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Abstract 

Background: Natural killer (NK) cells represent a critical component of the innate immune system’s response 

against cancer and viral infections, among other diseases. To distinguish healthy host cells from infected or 

tumor cells, killer immunoglobulin receptors (KIR) on NK cells bind and recognize Human Leukocyte Antigen 

(HLA) complexes on their target cells. Just like the HLAs they bind, these KIRs exhibit high allelic diversity in 

the human population. 

 

Results: In order to better understand these immunoreceptors, we have developed KIRCLE, a novel method 

for genotyping individual KIR genes from whole exome sequencing data, and used it to analyze approximately 

60,000 patient samples in The Cancer Genome Atlas and UK Biobank. We were able to assess population 

frequencies for different KIR alleles and demonstrate that, similar to HLA alleles, individuals’ KIR alleles 

correlate strongly with their ethnicities. In addition, we observed associations between different KIR alleles and 

HLA alleles, including HLA-B*53 with KIR3DL2*013 (Fisher’s Exact FDR = 7.64e-51). Finally, we showcased 

statistically significant associations between KIR alleles and various clinical correlates, including peptic ulcer 

disease (Fisher’s Exact FDR = 0.0429) and age of onset of atopy and various KIR alleles (Mann-Whitney-U 

FDR = 0.0751). 

 

Conclusions: KIR polymorphism and NK cells play a critical role in many diseases, often through their 

interactions with HLA complexes. Peptic ulcer disease and atopy are just two diseases in which NK cells may 

play a role beyond their “classical” realm of anti-tumor and anti-viral responses. 

 

Keywords: Natural Killer cells, Killer Immunoglobulin Receptors, immunogenomics 

 

 

1 Background 

Natural killer (NK) cells are an important component of the innate immune system that classically play an 

important role in the body’s anti-tumor and anti-viral responses. In addition to their functions in these 

processes, recent research has further implicated their involvement in a much wider range of pathological 
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processes that include cardiac, metabolic, oral, and gastrointestinal diseases. [1-4] While they represent only a 

small minority of circulating lymphocytes (10-15%), NK cells nonetheless are considered to be the immune cell 

subtype most effective at monitoring and clearing diseased cells from the body.[5] 

 

As one mechanism to distinguish healthy host cells from infected or tumor cells, NK cells employ killer 

immunoglobulin receptor (KIR) proteins on their membrane surfaces to bind to and recognize Human 

Leukocyte Antigen Class I (HLA-I) complexes on the surface of their target cells. 15 KIR genes and 2 KIR 

pseudogenes have been discovered.[6] These 15 genes may broadly be categorized into either activating 

KIRs, which promote NK cell activation and induce killing of the target cell on receptor stimulation, or inhibitory 

KIRs, which prevent NK cell activation and spare the target cell upon ligand binding. Inhibitory KIRs generally 

possess long cytoplasmic tails and are denoted with an L (KIR2DL1, KIR2DL2, KIR2DL3, KIR2DL5A/B, 

KIR3DL1, KIR3DL2, and KIR3DL3), whereas activating KIRs generally possess short cytoplasmic tails and are 

denoted with an S (KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5, and KIR3DS1); however, KIR2DL4 

uniquely among the 15 KIR genes possesses both activating and inhibitory functions.[7] Modulation of NK cell 

activity, and thus susceptibility or resistance to various pathologies, likely depends strongly on the binding 

properties and interactions between KIR and HLA-I molecules. A high level of diversity in NK cell activity and 

its outcomes may be achieved largely through four different mechanisms: KIR recognition of highly distinct 

subsets of HLA-I allotypes, combination of KIRs into distinct haplotypes in different individuals, stochasticity of 

KIR expression on the surface of individual NK cells, and allelic polymorphism of individual KIR genes.[8] In 

this manuscript we primarily explore the last of these mechanisms and its downstream effects on disease 

susceptibility by performing KIR allele inference using Next Generation Sequencing (NGS) data. 

 

Previous attempts to perform KIR genotyping at the individual gene level have either 1) relied on specially 

prepared primers and amplicon design; 2) required manual review as part of the algorithm; 3) utilized an 

experimental platform completely different from NGS; or 4) have merely assessed KIR gene presence or 

deletion rather than detected single-nucleotide-variants. [9-12] Given the rise and modern prevalence of NGS, 

especially with the recent releases of Whole Exome Sequencing (WES) data for large datasets including UK 

Biobank and The Cancer Genome Atlas (TCGA), there is a strong need for a fully automated pipeline that can 
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detect single-nucleotide variants of these KIR genes using aligned WES data. In this work, we have developed 

and characterized the performance of a fully automated algorithm for accurate inference of KIR genes alleles 

from WES data: “KIR CaLling by Exomes” (KIRCLE). To demonstrate the utility of such an automated KIR 

genotyper, after running KIRCLE on 10,332 TCGA and 49,953 UK biobank exome samples, we discovered 

several novel correlations between KIR allele calls and other molecular and clinical features in these two 

datasets. Our work represents the first large-scale genetic analysis to elucidate pathologic and immunologic 

associations with human natural killer cells and provides an unprecedented resource for future investigations 

into the functionality of different KIR alleles. 

 

 

2 Implementation 

2.1 KIRCLE Workflow Description 

KIRCLE is an allele inference algorithm that uses aligned WES data in the form of a BAM or CRAM file to 

generate probability estimates for each KIR allele, as well as genotype predictions for each KIR gene. KIRCLE 

consists of 4 major steps: pre-processing, local alignment with BLAST, bootstrapped expectation-

maximization, and thresholding (Figure 1a). 

 

1) In pre-preprocessing, KIRCLE first extracts all WES reads that map to the genomic coordinates of the 

KIR genes on chromosome 19q13.4 and writes these reads to fifteen separate files—one for each KIR 

gene.  

