ABSTRACT
Background The role of Numb, a protein that is important for cell fate and development was investigated in adult skeletal muscle in mice using a conditional, inducible knockout (cKO) model.
Methods Numb expression was evaluated by Western blot. Numb localization was determined by confocal microscopy. The effects of cKO of Numb and the closely-related gene Numb-like in skeletal muscle fibers was evaluated by in-situ physiology; transmission and focused ion beam scanning electron microscopy; 3-dimensional reconstruction of mitochondrial; lipidomics; and bulk RNA-sequencing. Additional studies using primary mouse myotubes investigated the effects the effects of Numb knockdown on cell fusion, mitochondrial function and calcium transients.
Results Numb protein expression was reduced by ∼70% (p < 0.01) at 24 as compared to 3 months of age. Numb was localized within muscle fibers as bands traversing fibers at regularly spaced intervals in close proximity to dihydropyridine receptors.
The cKO of Numb and Numb-like reduced specific tetanic force by 36%, p < 0.01), altered mitochondrial spatial relationships to sarcomeric structures, increased Z-line spacing by 30% (p < 0.0001), perturbed sarcoplasmic reticulum organization and reduced mitochondrial volume by over 80% (p < 0.01). Only six genes were differentially expressed in cKO mice: Itga4, Sema7a, Irgm2, Vezf1, Mib1 and Tmem132a. Several lipid mediators derived from polyunsaturated fatty acid (PUFAs) through lipoxygenases were upregulated in Numb cKO skeletal muscle; 12-HEPE was increased by ∼250% (p < 0.05) and 17,18-EpETE by ∼240% (p < 0.05). In mouse primary myotubes, Numb knock-down reduced cell fusion (∼20%, p < 0.01) and mitochondrial function and delayed the caffeine-induced rise in cytosolic calcium concentrations by more than 100% (p < 0.01).
Conclusions These findings implicate Numb as a critical factor in skeletal muscle structure and function which appear to be critical for calcium release; we therefore speculate Numb plays critical roles in excitation-contraction coupling, one of the putative targets of aged skeletal muscles. These findings provide new insights into the molecular underpinnings of the loss of muscle function observed with sarcopenia.
Competing Interest Statement
The authors have declared no competing interest.