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Abstract 
Open vegetation today constitutes one of the most extensive biomes on earth, including 
temperate grasslands and tropical savannas. Yet these biomes originated relatively 
recently in earth history, likely replacing forested habitats as recently as the second half 
of the Cenozoic, although the timing of their origination and the dynamics of their 
expansion remain uncertain. Here, we present a new hypothesis of paleovegetation 
change in North America, showing that open habitats originated between 25 and 20 Ma 
in the center of the continent, and expanded rapidly starting 8 Ma to eventually become 
the most prominent vegetation type today. To obtain space-time predictions of 
paleovegetation, we developed a new Bayesian deep learning model that utilizes 
available information from fossil evidence, geologic models, and paleoclimate proxies. 
We compiled a large dataset of paleovegetation reconstructions from the peer-reviewed 
literature, which we used in combination with current vegetation data to train the model. 
The model learns to predict vegetation based on the learned associations between the 
vegetation at a given site and multiple biotic and abiotic predictors: fossil mammal 
occurrences, plant macrofossils, estimates of temperature and precipitation, latitude, and 
the effects of spatial and temporal autocorrelation. Our results provide a new, spatially 
detailed reconstruction of habitat evolution in North America and our deep learning model 
paves the way for a new quantitative approach to estimating paleovegetation changes. 
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Introduction 
The different types of vegetation and their spatial distribution form the biotic landscape 
on which other species, including all terrestrial animals, interact and evolve. From 
reconstructions of past vegetation (paleovegetation) at different sites, we know that 
vegetation evolves and changes dynamically through time as it responds to 
environmental alternations, such as changes in climate 1,2, interaction with faunal 
communities 3, and large biological events such as mass extinctions 4. 

Several major vegetation changes are documented in the fossil record, including the shift 
from ecosystems dominated by free-sporing plants to seed plants 5 and the radiation and 
ecological expansion of angiosperms 4,6,7, which today dominate most terrestrial biomes. 
The most important vegetation change in the Cenozoic is arguably the origination and 
expansion of open, grass-dominated habitats 8 at the expense of closed forest 
ecosystems 9. Open grasslands today represent the most extensive terrestrial biome on 
Earth, covering over 40% of the Earth’s land surface 10. The oldest confirmed presence 
of open-habitat grasses in North America dates back to the Late Eocene, yet the fossil 
record indicates that these were rare elements of the vegetation and at the time did not 
constitute sizable open ecosystems 9,11. Based on the currently available paleobotanical 
evidence it is likely that open grass-dominated habitats first appeared as a novel biome 
comparably recently in the Late Oligocene to Early Miocene 8,12, yet the dynamics of their 
expansion are still poorly understood and much debated (e.g., see 9). 

Previous studies have produced paleovegetation reconstructions for individual sites 
based on the evaluation of i) plant macrofossil assemblages (i.e., fossilized leaves, seeds, 
wood, or other plant organs); ii) fossilized pollen; or iii) phytoliths —microscopic silica 
bodies produced in plant cells with a high fossilization potential and unique shapes, which 
can be attributed to specific vegetation components 13. While such reconstructions can 
provide an accurate record of the vegetation at a given site, extrapolating these 
reconstructions to larger geographic scales and through time is hampered by the sparsity 
of fossil sites and the incompleteness of the record. Such extrapolations can be done 
based on expert opinion under consideration of paleoclimatic models and other 
information 14–16, at the cost of reduced reproducibility and limited scalability. 

Most modeling studies that are aiming to infer past or future vegetation have been based 
on climate models and predefined tolerance limits for certain biome types 17,18. However, 
additional types of data hold great potential for such modeling approaches, such as the 
associations between the faunal fossil record with the surrounding vegetation. For 
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example, the relationship between grassland biomes and large grazing mammals, often 
identifiable by their hypsodont teeth, has long been used to infer presence of grasslands 
19,20 (but see Dunn et al. 21). Such information about plant-mammal interactions is 
commonly used to manually infer the paleovegetation at individual fossil sites 9, and 
sometimes mammal fossil assemblages are used to validate and correct vegetation 
predictions made from climate-based models 18. 

