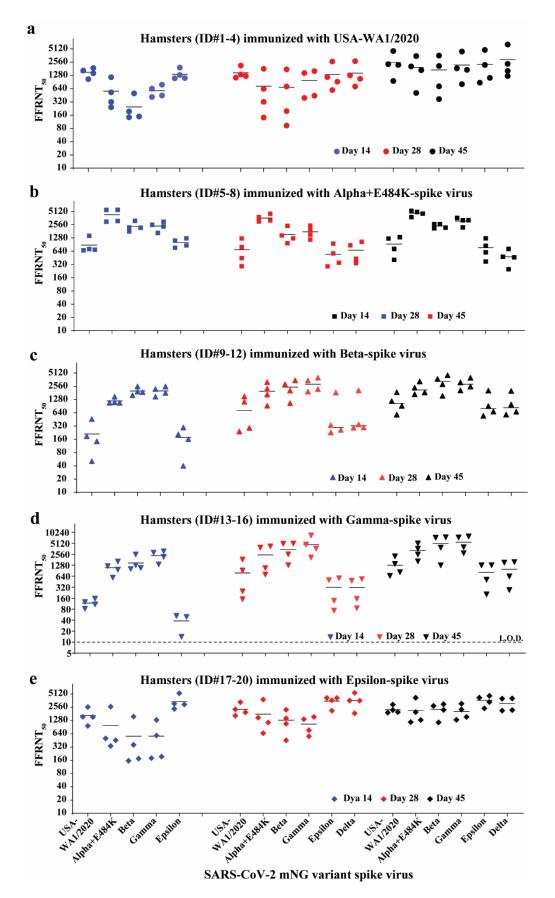
331

332 Extended Data Figure 1. The RNA/PFU ratios of different SARS-CoV-2 variants.


333 a, Diagram of SARS-CoV-2 spike variants. The spike genes from Alpha, Beta, Gamma, Epsilon, and Delta variants of SARS-CoV-2 were introduced into USA-WA1/2020 backbone. b, Ratios of 334 335 viral genomic RNA versus plaque-forming unit (RNA/PFU) of SARS-CoV-2 spike variants. The genomic RNA and PFU of individual viral stocks were measured by RT-gPCR and plaque assay, 336 337 respectively. The USA-WA1/2020 strain served as a control. Dots represent individual biological replicates from 4 aliquots of viruses. The means with 95% confidence intervals are shown. A 338 non-parametric Mann-Whitney test was used to determine significant differences between USA-339 340 WA1/2020 and other variants. P values were adjusted using the Bonferroni correction to account for multiple comparisons. Differences were considered significant if P < 0.05; n.s., no 341 statistical difference. 342

Extended Data Figure 2. Morbidity of hamsters after immunized with variant-spike SARS CoV-2.

343


a. Hamster body weight loss after immunized with variant-spike SARS-CoV-2. The hamsters 346 (n=4) were intranasally infected with 10⁶ PFU viruses. The body weights were measured daily 347 from day 0 to day 14 days post-immunization. The weight loss data are shown as mean ± 348 standard deviation and statistically analyzed using two-way ANOVA Turkey's multiple 349 comparisons. The red stars show the statistical significance (*** P < 0.001) between USA-350 351 WA1/2020-immunized hamsters and Alpha+E484K-spike-immunized hamsters. b, Percentages of hamsters with or without diseases (including ruffled fur, lethargic, hunched, and reluctance to 352 353 move when stimulated) from day 1 to day 14 post-immunization.

354

355 Extended Data Figure 3. Correlation between FFRNT₅₀ and PRNT₅₀.

a, Diagram of mNG USA-WA1/2020 and spike variants. mNG, mNeongreen fluorescence protein gene. **b**, Workflow of fluorescent foci reduction neutralization (FFRNT) assay. The details of the FFRNT assay were described in the Methods. **c**, Representative images of foci formed in a 96-well plate after 20 h of infection. **d**, FFRNT₅₀, and PRNT₅₀ values for four human sera. The FFRNT₅₀ values are shaded in green. **e**, Correlation of FFRNT₅₀ and PRNT₅₀. The Pearson's correlation coefficients and *P* values (two-tailed) are indicated.