2) Next, KIRCLE uses nucleotide BLAST to perform local alignment on each KIR gene’s collection of 

reads against a database of variants belonging to that particular KIR gene. In the IPD-KIR Database 

v2.8.0, 908 different alleles spanning the 15 KIR genes are documented, of which 535 represent 

distinct coding variants. KIRCLE then filters out alignments with less than 100% identity matches to 

documented KIR alleles. 

3) KIRCLE then bootstraps the BLAST-identified alignments with 100% identity matches to KIR alleles 

and uses an expectation-maximization (EM) algorithm, with convergence hyperparameter α, to 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2021. ; https://doi.org/10.1101/2021.09.02.458787doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.02.458787
http://creativecommons.org/licenses/by-nc-nd/4.0/


  5

generate allele probability estimates from these collections of alignments. n bootstraps of fraction p of 

all 100%-identity alignments are computed in this manner. The bootstrapped allele probability estimates 

are then averaged together to determine a final probability estimate for each allele. This bootstrapping 

is helpful in countering the EM algorithm’s tendency to converge to local minima representing 

homozygous solutions and based on small differences in initial alignment data. 

4) Finally, KIRCLE uses a thresholding algorithm to convert each KIR gene’s set of allele probability 

estimates into homozygous or heterozygous genotype calls, depending on the number of alleles that 

exceeded a heuristically determined threshold t (Figure 1b). 

 

Final workflow outputs include a table of allele probability estimates, a table of genotype guesses, and a list of 

runtime hyperparameters. 

 

2.2 Allele Inference Using Expectation Maximization 

To infer allele probabilities from a set of read alignments to a database of KIR alleles, we use an expectation-

maximization algorithm to aggregate the alignment data into an initial set of allele probability “expectations,” 

which is then used to further weight the alignment data in order to refine our estimates of KIR allele 

probabilities. Thus, given a bootstrap of read alignments with 100% identity to at least one KIR allele, 

KIRCLE’s EM algorithm iteratively generates probability estimates for each KIR reference allele (Figure 1c). 

Let: 

� � the total number of alleles of this KIR gene 

� � the total number of reads in this bootstrap 

� � the set of KIR alleles ���, ��, … , ��� 
� � the set of BAM reads �#�, #� , … , #�� 
$� � the number of alleles that read # aligns to with 100% identity  
*  � each time step of the expectation maximization algorithm 

. � a heuristically chosen convergence threshold 

 

We first initialize an m x n “alignment matrix” M to encode our read alignments:  
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 0�,�
�	
 � 1 1$�

, # aligns to �
0, # does not align to �2 (1) 

 

Next, using M, we compute an initial expectation vector Et representing our rudimentary estimate of each KIR 

allele’s probability in this sample: 

 3�
� � 4 0�,�

�

���

 (2) 

 

Then, at each time step t of the expectation-maximization algorithm, we update the values of our alignment 

matrix M in a Bayesian fashion using the previously generated expectation vector Et as our prior and Mt as our 

likelihood: 

 0�,�
�� � 0�,�

� 5 3�
�∑ 70�,�

� 5 3�
� 8�

 (3) 

 

Subsequently, we may generate an updated expectation vector Et+1 using Mt+1 in conjunction with equation (2) 

above. 

We continue to iterate through our expectation-maximization algorithm in this manner, computing Et from Mt 

and then Mt+1 from Et and Mt, until we achieve our convergence criterion, defined as the sum of squared 

changes in 0 not exceeding a heuristically selected hyperparameter .: 

 4 70�,�
� 9 0�,�

���8�

���, ���

: . (4) 

 

Ultimately, our final expectation vector ET is outputted as our vector of allele probability estimates. 

 

2.3 Allele Coding Region Collapse 

Because we used WES data as our input, KIR variants that differed only at non-exonic sites were merged by 

summing their allele probability estimates. Furthermore, as we are primarily interested in the phenotypic effects 

of altered binding affinity to KIR domains, we merged variants that differ only by a silent mutation by summing 
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their allele probability estimates as well. Thus, all KIR alleles subsequently are reported as a three-digit 

number following the KIR gene name (e.g. KIR2DL4*005). 

 

2.4 Clinical Effect Model Comparison 

To explore several correlations we discovered between KIR3DL2 genotype and earliest age of atopy onset 

more deeply, we attempted to model earliest age of atopy onset as a linear function of the KIR3DL2 genotype 

 7�;< => �*=?@ A�B<*8 � � 5 $7;<�=*@?<8 C D (5) 

 

where x(genotype) is determined by the model of KIR allele expression. Under a dominant model, both 

homozygotes and heterozygotes for an allele KIR3DL2*000 contribute equally to the phenotype. Thus, 

 E7FGHIJKLG8 � MNNO2 2 copies of KIR3DL2*000 

1 copy of KIR3DL2*000 

0 copies of KIR3DL2*000 

(6) 

 

Meanwhile, under a semi-dominant model, homozygotes are twice as expressive as heterozygotes: 

 E7FGHIJKLG8 � MPNO2 2 copies of KIR3DL2*000 

1 copy of KIR3DL2*000 

0 copies of KIR3DL2*000 

(7) 

 

Finally, under a recessive model, only homozygotes have an effect on phenotypic expression: 

 E7FGHIJKLG8 � MNOO2 2 copies of KIR3DL2*000 

1 copy of KIR3DL2*000 

0 copies of KIR3DL2*000 

(8) 

 

How well each of these models performed against each other was assessed by the goodness of fit of the final 

linear model (equation 5) with the UK Biobank data and summarized using the Bayesian Information Criterion. 