Mammal fossils are a useful data type because of their relatively rich record. Further, 
mammals are one of the paleontologically best studied groups with a relatively well-
resolved fossil taxonomy, often allowing for precise identifications of fossil mammals 
down to genus or even species level. Many of these mammal fossil data are publicly 
available through large online databases (e.g., Alroy et al. 22). Yet, to our knowledge, no 
computational models exist that explicitly utilize this information to predict vegetation. This 
is partly because for most taxa, the habitat associations are difficult to establish with 
confidence, particularly so for extinct taxa, and ambiguous for many mammal taxa that 
are not restricted to a single vegetation type. 

To seize the opportunities outlined above and improve the reconstruction of past 
environments, we present here a Bayesian deep neural network (BNN) model that utilizes 
the available information on mammal fossils, plant macrofossils, modeled paleoclimate 
data, as well as spatial and temporal associations to predict vegetation. Importantly, our 
model does not require any prior assumptions on temperature tolerance limits or 
ecological interactions. Instead, it learns how these biotic and abiotic features can be 
mapped to a vegetation type within a supervised learning framework. This property 
provides great flexibility, as any available biotic or abiotic predictor can be added to the 
model, while the model decides based on the data whether this predictor is deemed useful 
for the vegetation inference. Once trained, the model estimates the most likely vegetation 
for any given point in time and space, and the uncertainty associated with the prediction. 
We demonstrate the utility of our methodology by modeling past vegetation changes in 
North America throughout the last 30 million years (Ma), focusing on the expansion of 
open, grass-dominated habitats. 
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Results 

Model description 
We implement a BNN model to predict vegetation through space and time (Fig.1, see 
Methods for a more detailed description). We focus on two vegetation types “open 
vegetation” (open grasslands, savannas and steppes, desert vegetation, and tundra) and 
“closed vegetation” (forests); additional categories could be implemented for other 
systems if sufficient data are available for training. As features for this classification task 
we use biotic data, consisting of fossil occurrences of 100 selected mammal and plant 
taxa (see Methods), supplemented by current occurrences of these taxa. Further, we use 
several abiotic features including proxies for climatic data (mean annual temperature and 
precipitation) through space and time 23, paleocoordinates 24, and mean global 
temperature from oxygen isotope data 25. 

Our deep neural network consists of two pre-processing layers, where distances derived 
from the raw mammal and plant fossil occurrence data (Fig. 1A) are transformed into 
taxon-specific features (Fig. 1B, see “Feature generation” in Methods section for a more 
detailed explanation). These features comprise the input data for the fully connected 
classification layers of our BNN model, which quantify the probability of each vegetation 
type (Fig. 1C). Through this setup the model is trained to infer the vegetation type based 
on the measured distances to nearby taxon occurrences, in combination with the 
additional climatic and geographic features. 

Predicting past vegetation 
To train our BNN vegetation classifier, we compiled a total of 331 paleovegetation 
reconstructions based on phytolith and pollen assemblages, paleosol data and 
macrofossils from the peer-reviewed literature (see Methods), ranging in age from the 
beginning of the Oligocene (33.9 Mya) to the present (Supplementary Fig. S2). To further 
increase the number of training data, we supplemented the paleovegetation data with 
data about current vegetation. Since current vegetation patterns are heavily influenced 
by human activity, we retrieved the SYNMAP Global Potential Vegetation data, 
representing the potential vegetation without human land alterations 26. To find the model 
configuration that produced the best paleovegetation prediction accuracy, we tested a 
range of different model architectures, as well as different combinations of input data 
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(Table 1). We applied a five-fold cross validation approach to the paleovegetation data 
when training each model; in this approach each model is trained five times on a different 
80% of the input data, while using the remaining 20% as a test set. This allows to 
determine the overall prediction accuracy of the model by averaging the number of 
correctly predicted test set labels across all 5 test sets, comprising all available data. We 
calculated the prediction accuracy separately for paleovegetation and current vegetation, 
as well as a combined weighted mean of the two (Table 1, Supplementary Fig. S1, see 
Methods for more information). 