Extended Data Figure 4. FFRNT₅₀s of hamster sera against mNG SARS-CoV-2 spike 363 variants on days 14, 28, and 45 post-immunization. 364

a-e, Hamster (n=4 per group) were immunized with WT USA-WA1/2020 (a), Alpha+E484K-365

spike virus (b), Beta-spike virus (c), Gamma-spike virus (d), Epsilon-spike virus (e). Sera were 366

collected on days 14, 28, and 45 post-immunization and tested for neutralizing activities against 367 the indicated mNG viruses by FFRNT. The original FFRNT₅₀ values are presented in **Extended**

368

Data Tables 1-3. 369

Virus for		FFRNT ₅₀ s against SARS-CoV-2 spike variants						
infection	Hamster ID	USA-WA1/2020	Alpha+E484K-spike	Beta-spike	Gamma-spike	Epsilon-spike		
		mNG	mNG	mNG	mNG	mNG		
	1	1048	320	194	446	1113		
	2	1875	1158	498	785	1916		
USA- WA1/2020	3	1643	242	143	413	1304		
WA1/2020	4	1426	528	149	637	1099		
	Mean	1498	562	246	570	1358		
	5	689	5561	1789	1660	1111		
	6	669	5526	2214	2543	864		
Alpha+E484 K-spike	7	1431	2981	3122	2967	762		
K-spike	8	714	3087	2175	2318	1246		
	Mean	876	4289	2325	2372	996		
	9	461	1079	1610	2226	296		
	10	188	1482	2537	2520	161		
Beta-spike	11	51	1082	1947	1486	40		
	12	144	1113	1881	1802	208		
	Mean	211	1189	1994	2009	176		
	13	108	1215	2525	2833	49		
	14	125	583	1006	1346	<10		
Gamma-	15	155	967	1075	2166	14		
spike	16	82	1617	1275	3092	52		
	Mean	118	1096	1470	2359	38		
	17	966	337	156	194	2346		
	18	2602	502	358	583	5297		
Epsilon-	19	1535	457	175	179	2977		
spike	20	1552	2637	1572	1321	3085		
	Mean	1664	983	565	569	3426		

Extended Data Table 1. FFRNT₅₀s of twenty hamster sera on day 14 post-immunization.