 

 

3 Results 

3.1 Hyperparameter Determination and Validation for KIRCLE 
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KIRCLE requires the use of 4 hyperparameters: . (the convergence threshold for expectation-maximization), n 

(the number of bootstraps to perform), p (the proportion of reads to use in each bootstrap) and t (the threshold 

used to convert KIR allele probabilities to binary KIR genotype calls). Of these, choices regarding p and t 

represent the greatest and most direct potential sources of variability in KIRCLE’s accuracy. Using one 

randomly selected sample from UK Biobank, we were able to characterize KIRCLE’s performance, as 

measured by the Shannon entropy of the inferred genotypes, across different values of p (from 0.2 to 0.8) and t 

(from 0.05 to 0.40). At each set of hyperparameters tested, we performed 500 iterations of KIRCLE on one 

arbitrarily selected sample in UK Biobank, collected the 500 genotype outputs, and empirically computed the 

log2 Shannon entropy of the genotype solutions for each KIR gene. An ideal genotype caller would be 

consistent and call the same solution for the same input, resulting in a “genotype-entropy” of 0. For many KIR 

genes, such as KIR2DL1 and KIR2DL4, contour maps of the resulting entropies revealed that KIRCLE was 

largely self-consistent, with little variability of output (genotype-entropy of 0) across a wide spectrum of 

hyperparameter values (Figure 2a-b). This pattern was recapitulated in the majority of KIR genes, suggesting 

respectable consistency of KIRCLE output across multiple KIR genes (Supplementary Figure S1a-j). For all 

subsequent analyses in this manuscript, hyperparameter values of .=1e-5, n=100, p=0.5, and t=0.25 were 

used. 

 

Next, to establish the accuracy of our algorithm, we assessed the concordance of KIRCLE-generated 

genotypes between TCGA biological replicates. Of 10,332 exomes in TCGA, 1,062 were present twice as 

biological replicates and thus used in this analysis. We determined that 85.8% of genotype solutions called by 

KIRCLE across all KIR genes were concordant between replicates (Supplementary Figure S2a). We defined 

solutions to be concordant if the genotype inferred by KIRCLE in one sample was identical to that inferred in its 

replicate. Genes with the highest concordance between replicates were KIR2DS2 (98.3%), KIR3DL1 (92.1%), 

and KIR3DS1 (92.1%), whereas genes with the lowest concordance between replicates were KIR2DL2 

(77.0%), KIR2DS5 (78.9%), and KIR3DL3 (81.0%) (Figure 2c).  

 

Finally, we investigated whether KIRCLE is robust against differences in depth of sequencing. To do so, we 

compared the ambiguity of KIRCLE’s output, quantified as the Shannon entropy of generated KIR allele 
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probabilities, across TCGA samples with different depths of sequencing. Low ambiguity in KIR allele calling 

results in KIR allele probabilities of either 1 for a single allele and 0 for all other alleles (reflecting a 

homozygous genotype) or 0.5 for two different alleles and 0 for all other alleles (reflecting a heterozygous 

genotype), leading to entropies of either 0 or 1 respectively. Conversely, high ambiguity in KIR allele calling will 

lead to a more uniform distribution of KIR allele probabilities, leading to entropies higher than 1. For each 

TCGA sample, we measured both the average coverage and the KIR-allele-probability entropies for each KIR 

gene. Binning samples by their average coverages, we observed that allele probability entropies—and thus the 

ambiguity of KIR allele probabilities—are notably increased only at very low coverages (<20 average depth of 

coverage at the KIR gene locus). Furthermore, as negative controls, 20 “pseudo-BAMs” were generated by 

randomly sampling reads mapping to KIR gene loci from 50 randomly selected BAMs in TCGA. Pseudo-BAMs 

were generated with an average read depth commensurate with their constituent BAMs. After applying 

KIRCLE to these pseudo-BAMs, their resulting allele probability entropies were much higher (median=1.70) 

than a significant majority of actually observed entropies for all TCGA samples, regardless of the depth of 

coverage (Figure 2d). Moreover, despite differences in average depth of coverage at different KIR gene loci, 

average KIR allele entropies between different KIR genes largely remained constant (Supplementary Figure 

S2b). Overall, KIRCLE demonstrated a high level of consistency while being able to call a diverse set of KIR 

genotype solutions and is robust to the effects of low depth of coverage. 

 

3.2 KIR Allele Comparisons Between TCGA and UK Biobank 

After benchmarking KIRCLE using internal quality control metrics, we assessed KIRCLE’s performance by 

comparing its allele predictions in TCGA to its allele predictions in UK Biobank. We first compared the 

frequencies of different KIR alleles in TCGA with their frequencies in UK Biobank. For each KIR gene, we 

ranked its alleles by frequency in both TCGA and UK Biobank and then computed the Spearman correlation 

coefficient between the allele frequencies in the two datasets (Figure 3a). We noted that all KIR genes 

displayed positive correlation coefficients and that the vast majority of KIR genes demonstrated highly similar 

distributions of allele frequencies between TCGA and UK Biobank (Spearman’s ρ=0.800). Direct comparison of 

all KIR alleles ranked by frequency also demonstrated high consistency between the two cohorts (Figure 3b). 

Although both UK Biobank and TCGA are largely composed of Caucasians (81.4% and 93.3% of the 
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individuals we analyzed in TCGA and UK Biobank respectively), there exist small yet notable differences in 

ethnic makeup between the two datasets. These differences in ethnic compositions may account for a subset 

of the observed differences in KIR allele frequency. 