 
Figure 1: The process of feature generation and the BNN model architecture applied in this study. (A) For 
a given point defined by its longitude (Lon), latitude (Lat), and age, here highlighted in red, we extract the 
spatial distance to the closest occurrence of each taxon. This is repeated for each geological stage (n=17), 
while also extracting the temporal distance between the given point and the mid age of each geological 
stage. (B) These spatial and temporal distances are the input of the first two hidden layers in our BNN for 
feature generation. The BNN estimates weights (red and blue lines) to reduce the multitude of spatial and 
temporal distance measurements into one single “proximity” value for each taxon (taxon nodes). (C) These 
taxon features (biotic features) are then used in combination with abiotic features, reflecting climatic, 
geographic, and temporal variables, as input into the fully connected BNN classifier. During training the 
weights (black lines connecting nodes) of the feature generation layers and of the BNN classifier are 
estimated through MCMC sampling to optimally map the input data to the correct output vegetation label 
(“open” or “closed”). Once trained, a posterior sample of the weights is stored for each model and is used 
to make vegetation predictions for points with unknown vegetation. 

The best model (#2, Table 1) reached a prediction accuracy of 89.2% (89.4% paleo, 
87.2% current). The model included only the biotic features (taxon distances) and its 
architecture consisted of two layers containing 32 and 8 nodes, and no feature pooling 
(see Methods for more details). The prediction accuracy can be further improved by 
applying a posterior probability (PP) threshold to the class predictions, only making 
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vegetation inferences for predictions that exceed this threshold (see Supplementary 
Results for more details). The higher the PP threshold is set, the higher test accuracies 
can be reached, at the cost of an increasing number of test instances being predicted as 
“unknown”, as they fall below the threshold (Fig. 2). Here, we determine a PP threshold 
for each of our trained models to ensure a minimum test accuracy of 90%. For the best 
model, a PP threshold of 0.57 was sufficient to reach an expected target accuracy of 
>90%, while still making vegetation inferences for 97% of the test set (Table 1). 

Table 1. Prediction accuracy of tested model configurations. The overall accuracy of each model constitutes 
the weighted mean between the paleovegetation accuracy (weighing-factor 10) and the current vegetation 
accuracy (weighing-factor 1). This weighing was applied because the paleovegetation data were distributed 
across 10 geological stages, while the current accuracy only represents one single stage. The selected 
posterior probability (PP) threshold was chosen to reach a minimum prediction accuracy of 90% on the 
weighted test set. For some models this accuracy aim could not be achieved; in these cases, the posterior 
threshold was set to 1, leading to all vegetation predictions to be labeled as ‘unknown’, when applying this 
threshold. 

 

Using the best of our trained models, we produced vegetation estimates for North 
America throughout the last 30 Mya in 1 Mya increments. To further improve the model 
for predicting past vegetation, we retrained it using all available paleovegetation points, 
including those 20% that were previously used for model evaluation. The final model was 
trained on all 331 paleovegetation points and 281 current vegetation points. To produce 
the data for the prediction task, we calculated the cell center coordinates of all land cells 
in a 0.5° x 0.5° grid across the majority of the North American continent, which we defined 
by a cropping window with corner points P1 (Lon = -180, Lat = 25) and P2 (Lon = -52, Lat 
= 80). We accounted for tectonic movements, transforming the grid-cell center 
coordinates into their equivalent paleocoordinates, using the "PALEOMAP" model of the 
mapast R-package 24. From the grid-cell center coordinates, we extracted the taxon 
occurrence distances for feature generation, as well as all additional abiotic features, in 
the same manner as for the training and test data (Fig. 1). 
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Figure 2. Vegetation predictions for North America throughout the last 30 Mya. The predictions are based 
on the best model resulting from our model evaluation and sensitivity tests (#2, Table 1). Panel A shows 
the posterior probability (PP) estimates for open habitat, where a PP of > 0.95 (yellow) indicates strong 
evidence for open habitat, whereas a PP of < 0.05 (green) indicates strong evidence for closed habitat. 
Panels B and C show categorical vegetation class predictions for our vegetation classes “open” (yellow) 
and “closed” (green). The class predictions are based on a PP threshold ensuring 90% prediction accuracy 
(B), and 95% prediction accuracy (C), respectively. The higher the applied PP threshold, the more sites will 
be classified as “unknown” (grey).  