Hamster ID USA-WA1/2020 Alpha+E484K-spike mNG Beta-spike mNG Gamma-spike mNG Epsilon-spike mNG Delta-spike mNG 1 1226 632 714 1601 1167 1278 USA- WA1/2020 2 2140 1807 1749 1442 2646 2691 USA- WA1/2020 3 1137 141 93 392 920 713 Mean 1460 725 688 969 1332 1438 6 1239 4511 1453 1920 950 1044 Alpha+E484 7 792 3174 1248 1507 569 867 K-spike 8 291 3787 2405 2425 349 343 Mean 692 3620 1517 1755 539 671 9 1511 3184 3494 4027 1850 2068 11 1144 2253 2848 3473 336 349 </th <th>Virus for</th> <th></th> <th colspan="7">$FFRNT_{50}$s against SARS-CoV-2 spike variants</th>	Virus for		$FFRNT_{50}$ s against SARS-CoV-2 spike variants						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Hamster ID	USA-WA1/2020	Alpha+E484K-spike	Beta-spike	Gamma-spike	Epsilon-spike	Delta-spike	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			mNG	mNG	mNG	mNG	mNG	mNG	
USA- WA1/2020 3 1137 141 93 392 920 713 WA1/2020 4 1336 321 197 442 594 1068 Mean 1460 725 688 969 1332 1438 Alpha+E484 5 445 3007 963 1169 288 430 Alpha+E484 7 792 3174 1248 1507 569 867 & 291 3787 2405 2425 349 343 Mean 692 3620 1517 1755 539 671 9 1511 3184 3494 4027 1850 2068 10 241 1671 2048 2209 230 293 Beta-spike 11 1144 2253 2848 3473 336 349 12 290 931 1059 1932 261 299 Mean 797		1	1226	632	714	1601	1167	1278	
WA1/2020 3 1137 141 93 392 920 713 Mean 1336 321 197 442 594 1068 Mean 1460 725 688 969 1332 1438 Alpha+E484 6 1239 4511 1453 1920 950 1044 K-spike 6 1239 4511 1453 1920 950 1044 K-spike 7 792 3174 1248 1507 569 867 Beta-spike 9 1511 3184 3494 4027 1850 2068 10 241 1671 2048 2209 230 293 Beta-spike 11 1144 2253 2848 3473 336 349 12 290 931 1059 1932 261 299 Mean 797 2010 2362 2910 669 752 13		2	2140	1807	1749	1442	2646	2691	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	1137	141	93	392	920	713	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WA1/2020	4	1336	321	197	442	594	1068	
Alpha+E484 K-spike 6 1239 4511 1453 1920 950 1044 K-spike 7 792 3174 1248 1507 569 867 8 291 3787 2405 2425 349 343 Mean 692 3620 1517 1755 539 671 9 1511 3184 3494 4027 1850 2068 10 241 1671 2048 2209 230 293 Beta-spike 11 1144 2253 2848 3473 336 349 12 290 931 1059 1932 261 299 Mean 797 2010 2362 2910 669 752 Gamma- spike 14 1837 4197 4954 8391 498 535 16 150 1068 2555 3644 137 153 Mean 787 2462 <td></td> <td>Mean</td> <td>1460</td> <td>725</td> <td>688</td> <td>969</td> <td>1332</td> <td>1438</td>		Mean	1460	725	688	969	1332	1438	
Alpha+E484 K-spike 7 792 3174 1248 1507 569 867 8 291 3787 2405 2425 349 343 Mean 692 3620 1517 1755 539 671 9 1511 3184 3494 4027 1850 2068 10 241 1671 2048 2209 230 293 11 1144 2253 2848 3473 336 349 12 290 931 1059 1932 261 299 Mean 797 2010 2362 2910 669 752 Mean 797 2010 2362 2910 669 752 13 914 3874 5009 4685 564 480 6amma- spike 15 247 707 1282 2090 73 85 16 150 1068 2555 3644 <td< td=""><td></td><td>5</td><td>445</td><td>3007</td><td>963</td><td>1169</td><td>288</td><td>430</td></td<>		5	445	3007	963	1169	288	430	
K-spike 7 792 3174 1248 1507 569 867 8 291 3787 2405 2425 349 343 Mean 692 3620 1517 1755 539 671 9 1511 3184 3494 4027 1850 2068 Beta-spike 10 241 1671 2048 2209 230 293 11 1144 2253 2848 3473 336 349 12 290 931 1059 1932 261 299 Mean 797 2010 2362 2910 669 752 13 914 3874 5009 4685 564 480 6amma-spike 14 1837 4197 4954 8391 498 535 16 150 1068 2555 3644 137 153 Mean 787 2462 3450 4		6	1239	4511	1453	1920	950	1044	
8 291 3787 2405 2425 349 343 Mean 692 3620 1517 1755 539 671 9 1511 3184 3494 4027 1850 2068 10 241 1671 2048 2209 230 293 11 1144 2253 2848 3473 336 349 12 290 931 1059 1932 261 299 Mean 797 2010 2362 2910 669 752 Mean 797 2010 2362 2910 669 752 13 914 3874 5009 4685 564 480 6amma- spike 15 247 707 1282 2090 73 85 16 150 1068 2555 3644 137 153 Mean 787 2462 3450 4703 318 313		7	792	3174	1248	1507	569	867	
9 1511 3184 3494 4027 1850 2068 Beta-spike 10 241 1671 2048 2209 230 293 11 1144 2253 2848 3473 336 349 12 290 931 1059 1932 261 299 Mean 797 2010 2362 2910 669 752 Jage 13 914 3874 5009 4685 564 480 Jage 14 1837 4197 4954 8391 498 535 Gamma-spike 15 247 707 1282 2090 73 85 16 150 1068 2555 3644 137 153 Mean 787 2462 3450 4703 318 313 17 1961 1484 1080 770 3683 5442 Epsilon-spike 19 1654	K-spike	8	291	3787	2405	2425	349	343	
Beta-spike 10 241 1671 2048 2209 230 293 11 1144 2253 2848 3473 336 349 12 290 931 1059 1932 261 299 Mean 797 2010 2362 2910 669 752 13 914 3874 5009 4685 564 480 14 1837 4197 4954 8391 498 535 16 150 1068 2555 3644 137 153 Mean 787 2462 3450 4703 318 313 17 1961 1484 1080 770 3683 5442 18 3347 1153 1432 1373 4163 3634 20 2298 3833 2251 1545 4182 3605		Mean	692	3620	1517	1755	539	671	
Beta-spike 11 1144 2253 2848 3473 336 349 12 290 931 1059 1932 261 299 Mean 797 2010 2362 2910 669 752 13 914 3874 5009 4685 564 480 14 1837 4197 4954 8391 498 535 15 247 707 1282 2090 73 85 16 150 1068 2555 3644 137 153 Mean 787 2462 3450 4703 318 313 17 1961 1484 1080 770 3683 5442 18 3347 1153 1432 1373 4163 3634 5pike 19 1654 662 455 562 2132 1868 20 2298 3833 2251 1545 4182		9	1511	3184	3494	4027	1850	2068	
Indication Indication <thindication< th=""> Indication Indicati</thindication<>		10	241	1671	2048	2209	230	293	
Mean 797 2010 2362 2910 669 752 J13 914 3874 5009 4685 564 480 14 1837 4197 4954 8391 498 535 15 247 707 1282 2090 73 85 16 150 1068 2555 3644 137 153 Mean 787 2462 3450 4703 318 313 17 1961 1484 1080 770 3683 5442 18 3347 1153 1432 1373 4163 3634 Epsilon-spike 19 1654 662 455 562 2132 1868 20 2298 3833 2251 1545 4182 3605	Beta-spike	11	1144	2253	2848	3473	336	349	
Gamma-spike 13 914 3874 5009 4685 564 480 14 1837 4197 4954 8391 498 535 15 247 707 1282 2090 73 85 16 150 1068 2555 3644 137 153 Mean 787 2462 3450 4703 318 313 17 1961 1484 1080 770 3683 5442 18 3347 1153 1432 1373 4163 3634 Epsilon-spike 19 1654 662 455 562 2132 1868 20 2298 3833 2251 1545 4182 3605		12	290	931	1059	1932	261	299	
Gamma- spike1418374197495483914985351524770712822090738516150106825553644137153Mean787246234504703318313Epsilon- spike1833471153143213734163363420229838332251154541823605		Mean	797	2010	2362	2910	669	752	
Gamma- spike 15 247 707 1282 2090 73 85 16 150 1068 2555 3644 137 153 Mean 787 2462 3450 4703 318 313 17 1961 1484 1080 770 3683 5442 18 3347 1153 1432 1373 4163 3634 Epsilon- spike 19 1654 662 455 562 2132 1868 20 2298 3833 2251 1545 4182 3605		13	914	3874	5009	4685	564	480	
spike 15 247 707 1282 2090 73 85 16 150 1068 2555 3644 137 153 Mean 787 2462 3450 4703 318 313 17 1961 1484 1080 770 3683 5442 18 3347 1153 1432 1373 4163 3634 Epsilon- spike 19 1654 662 455 562 2132 1868 20 2298 3833 2251 1545 4182 3605		14	1837	4197	4954	8391	498	535	
16 150 1068 2555 3644 137 153 Mean 787 2462 3450 4703 318 313 17 1961 1484 1080 770 3683 5442 18 3347 1153 1432 1373 4163 3634 Epsilon- spike 19 1654 662 455 562 2132 1868 20 2298 3833 2251 1545 4182 3605		15	247	707	1282	2090	73	85	
171961148410807703683544218334711531432137341633634Epsilon- spike1916546624555622132186820229838332251154541823605	зріке	16	150	1068	2555	3644	137	153	
18 3347 1153 1432 1373 4163 3634 Epsilon- spike 19 1654 662 455 562 2132 1868 20 2298 3833 2251 1545 4182 3605		Mean	787	2462	3450	4703	318	313	
Epsilon- spike 19 1654 662 455 562 2132 1868 20 2298 3833 2251 1545 4182 3605		17	1961	1484	1080	770	3683	5442	
spike 20 2298 3833 2251 1545 4182 3605		18	3347	1153	1432	1373	4163	3634	
20 2298 3833 2251 1545 4182 3605	-	19	1654	662	455	562	2132	1868	
Mean 2315 1783 1305 1063 3540 3637	spike	20	2298	3833	2251	1545	4182	3605	
		Mean	2315	1783	1305	1063	3540	3637	