 

Additionally, we were able to further validate observed KIR allele frequencies for certain KIR genes using allele 

frequency data from the United States National Marrow Donor Program (NMDP), as reported by the Allele 

Frequency Net Database.[13] We used the NMDP dataset because the subjects in this cohort are 

predominantly Caucasians, similar to the TCGA patients. For KIR2DL4, the four most frequent KIR2DL4 alleles 

reported by the NMDP were KIR2DL4*001, KIR2DL4*008, KIR2DL4*005, and KIR2DL4*011 (34.6%, 30.2%, 

19.9%, and 11.6% respectively). We were able to recapitulate these four alleles as the most frequent KIR2DL4 

alleles in both TCGA and UK Biobank, albeit in a different order for each dataset (Figure 3c). In TCGA, 

KIR2DL4*005 was the most frequent allele, followed by KIR2DL4*001, KIR2DL4*008, and KIR2DL4*011 

(42.0%, 25.4%, 12.4%, and 6.58%). In UK Biobank, this order was reversed with KIR2DL4*011 being the most 

frequent allele, followed by KIR2DL4*008, KIR2DL4*001, and finally KIR2DL4*005 (31.6%, 20.5%, 18.2%, and 

14.0%). Further validation of allele frequencies against the NMDP was also performed for the alleles of 

KIR3DL2. The most frequent KIR3DL2 allele in a population of 75 Caucasians was KIR3DL2*002 (26.1%), 

followed by KIR3DL2*001 and KIR3DL2*007 (21.0% and 18.8%).[14] While KIR3DL2*002 was found at 

similarly high frequencies in both TCGA (9.85%) and UK Biobank (9.27%) as the 2nd and 3rd most frequent 

KIR3DL2 alleles respectively, KIR3DL2*001 and KIR3DL2*007 were much lower ranked at 8th and 9th in TCGA 

and 8th and 1st in UK Biobank respectively. However, these are still fairly well-represented alleles at 4.94% and 

2.67% frequency in TCGA and 5.12% and 13.3% frequency in UK biobank respectively. Furthermore, 

considered overall, KIR3DL2 allele frequency ranks in TCGA and UK Biobank still demonstrate positive 

correlations with the allele frequency ranks observed in the NMDP (Supplementary Figure S2c).  Despite 

slight numerical differences, confirmation of the status of the most frequent alleles in these two KIR genes 

increases our confidence in KIRCLE’s ability to infer KIR alleles from WES data accurately. 

 

In addition to validating population frequencies of KIR alleles, we also examined patterns of KIR allele co-

expression and dependence. As KIRCLE assesses for the presence of 535 KIR alleles over 15 KIR genes, the 
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KIR genotype of each sample in TCGA and UK Biobank may be represented as a point in 535-dimensional 

“KIR-space.” We first used t-distributed stochastic neighbor embedding (t-SNE) to perform dimensionality 

reduction and thus visualize the distribution of individuals in TCGA in 2 dimensions.[15] When we colored this 

t-SNE map using individuals’ SNP-inferred ethnicities,[16] we observed that different ethnicities cluster 

together and are non-uniformly distributed (Figure 3d). In particular, African Americans and—to a lesser 

extent—Asian Americans in TCGA formed clusters that were often very distinct from the Caucasian majority. 

Similar analyses performed in UK Biobank recapitulated this non-random distribution of KIR genotypes and 

confirmed the non-uniform distribution and clustering of those who self-identified their ethnicity as “Black” or 

“Asian” (Figure 3e). Of particular note, the “Asian” population in TCGA comprises those of East Asian descent, 

whereas the “Asian” population in UK Biobank largely comprises those of South Asian descent (with major 

subcategories of Indians, Pakistanis, and Bangladeshis). However, both groups of Asians clustered distinctly 

and separately from the Caucasian majority to some extent in both datasets. 

 

3.3 KIR Allele Associations with HLA Alleles 

As it is known that HLA and KIR bind to each other in an allele-specific way, we posited that strong correlations 

may also exist between KIR alleles and HLA alleles on the population level, due to a known co-evolution event 

in humans.[17] Using HLA types imputed by the HLA*IMP:02 algorithm and subsequently released by UK 

Biobank,[18] we observed 326 significantly associated pairs of KIR alleles with HLA alleles in the UK Biobank 

data (Figure 4a-b, Supplementary Figure S3a). Many of these associations belonged to a set of particularly 

common HLA alleles (e.g. HLA-B*53) or KIR alleles (e.g. KIR3DL3*005). Furthermore, we also note that the 

majority (73.0%) of significant associations are positive. We speculate that these associations reflect changes 

in direct physical interactions between HLA and KIR alleles, which result in co-selection due to an 

advantageous increase in fitness for individuals with these combinations of KIR and HLA alleles. Particularly 

visually striking examples of positive and negative associations between KIRs and HLAs include: 

KIR3DL3*005 with HLA-A*74 (Fisher’s Exact FDR=7.43e-43; odds ratio=55.1) and KIR2DL3*002 with HLA-

A*36 (Fisher’s Exact FDR=1.71e-12; odds ratio=0.0727) respectively (Figure 4c). Additionally, when 

examining the t-SNE coordinates of individuals with HLA alleles such as HLA-B*42, we observed a non-
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uniform distribution and clustering of these samples that closely mirrors the distribution of samples when 

labeled by ethnicity (Figure 4d). 

 

While these findings may support the biological link between these two classes of molecules and shed 

additional light onto which particular HLA alleles may have evolved in parallel with particular KIR alleles, they 

also raise the possibility that our observed associations are driven by population stratification according to 

ethnicity. In order to disentangle the effects of this stratification on associations between HLA and KIR alleles, 

we re-attempted the analysis using only Caucasian individuals in UK Biobank, while testing only KIR alleles 

with >1% allele frequency in UK Biobank (Figure 4e). While this analysis unveiled a much smaller subset of 

HLA-KIR associations, we noted 3 significant associations: HLA-C*17 with KIR2DS4*016 and HLA-B*41 with 

KIR2DL4*011 and KIR2DS4*016. Notably, both KIR2DS4 and KIR2DL4 have NK-cell-activating activity, and all 

three are affiliated with a negative odds ratio. These results indicate that HLA-C*17 and B*41 could be true 

activation ligands for KIR2DS4 and KIR2DL4, and their interactions may induce NK responses that impose 

negative selection pressure on individuals bearing both alleles. 