Our inferred paleovegetation maps suggest that small pockets of open habitats may have 
already existed in North America around the end of the Oligocene epoch (25 Mya, Fig. 
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2), but these only constituted a small fraction of the total vegetation (<10%, Fig. 3). Open 
habitats stayed constant (<20% of total vegetation cover) or expanded slowly throughout 
most of the predicted time frame. Only toward the late Miocene at about 8 Mya did open 
habitats begin to increase rapidly, at present making up >60% of the North American 
natural vegetation (estimated in the absence of anthropogenic impact; Fig. 3). These 
patterns of open habitat expansion are predicted consistently across different models 
tested (Fig. 3). 

 
Figure 3. Proportion of predicted open habitat through time, across all terrestrial cells, for the three best 
models (#2, #1, and #9) resulting from our model testing (Table 1). Fractions are calculated as the 
proportion of all terrestrial cells. The solid line shows the mean estimates of open habitat fraction across all 
posterior samples, while the shaded area shows the 95% HPD interval. All displayed models show overall 
similar patterns (ignoring minor fluctuations) of open habitat expansion in North America, with open habitats 
existing at low frequency (<20%) until their continuous expansion starting approximately 8 Mya. 

To determine to what degree the mammal taxa (genera) used in this study are associated 
with either open or closed vegetation, we evaluated for each taxon the fraction of 
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occurrences that fall within each vegetation type, based on the vegetation predictions 
made by our best model. The open habitat specialist mammal genera identified by our 
predictions are Cynomys, Onychomys, Ochotona, Perognathus, Zapus, and Brachyerix, 
which all have more than 75% of their occurrences through time inside of grid cells with 
inferred open vegetation (Supplementary Table 1). On the other hand, we identified 
Dasypus, Lontra, Panthera, Eumops, Sylvilagus, Erethizon, and Gompotherium as the 
most specialized closed vegetation mammal genera (>75% closed vegetation 
occurrences). This demonstrates one utility of our model, as it allows us to estimate 
mammal-vegetation associations from the predictions made by the trained model, rather 
than having to define these a-priori. 

Sensitivity tests 
We tested whether the prediction accuracy of our models improves by supplementing the 
paleovegetation data with current vegetation data when training the model. We found that 
in fact the prediction accuracy for both, paleovegetation and for current vegetation, 
increases when adding small numbers (n=281, Supplementary Fig. S3) of current 
vegetation datapoints during model training (see model #1 vs. #12, Table 1). The 
prediction accuracy for current vegetation further improves when adding increasing 
numbers of current vegetation instances (n=1,405, Supplementary Fig. S3), yet at the 
same time the prediction accuracy for paleovegetation starts to decline (model #1 vs. #13, 
Table 1). This indicates that our model utilizes some of the information that is gained from 
adding current vegetation information during training, but that it overfits toward the 
present when the number of current vegetation instances exceeds the number of 
paleovegetation instances by a multitude (factor 5 or higher). 

Further, we tested whether the addition of biotic features (taxon distances) improved the 
prediction accuracy, compared to models using only abiotic features, such as those used 
in previous studies based primarily on climate 17,18. In fact, we find model #2, which only 
utilizes biotic features, to be the overall best model, outperforming the model only based 
on abiotic features (model #3), and even outperforming models based on both biotic and 
abiotic features by a small margin (model #1). Further analyses of feature importance 
show that indeed several of the biotic mammal features (taxa) stand out as the features 
with the highest impact on the prediction accuracy of the model (in particular the genera 
Castor and Mammut) and that abiotic features provide only a limited contribution toward 
the prediction accuracy (Fig. 4). This finding suggests that mammal and plant fossil 
occurrence data capture most of the relevant information to predict paleovegetation 
changes.  
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Finally, we tested different approaches of feature reduction by pooling the numerous 
biotic features (n=100) into one single faunal and one single floral feature (n=2), before 
feeding them into the fully connected BNN layers for classification (Fig. 1). This approach 
of pooling greatly reduces the number of weights that need to be estimated, leading to 
faster training and better convergence of the MCMC used to sample the BNN weights. 
While this did not lead to improvements in the prediction accuracy, these models 
generally performed equally well compared to the more complex models, allowing us to 
reach similar prediction accuracies with a substantially decreased number of parameters 
(model #6 vs. #1, Table 1). 