Extended Data Table 2. FFRNT₅₀s of twenty hamster sera on day 28 post-immunization.

Virus for		FFRNT ₅₀ s against SARS-CoV-2 spike variants						
infection	Hamster ID	USA-WA1/2020	Alpha+E484K-spike	Beta-spike	Gamma-spike	Epsilon-spike	Delta-spike	
		mNG	mNG	mNG	mNG	mNG	mNG	
	1	4574	3509	3590	4437	4843	6410	
	2	2299	2042	2094	1850	2207	2337	
USA- WA1/2020	3	953	510	370	807	1125	1612	
WA1/2020	4	2205	1682	723	1707	871	1232	
	Mean	2508	1936	1694	2200	2262	2898	
	5	718	3794	2628	3627	601	462	
	6	1326	5262	2624	3211	1248	719	
Alpha+E484 K-spike	7	1237	4554	2115	3225	844	477	
K-spike	8	405	4930	2181	2210	372	248	
	Mean	922	4635	2387	3068	766	477	
	9	1881	3305	4574	3994	2047	2005	
D	10	582	1852	2857	2527	545	584	
Beta-spike	11	1184	2374	3746	3139	906	988	
	12	920	1692	1554	2068	688	680	
	Mean	1142	2306	3183	2932	1047	1064	
	13	1391	3638	7481	7345	1272	1505	
_	14	2251	5095	7255	7892	1282	1566	
Gamma- spike	15	656	1638	1274	2734	203	268	
зріке	16	828	2521	3882	3986	514	633	
	Mean	1282	3223	4973	5489	818	993	
	17	1982	1315	2236	1548	3379	2149	
	18	2205	1991	2742	3084	4212	4069	
Epsilon-	19	1928	1182	1158	1326	2419	2208	
spike	20	2930	4189	3004	2268	4641	4016	
	Mean	2261	2169	2285	2057	3663	3111	

Extended Data Table 3. FFRNT₅₀s of twenty hamster sera on day 45 post-immunization.