 

Although TCGA is a much smaller dataset than UK Biobank, we were able to use TCGA to discover a smaller 

set of correlations between HLA alleles and KIR alleles after filtering out KIR alleles with <1% allele frequency 

in TCGA to improve our Bonferroni correction factor (Supplementary Figure S3b). HLA allele calls for 

samples in TCGA were made using POLYSOLVER.[19] In particular, KIR2DL2*003, KIR3DL2*013, and 

KIR3DL3*008 were strongly positively associated with HLA-B*46, HLA-B*53, and HLA-C*15 respectively at the 

FDR < 0.25 level. The HLA-B*53 association with KIR3DL2*013, notably, was the most significant HLA-KIR 

association discovered in UK Biobank. However, when we re-attempted the analysis using only Caucasian 

individuals in TCGA to eliminate population stratification by ethnicity as a potential confounding factor, all 

significant associations between KIR and HLA alleles disappeared after Bonferroni correction. In summary, 

after correction of population stratifications, we found few significant associations between activating KIR gene 

and HLA alleles. The absence of significant associations between inhibitory KIR genes and HLA alleles might 

suggest weaker selective pressure for KIR alleles, possibly due to the multiple redundant mechanisms 

inhibiting NK cell activation. [20] 
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3.4 KIR Allele Associations with Clinical Correlates 

In addition to correlations with HLA alleles, we searched for KIR allele correlations with clinical features. We 

first examined KIR allele correlations with individuals’ medical diagnoses documented in UK Biobank, as 

encoded by the 10th revision of the International Statistical Classification of Diseases (ICD10). To minimize the 

number of under-powered tests we performed, we attempted correlations only with KIR alleles represented at 

over 1% frequency in UK Biobank. Additionally, we excluded all diseases primarily associated with external 

causes, including accidents, injuries, and nutritional deficiencies, as well as obstetric and psychiatric diseases 

among others. Of note, this list of exclusions includes infectious diseases, which despite having a strong 

biological basis for association with KIR alleles, require exposure to a pathogen, which is largely driven by 

individuals’ environmental circumstances. Strikingly, the only associations that remained significant at the FDR 

< 0.25 level were those associated with sickle-cell anemia (ICD10 D57) or with uterine leiomyomas (ICD10 

D25), both diseases that disproportionately affect black people.[21] However, positing a direct biological 

mechanism behind these associations likely would represent a third-cause fallacy, as blacks are statistically 

more likely to possess both KIR alleles enriched in black populations as well as either the sickle-cell trait or 

uterine leiomyomas. 

 

Thus, we next narrowed our analysis to investigate only those individuals who self-identified as Caucasian. 

While the vast majority of correlations failed false-discovery-rate correction, we discovered a significant 

correlation between the KIR3DL3*080 allele and ICD10 K25—Peptic Ulcer Disease (PUD) (Fisher’s Exact test, 

FDR= 0.0429; Figure 5a). Whereas those without KIR3DL3*080 had merely a 1.04% chance of being 

diagnosed with PUD, patients with KIR3DL3*080 had a 2.90% chance of being diagnosed with PUD, 

representing a 2.8-fold increase in likelihood (Figure 5b). No significant association was found between 

KIR3DL3*080 and usage of ibuprofen, which would predispose individuals toward developing PUD (data not 

shown). Thus, if KIR3DL3*080 predisposes an individual toward PUD, it likely does so through an alternative 

mechanism. Significant correlations with ICD10 diagnosis codes in Black and Asian populations were not 

observed, likely owing to the lower statistical power these smaller populations had. 
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Additionally, we explored correlations between KIR alleles with population frequency >1% and other clinical 

correlates besides ICD10 codes. When examining correlations with age of onset of several chronic diseases 

and conditions, we discovered that KIR3DL2*107 was highly correlated with early age of onset of hay fever, 

rhinitis, or eczema in Caucasian individuals. Whereas individuals without KIR3DL2*107 had an average age of 

onset of 24.7 years, those with at least one copy of KIR3DL2*107 had an average age of onset of 22.4 years 

(two-sided Mann-Whitney test, FDR=0.0751; Figure 5c). Moreover, an alternative allele of KIR3DL2, 

KIR3DL2*062, was weakly associated with an increase in age of onset of hay fever, rhinitis, or eczema from 

24.5 years to 27.0 years (Mann-Whitney FDR=0.244; Figure 5d). Later onset of these conditions was 

particularly pronounced in individuals with two copies of KIR3DL2*062 (average age of onset of 27.6 years). 

Together, these results suggest that polymorphisms in KIR3DL2 may play a key role in determining the age of 

onset of hay fever, rhinitis, and/or eczema. 