 
Figure 4. Impact of individual features on model prediction accuracy. The displayed delta-accuracy values 
for each feature reflect by how much the prediction accuracy of the trained model drops if the information 
content of a given feature was removed. This is accomplished by randomly shuffling the values of a given 
feature across all test set instances, and then subtracting the resulting prediction accuracy of this modified 
test set from that of the unmodified test set (permutation feature importance). Points show the mean delta-
accuracy of each feature across 100 randomly selected posterior BNN weight samples, while the error bars 
show the standard deviation. The first panel shows the delta-accuracy estimates for all 106 features, while 
the second panel shows only those features with a consistently positive feature importance across all 
posterior samples, representing the most important features for the trained model. 

Discussion 
Here we present a probabilistic reconstruction of paleovegetation and its evolution for 
North America, based on a deep learning model. This model paves the way for a 
universally applicable, full evidence approach, which utilizes raw geographic and 
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temporal distances to taxon occurrences, in conjunction with abiotic data such as climate 
and spatiotemporal coordinates. The spatial and temporal distances that are required as 
input can be easily calculated for any given point in space and time, independent of its 
vicinity to the nearest fossil record of a given taxon, which makes our model applicable to 
a wide range of geographic and temporal contexts. 

Our trained models predict the presence of comparably small pockets of open habitat at 
the beginning of the Oligocene-Miocene transition, existing at low frequencies until the 
end of the Miocene, when open habitats started increasing at a continuous pace to finally 
reach their present extent (Figs. 3 and 4). These model predictions support a scenario of 
comparably late spread of open grasslands across vast areas in North America. It can be 
compared to the two-stage model for grassland expansion in the Great Plains based on 
primarily phytolith data, whereby woodlands and mosaics of the Early-Middle Miocene 
were replaced by open grasslands in the Late Miocene 9,27—the major novelty here being 
that our study adds a high-resolution geographic and temporal dimension. 

Other proposed scenarios, based on the fossil pollen record and macrofossils, place the 
expansion of open habitats in North America much earlier, in the Middle Eocene, although 
these early open habitats were likely not grassland dominated 28. Similarly, 
paleovegetation reconstructions based on paleosols suggest the presence of open 
habitat grasslands already in the Late Eocene 29. While each of these previous 
reconstructions are based on a different type of paleovegetation data, our predictions are 
based on a general representation of the overall paleobotanical evidence, as they were 
trained on a mix of phytolith, pollen, macrofossil, and paleosol data (Supplementary Data 
S1), as well as current vegetation information. The results of our cross-validation 
approach reflect how well each model can learn from and re-predict the entirety of these 
input data; the fact that our best model reaches a prediction accuracy of >89% (Table 1), 
demonstrates that these heterogeneous data types can be meaningfully combined in a 
mixed evidence model. 

In this study we restricted the model to only two broad vegetation classes, “open” and 
“closed”, due to limited availability of paleovegetation data points for training. More 
concerted efforts are needed to produce and compile larger and more spatially complete 
paleovegetation datasets based on pollen, phytoliths, or macrofossil assemblages to 
ensure sufficient training data for more detailed inferences of paleovegetation. This would 
allow predicting more nuanced vegetation types, for example distinguishing between 
taiga, temperate and tropical forest, as well as between tundra, temperate grasslands, 
and tropical steppes. 
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Given the coarse temporal resolution due to the binning of our data into geological stages, 
the models trained in this study are not appropriate to infer the influence of short-term 
climatic fluctuations, such as recent glaciations and the corresponding vegetational 
changes 30. However, our deep learning method could be used with high-resolution 
temperature and precipitation data in combination with the detailed Quaternary fossil 
record, to predict recent vegetation changes at spatiotemporally finer scales. For 
example, such models could be applied to predict vegetational changes linked to the 
Quaternary glacial cycles and to the human expansion and megafauna extinction (e.g., 
31,32). Further, variations of the model developed here could also be applied to forecast 
future vegetational changes based on predictions of climate and other environmental 
factors. 

Methods 
Here we estimate vegetation patterns through time and space for North America. For this 
purpose, we develop and train a (BNN) model to learn the associations between sites 
with current or past vegetation information and nearby mammal and plant fossil 
occurrences, as well as associations with climatic and spatiotemporal factors. We then 
apply the trained BNN to estimate vegetation labels for spatial grids throughout the last 
30 Ma, to estimate vegetational changes in North America through time and trace the 
evolution of grass-dominated open habitats. 