 

Moreover, hay fever and eczema, in conjunction with allergic asthma, more broadly represent manifestations of 

atopy, the genetic predilection to trigger IgE-mediated (Type I) hypersensitivity reactions following allergen 

exposure with increased TH2-driven responses.[22] Thus, we next attempted to generalize this association to 

encompass atopy more broadly by examining KIR3DL2*107 and KIR3DL2*062’s associations with age of 

onset of either asthma or hay fever, rhinitis, or eczema, using the age of onset of whichever condition occurred 

earliest in life for each individual. We observed the same association: individuals with at least one copy of 

KIR3DL2*107 had an average age of onset of 15.9 years, whereas those without any copies of KIR3DL2*107 

had an average age of onset of 19.0 years (Mann-Whitney p=0.012; Figure 5e). Simultaneously, individuals 

with at least one copy of KIR3DL2*062 (22.5 years), and particularly those with two copies of KIR3DL2*062 

(23.1 years), had later onsets of atopic reactions than those without KIR3DL2*062 (18.7 years; Mann-Whitney 

p=0.019; Figure 5f). Together, these findings suggest a potential biological mechanism either delaying or 

hastening onset of atopic reactions like hay fever, eczema, or asthma that involves KIR3DL2, and the 

KIR3DL2*107 and KIR3DL2*062 alleles in particular. In addition to atopic reactions, we also observed 

significant associations of KIR alleles with other clinical correlates, including dental and oral health, quantitative 

blood analysis, and waist circumference, suggesting potentially broad impact of natural killer functions in 

affecting diverse human traits (Supplementary Figure 4). 
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Finally, to further explore the effects of KIR3DL2 polymorphism on age of atopy onset, we posited that each of 

the two aforementioned KIR3DL2 alleles follows either a dominant, semi-dominant, or recessive model of 

expression and then sought to determine which of these three models best explains the effect of KIR3DL2 

genotype on age of atopy onset. In the recessive model, only a genotype homozygous for the KIR3DL2 allele 

in question contributes to a change in age of atopy onset from baseline. In contrast, in the dominant model, 

genotypes either homozygous or heterozygous for the KIR3DL2 allele in question contribute to changes in 

baseline age of atopy onset. Finally, in the semi-dominant model, homozygotes for the KIR3DL2 allele in 

question are twice as potent as corresponding heterozygotes in changing age of atopy onset from baseline. 

When assessed against each other using the UK Biobank data, the dominant model outperformed semi-

dominant and recessive models of expression for KIR3DL2*107, as measured by the Bayesian information 

criterion (-10.8145 versus -10.8151 and -10.8172 respectively). Meanwhile, expression patterns of 

KIR3DL2*062 instead favored the recessive model over the semi-dominant and dominant models of 

expression for KIR3DL2*062, as measured by the Bayesian information criterion (-10.8138 versus -10.8141 

and -10.8146 respectively). In summary, our analysis indicated that KIR3DL2*107 may “override” other alleles 

and thus present with a dominant phenotype, whereas KIR3DL2*062 may be weaker than other KIR3DL2 

alleles and thus present with a recessive phenotype. 

 

 

4 Discussion 

The fifteen KIR genes represent a polymorphic set of immune modulators with an array of potential effects on 

immune and clinical phenotypes. In this manuscript, we have developed, characterized, and implemented our 

algorithm KIRCLE, uncovering multiple correlations between KIR alleles and other features in TCGA and UK 

Biobank. 

 

4.1 KIR Alleles Associated with HLA Alleles 

Class I HLAs represent well-known binding partners of KIRs. Thus, any change in either the KIR binding site or 

the HLA binding site that alters their affinities to each other may be expected to modulate NK cell activation or 
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inhibition. However, as both HLA and KIR loci are highly polymorphic, it has historically been challenging to 

determine their matches through low-throughput experimental approaches or through small-scale 

computational analyses. By using KIRCLE and a large cohort of UK Biobank data, we were able to observe 

statistically significant interacting KIR and HLA allele pairs, which were previously unknown. Specifically, we 

observed many KIR alleles to be more frequently expressed in individuals who also possess particular HLA 

alleles, which might be indicative of selective pressures for these receptors to co-evolve to maintain 

appropriate levels of NK cell activity.  

 

However, in addition to observing differences in KIR allele frequencies among those with different HLA alleles, 

we also observed differences in KIR allele frequencies among different ethnic populations, which are already 

known to possess different HLA allele frequencies.[23] While this combination of observations may reflect 

common selective pressures that were historically experienced by these ethnic populations which then may 

have forced KIR and HLA alleles to co-evolve, they also pointed to ethnic stratification as a potential 

confounding factor in our purely correlative study. However, when we removed this potential confounder by 

examining only Caucasian individuals in UK Biobank, we observed that HLA-C*17 and HLA-B*41 are found at 

lower frequency in individuals with KIR2DS4*016 and KIR2DL4*011, two KIR alleles with known activating 

activity, than in those without. We posit that this “anti-correlation” may represent evidence of an intolerance or 

aversion toward potentially lethal NK cell hyperactivity. Thus, individuals with these particular KIR-HLA allele 

combinations may be underrepresented due to over-activation of NK cells. 

 

4.2 KIR Allele Associations with Peptic Ulcer Disease and Atopic Reactions 

Previous genome-wide association studies of PUD have largely been performed in East Asian populations and 

did not uncover any associations between KIR polymorphism and either PUD or H. pylori infection.[24, 25] 

However, NK cells are known to be present in the gastric and duodenal mucosa and have been shown to be 

directly activated by H. pylori bacteria to produce IFN-Q and trigger an immune response.[26] Our result builds 

upon these existing known interactions and suggests that the KIR3DL3*080 may increase susceptibility to PUD 

through modulating NK cells’ natural response to H. pylori. 
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Furthermore, we uncovered a potential association between age of presentation of atopy and two different 

variants of KIR3DL2: KIR3DL2*107 and KIR3DL2*062. At least one copy of one of these two variants is 

present in 7.89% of the Caucasian population in UK Biobank. Indeed evidence exists for NK cells’ involvement 

in atopic and autoimmune diseases of the skin (i.e. eczema), even if the details of this involvement remain 

unclear, [27] and increasing support has been seen for their role in allergen-specific immune suppression, Th1 

cell generation, and Ig production. [28] Our finding that KIR3DL2*107 hastens presentation of atopy and that 

KIR3DL2*062 delays it potentially further points to a role specifically for KIR3DL2 in regulating NK cell activity 

as it contributes to these diseases. One possible explanation for the opposite directions of impact on age of 

onset is that KIR3DL2*107 is stronger than other alleles and thus presents with a dominant phenotype, 

whereas KIR3DL2*062 is weaker than others and thus results in a recessive phenotype. As preliminary 

evidence supporting this explanation, we demonstrated that a dominant model of expression best fits 

KIR3DL2*107, while a recessive model of expression best fits KIR3DL2*062. Nonetheless, future cohorts with 

larger sample sizes will be required to test this hypothesis further. 