Data 

Spatial and temporal range 

In this study we focused on a geographic area that is defined by a cropping window with 
the corner points P1 (Lon = -180, Lat = 25) and P2 (Lon = -52, Lat = 80), covering the 
majority of the North American continent (Figure 3). The temporal focus of this study 
encompasses the last 30 Ma, which is the time span containing the majority of our 
available sites with paleovegetation information (Figure S1). From the following data 
sources, we only selected those data points that fall within this spatiotemporal range. 

Our approach described below required discretizing the input data of past vegetation 
labels and fossil occurrences into time-bins. For this we chose the age boundaries of 
geological stages defined in the International Chronostratigraphic Chart, v2020/03 33, 
since these stages are expected to represent meaningful temporal units for analyzing 
both faunal and floral patterns. A total of 17 geological stages fell within our selected time 
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frame of the last 30 Ma. We discretized the ages of all data points (vegetation data and 
fossil occurrences) that fell within a given stage by setting them to the midpoint of the 
respective stage. 

Paleovegetation data 

We reviewed a large body of peer-reviewed literature containing paleovegetation 
reconstructions and compiled a database of 1,242 paleovegetation data points for North 
America (Supplementary Data S1). These data represent individual vegetation 
reconstructions based on fossil evidence (phytoliths, pollen, macrofossil assemblages). 
We condensed the vegetation interpretation of the compiled vegetation data, which in 
many cases described specific vegetation ecosystem components, into the broader labels 
"open" versus "closed" habitat. In several cases, we found multiple vegetation 
reconstructions for the same spatiotemporal site, for example when multiple sediment 
samples were taken from the same horizon of a given formation. We treated these 
spatiotemporal duplicates as a single data point, resulting in a total of 331 
spatiotemporally unique paleovegetation data points, of which 180 were labeled as 
"closed" and 151 as "open" (Supplementary Data S1). In the few cases (n=3) where both 
“open” and “closed” vegetation interpretations were present for the same spatiotemporal 
point, we selected one at random. 

Current vegetation data 

To supplement the limited number of paleovegetation sites, we compiled data about the 
current vegetation within our study area. In order to obtain current vegetation patterns, 
we downloaded the SYNMAP Global Potential Vegetation data 26. As for the 
paleovegetation data, we collapsed the more detailed biome data into broader categories 

by coding biome IDs < 37 as “closed” and biome IDs !"#$"%&"“open”. The resolution of 

the resulting raster was 0.5° longitude x 0.5° latitude, which equates to a spatial resolution 
of approximately 50 x 50 km grid cells (at the equator). We extracted all current vegetation 
grid cells that fell within our defined cropping window (Figure 3), excluding all sea water 
cells as well as large continental lakes. This resulted in 11,048 terrestrial grid cells with 
current vegetation information. For these grid cells we extracted the coordinates of the 
cell-center as well as the corresponding vegetation label. 

The compiled paleovegetation and current vegetation points constitute the pool of 
vegetation information from which we sampled subsets to train our model. From here on 
we refer to these data points as our training instances. We trained several BNN models, 
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using different combinations of the paleovegetation points (n = 331) and current 
vegetation points (n = 11,048). 

Fossil data 

We downloaded all available mammal fossil data from major public databases, namely 
the Paleobiology Database 22, the NOW (New and Old Worlds) database of fossil 
mammals 34, the Neotoma database 35, and the Miocene Mammal Mapping Project 36. 
We merged all downloaded fossil occurrences into one shared database and removed all 
entries that were not identified to species level, as well as all spatiotemporal duplicates. 
In several cases the fossil data downloaded from the major databases contained minor 
spelling inconsistencies in the genus names and species epithets. To correct these 
misspellings, which can lead to an overestimation of the number of genera and species 
in the dataset, we used the algorithm implemented in the PyRate package 37, which 
automatically identifies common typos in scientific names. Finally, we removed all aquatic 
families from the dataset (dugongs, pinnipeds, and whales). 

For each fossil occurrence we determined the mean age of the respective stratigraphic 
age interval. We reduced the taxonomic resolution of the mammal data to genus-level 
with the main purpose to reduce the number of taxa, while increasing the spatial and 
temporal extent of each taxon as well as to avoid taxonomic biases (such as over-splitting 
or lumping of species in different genera, depending on taxonomic authority). Both of 
these issues are expected to have a smaller impact on genus level compared to species 
level. To further reduce the number of taxa to only the most informative ones, we only 
kept genera that were present in more than half of the geological stages covered in this 
study, based on the first and last occurrence date of each genus in the fossil record 
(assumed presence in at least 9 of 17 stages). This resulted in 65 selected mammal 
genera (Supplementary Table S1). While the model can potentially handle any number 
of taxa, taxa with occurrences spanning multiple locations and time bins are expected to 
be most informative in our supervised learning approach.  

As an addition to the mammal fossil data, we compiled a large dataset of plant 
macrofossils from the Cenozoic Angiosperm database 38. Due to taxonomic 
inconsistencies of fossil plants on species and genus level, we decided to reduce the 
taxonomic resolution of the plant fossil data to family level. Similar to the mammal fossil 
data, we took the mean age of the stratigraphic age interval of each fossil occurrence and 
only selected plant families that were present in North America during at least 9 of the 17 
geological stages. This resulted in 35 selected plant families (Supplementary Table S1). 
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The final fossil data, consisting of the selected mammal and plant taxa (n=100), amounted 
to a total of 7,501 selected fossil occurrences (6,759 mammal and 742 plant fossils, 
Supplementary Data S2). 

Current occurrences 

To complement the occurrence data extracted from the fossil record, we extracted current 
occurrences for all selected taxa from the Global Biodiversity Information Facility (GBIF) 
39. For all mammal genera we downloaded the data through the R-package rgbif 40, only 
allowing human observations (as opposed to e.g. machine observations or fossil data) 
and restricting the search to North American occurrences (Canada, Mexico, or USA), 
using the following command: 

occ_search(taxonKey=taxon_id, return="data", hasCoordinate=TRUE, limit = 50000, 
country = c('US','CA','MX'), basisOfRecord = 'HUMAN_OBSERVATION') 

Due to the large data volumes for the selected plant families, which result in very long 
waiting times and occasional time-out errors when using the rgbif package, we instead 
downloaded the current occurrences of the selected plant families directly from the GBIF 
online interface (download DOI: https://doi.org/10.15468/dl.nxuyg8). This resulted in a 
total of 1,251,810 current occurrences for the selected extant mammal and plant taxa 
(103,813 mammal and 1,147,997 plant occurrences, Supplementary Data S2). Finally, all 
fossil and current occurrences of the selected taxa were merged into one data-frame and 
jointly treated as occurrence data, independently of the data origin as fossil or GBIF 
observation. For all further steps, we only selected those occurrences that fell within the 
cropping window defined as described above.  

Climatic data 

We downloaded global maps of modeled precipitation and temperature from Scotese et 
al. 23, with a spatial resolution of 1° longitude x 1° latitude. Because these data are only 
available in 5 Ma intervals, we linearly interpolated the values into 1 Ma year intervals to 
reach higher temporal resolution. Additionally, we downloaded estimates of mean global 
temperature that are based on oxygen isotope data 25. 

Feature generation 
An essential element of applying neural networks is the process of feature generation, 
which describes the transformation of the raw data into numerical features that can be 
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fed into the neural network. Each input data point, which is commonly referred to as an 
instance, consists of a list of associated feature values. In our case the training instances 
consist of specific points in space-time with available vegetation information, and the 
associated features contain the information about nearby occurrences of the selected 
taxa (biotic features), as well as other information about climate, geography, and time 
(abiotic features), in relation to the given point. 

Biotic features 

For a given instance (vegetation point), defined by its spatial and temporal coordinates, 
we extracted the geographic distance (Mercator distance) between this instance and the 
closest occurrence of each taxon, and we did so for each geological stage (Fig. 1). If a 
taxon was present in all stages, this resulted in 17 geographic distances extracted for this 
taxon, one for each stage. These spatial distances were calculated using the current 
coordinates (instead of the paleo-coordinates) of each point, assuming that the relative 
spatial distance between any two given points within North America is not affected (or 
negligibly so) by continental movements during the last 30 Ma, although their absolute 
coordinate values have changed through time. 