 

4.3 Limitations and Future Directions 

While we were able to use biological replicates in TCGA to benchmark the accuracy of KIRCLE and compare 

our population-level estimates of KIR allele frequencies to prior estimates of KIR allele frequencies as reported 

by the US NMDP to validate our KIR genotype predictions, we were unable to carry out any experimental 

validation to benchmark its accuracy more directly. Additionally, after generating KIR genotype predictions, our 

downstream correlations all represented univariate analyses, due to the relatively low abundance of individual 

KIR alleles. While such a simplistic analysis is suitable for a first-pass search for potential direct associations, 

more nuanced future analyses of clinical associations with KIR alleles will need to account for confounding 

factors beyond human genetics to determine individuals’ susceptibility to diseases, including individuals’ living 

or occupational environments, full medical histories, lifestyles, and much more. Such analyses will likely 

become available with sufficient statistical power when UK Biobank fulfills its mission to sequence all 500,000 

individuals. Furthermore, Caucasian individuals are heavily over-represented in both the TCGA and UK 

Biobank cohorts, and thus our downstream analyses have largely been suitably powered to investigate only 

those KIR alleles that are well represented among Caucasians. Future studies will be needed to use more 
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racially diverse cohorts to analyze KIR alleles that are more frequently represented in other ethnicities. Finally, 

as mentioned at the outset, NK cell activity is modulated by a number of factors outside of individual KIR genes 

polymorphism, including the subset of HLA-Is they recognize, the distinct combinations of genes that constitute 

the individual’s KIR haplotype, and stochasticity in KIR expression on the surface of individual NK cells. 

Indeed, over 40 distinct KIR haplotypes, each composed of at least seven KIR genes, have been documented 

in the human population.[29] Variation of any of these additional factors may further affect NK cell function and 

ideally would be explored in conjunction with KIR polymorphism at the individual gene level in future studies. 

 

In conclusion, our work has generated KIR allele predictions for TCGA and UK Biobank that will be invaluable 

for future studies of NK cells in these populations, uncovered multiple novel associations between KIR gene 

variants and clinical and molecular features, and has paved the way for future investigation into the role of 

KIRs in immunologic response and human disease. We hope that our algorithm can serve as a benchmark for 

future algorithms that will perform KIR genotyping, and that others may use our algorithm to better understand 

the immunologic and pathologic processes surrounding KIR genes. 

 

 

5 Conclusions 

We have developed KIRCLE, a first-of-its-kind fully automated computational pipeline for the inference of 

germline variants of the highly polymorphic killer-cell immunoglobulin-like receptor (KIR) genes from whole 

exome sequencing data. We demonstrate the utility of such an algorithm by using KIRCLE to infer germline 

KIR variants in approximately sixty-thousand individuals in The Cancer Genome Atlas and UK Biobank and 

then discover novel molecular and clinical correlations with these variants. This work represents the first large-

scale genetic analysis to elucidate immunologic and pathologic associations with human natural killer cells and 

will serve as a valuable resource for future investigations into the immunogenomics and disease processes 

involving KIRs. 

 

 

6 Availability and Requirements 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2021. ; https://doi.org/10.1101/2021.09.02.458787doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.02.458787
http://creativecommons.org/licenses/by-nc-nd/4.0/


  19

     Project name: KIRCLE 

     Project home page: https://github.com/gaog94/KIRCLE 

     Operating system(s): Platform independent 

     Programming language: Python3 

     Other requirements: Anaconda, samtools 1.3.1, and Nucleotide BLAST v2.8.1+ 

     License: MIT 

     Any restrictions to use by non-academics: None. 

 

 

7 List of Abbreviations 

NK – Natural Killer 

KIR – Killer Immunoglobulin Receptor 

HLA – Human Leukocyte Antigen 

NGS – Next Generation Sequencing 

KIRCLE – KIR CaLling by Exomes 

WES – Whole Exome Sequencing 

TCGA – The Cancer Genome Atlas 

NMDP - National Marrow Donor Program 

FDR – False Discovery Rate 

t-SNE – t-distributed Stochastic Neighbor Embedding 

ICD10 – International Statistical Classification of Diseases 10 

PUD – Peptic Ulcer Disease 
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10 Figures Legends 

Figure 1. Description of the KIRCLE Methodology. (a) Flowchart describing the 4 steps of the KIRCLE 

algorithm as it processes a single KIR gene (KIR2DL1 as an example here). Inputs are green, computations 

are blue, and outputs are gold. KIRCLE hyperparameters are listed in parentheses where they are 

implemented. (b) Depiction of step 4 of KIRCLE (thresholding). Allele probabilities generated by expectation-

maximization may lead to a homozygous solution, a heterozygous solution, or no solution at all, depending on 

the selected value of the threshold hyperparameter t. (c) Depiction of one step of expectation-maximization. 

The initial allele-read matrix 0�� is collapsed into an expectation vector 3��  that is used to compute the next 

iteration of the matrix 0��. This process is repeated until the convergence criterion is satisfied, at which point 

the final expectation vector represents an estimate of KIR allele probabilities.  

 

Figure 2. KIRCLE Accuracy and Consistency Validation. (a) Contour plot demonstrating the effect of varying 

the bootstrap-proportion (p) and threshold (t) hyperparameters on KIR2DL1 allele inference, as measured by 

empirical calculation of the inferred genotypes’ entropy. (b) KIRCLE’s performance on KIR2DL4 allele 

inference was similarly characterized. (c) Fraction of each KIR gene’s KIRCLE-inferred allele genotypes that 

were called identically between 531 samples and their biological replicates in TCGA. (d) TCGA sample 

coverages (binned) versus TCGA sample allele probability entropies for all 15 KIR genes. The allele probability 

entropies of a set of 20 “pseudo-BAMs” (green) are presented as negative controls. 

 

Figure 3. KIR Allele Distributions in UK Biobank and TCGA. (a) Non-linear correlations between KIR allele 

frequencies in TCGA versus those in UK Biobank, stratified by KIR gene. (b) Comparison of allele frequency 

ranks between TCGA and UK Biobank. (c) KIR2DL4 allele frequencies in TCGA (left), UK Biobank (center), 

and US NMDP (right). (d) t-SNE plot of individuals in TCGA colored by participants’ ethnicities. Caucasian 

individuals were down-sampled by a factor of 16 for ease of visualization. (e) t-SNE plot of UK Biobank 

individuals colored by ethnicity. Caucasian individuals again were down-sampled by a factor of 16 for ease of 

visualization. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2021. ; https://doi.org/10.1101/2021.09.02.458787doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.02.458787
http://creativecommons.org/licenses/by-nc-nd/4.0/


  26

Figure 4. KIR Allele Associations with HLA Alleles. (a) Bar plot depicting and listing KIR alleles that significantly 

associated with HLA alleles at the FDR < 1e-10 level. (b) Volcano plot of KIR allele correlations with HLA 

alleles in UK Biobank. Associations are color-coded by the activity (inhibitory or activating) of the KIR allele. (c) 

Presence of at least 1 copy of HLA-A74 positively correlates with presence of at least 1 copy of KIR3DL3*005 

(left) and presence of at least 1 copy of HLA-A36 negatively correlates with presence of at least 1 copy of 

KIR2DL3*002. (d) KIR t-SNE of UK Biobank individuals with those possessing HLA-B*42 highlighted in red. (e) 

Volcano plot of KIR allele correlations with HLA alleles among Caucasians in UK Biobank. 

 

Figure 5. KIR Allele Associations with Clinical Correlates. (a) QQ-plot of KIR allele correlations with ICD10 

diagnosis codes in UK Biobank among Caucasian individuals. (b) Odds of developing peptic ulcer disease is 

increased among those with the KIR3DL3*080 phenotype. (c) Bar plot showing decreased mean age of hay 

fever, rhinitis, or eczema in those with at least one copy of KIR3DL2*107. (d) Bar plot showing increased mean 

age of hay fever, rhinitis, or eczema in those homozygous for KIR3DL2*062. (e) Bar plot showing decreased 

mean age of atopy in those with at least one copy of KIR3DL2*107. (f) Bar plot showing increased mean age 

of atopy in those homozygous for KIR3DL2*062. 

 

Supplementary Figure S1. Validation of KIRCLE’s Consistency. Contour plots demonstrating the effect of 

varying p and t on consistency of genotype calling, as quantified by entropy, for (a) KIR2DL2; (b) KIR2DL3, 

KIR2DL5B, KIR2DS2, & KIR3DS1; (c) KIR2DL5A; (d) KIR2DS1; (e) KIR2DS3; (f) KIR2DS4; (g) KIR2DS5; (h) 

KIR3DL1; (i) KIR3DL2; (j) and KIR3DL3. 

 

Supplementary Figure S2. Validation of KIRCLE’s Accuracy. 

(a) Confusion matrix depicting KIRCLE’s consistency in KIR genotype inference between 531 samples and 

their biological replicates in TCGA. (b) Average entropy versus average depth of coverage in TCGA for each 

KIR gene. (c) Comparison of allele frequency ranks among the 9 KIR3DL2 alleles observed in the US NMDP 

with their frequency ranks in TCGA (left) and UK Biobank (right). 
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Supplementary Figure S3. KIR Correlations with Molecular Markers. (a) Heatmap of the log2-odds-ratios of 

KIR allele correlations with HLA alleles in UK Biobank. Correlations with Fisher’s Exact FDR > 0.25 were 

masked. (b) Volcano plot of KIR allele correlations with HLA alleles in TCGA. (c) Heatmap of log2-median-fold-

changes in tumor immune infiltrate composition estimates stratified by KIR alleles in TCGA. Mann-Whitney-U 

FDR > 0.25 correlations were masked. (d) Volcano plot of KIR allele correlations with differences in tumor 

immune infiltrate composition in TCGA. (e) Heatmap of log2-median-fold-changes in other immune-related 

molecular signatures and markers stratified by KIR alleles in TCGA. Mann-Whitney-U FDR > 0.25 correlations 

were masked. (f) Volcano plot of KIR allele correlations with differences in other immune-related molecular 

signatures and markers as measured and characterized in TCGA. 

 

Supplementary Figure S4. KIR Correlations with Other Clinical Variables in UK Biobank. (a) Increased 

likelihood of loose teeth was observed among individuals possessing at least one copy of the KIR3DL3*002 

allele compared to those without it. (b) Quantitative blood analysis of individuals homozygous for KIR3DL2*010 

revealed Increased reticulocyte percentage compared to those without the allele. (c) Decreased waist 

circumference was observed in individuals possessing at least one copy of KIR2DL3*010. (d) Lower age of 

cancer diagnosis was observed among KIR2DS3*002 heterozygotes. (e) Lower age of Chronic Obstructive 

Pulmonary Disease (COPD) diagnosis was observed among KIR3DL2*008 heterozygotes. (f) Increased 

duration of sleep was observed in individuals possessing at least one copy of KIR2DL4*032. 
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