Additionally, we extracted the temporal distances between the selected taxon-
occurrences and the given vegetation point, by measuring the difference between the age 
of the training instance and the midpoint of the geological stage of a given taxon 
occurrence. This resulted in N pairs of geographic and temporal distances to each taxon, 
where N is the number of stages this taxon occurred in. We designed our BNN model to 
estimate parameters to summarize the spatial and temporal distances of the selected 
occurrences of each taxon into one taxon-specific feature value, representing a measure 
of general “proximity” of each taxon, which we explain in more detail below (Fig. 1). 

Abiotic features 

In addition to the biotic features, we extracted the temperature and precipitation 
associated with the space-time coordinates of a given instance. For this step we 
transformed the coordinates of each given vegetation label into the equivalent paleo-
coordinates at the time of the record, using the "PALEOMAP" model of the mapast R-
package 24. We extracted the modeled temperature and precipitation of these paleo-
coordinates from our rasterized climate data as two separate features. As an additional 
climatic feature, we extracted the mean global temperature at the given time point. Finally, 
we added the absolute paleo-coordinates (longitude and latitude) as well as the given 
time of the vegetation point as three additional features. 
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Our neural network was trained on a total of 100 biotic features (one for each selected 
taxon), 3 climatic features, and 3 spatiotemporal features, resulting in a total of 106 
features for each instance. 

To avoid potential biases based on the absolute values of given features, we scaled all 
features to a range between 0 and 1. The rescaling was done jointly for all training and 
prediction instances, in order to avoid differences in rescaling-factors between features 
in the training instances and those in the prediction instances. 

Selecting training and test data 
For training our neural network we had a total of 11,379 points with vegetation information 
available, consisting of 331 paleovegetation points and 11,048 current vegetation points. 
To test whether the larger number of current vegetation instances might bias our past 
vegetation reconstructions, we explored different combinations of paleovegetation and 
current vegetation instances during training of the model (Table 1). 

To evaluate the prediction accuracy of our trained models, we performed a five-fold cross 
validation, training each of the five cross validation models on 80% of the available 
paleovegetation instances, while sparing the remaining 20% as a test set. The current 
vegetation instances that were used for training some of our tested models remained the 
same across all cross-validation folds. We then determined the paleovegetation 
prediction accuracy of the model as the average test set prediction accuracy across all 5 
cross validation folds. Additionally, we determined the prediction accuracy for all 
remaining current labels that were not used for training. The final prediction accuracy of 
each model was then determined as the weighted mean between the paleovegetation 
prediction accuracy and the current vegetation prediction accuracy of the model, weighing 
the paleovegetation component ten times higher, as it represents the accuracy across ten 
geological stages that are covered by our paleovegetation data (Supplementary Fig. S2), 
while the current data only represent a single geological stage. 

Neural Network configuration 
We custom-designed a BNN classification model that maps raw geographic and temporal 
distances of selected taxon occurrences (fossil or current) to a set of vegetation classes. 
These distance features can be complemented by any set of additional features, such as 
the abiotic features used in this study. The BNN model consists of multiple hidden layers 
generating a numerical representation of the features in multidimensional space, as well 
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as an output layer that maps the nodes of the last hidden layer to the output classes, in 
this case open and closed habitats. Given the flexibility of our model and the fact that it is 
based on absolute distance measures, it may be applied to any vegetation prediction 
task, independently of the spatial and temporal scale of the project. 

The first two hidden layers are only applied to the taxon distance features rather than to 
the additional abiotic features. In these layers the raw spatial and temporal occurrence 
distances are combined into a single value per taxon, which represents a measure of 
proximity of each taxon to a given input instance. The raw distances are provided in pairs 
of one spatial and one temporal distance measurement, both associated with a specific 
occurrence of a taxon (Fig. 1A). In the first layer these two distances are merged into one 
spatiotemporal distance value via matrix multiplication with a space and a time weight 
(Fig. 1B). To reduce the number of estimated parameters for better convergence, the 
space and time weights are shared among all occurrences under the assumption that the 
relative importance of space and time in determining the proximity of a given occurrence 
is expected to be the same for all occurrences of different taxa. After collapsing spatial 
and temporal distances into one spatiotemporal distance value in this way, we estimate 
specific taxon-weights for each taxon and geological stage, which are then used to 
collapse the multiple spatiotemporal distances across different geological stages into one 
single feature value for each taxon. 

Depending on the chosen pooling strategy, these taxon feature values are either fed as 
individual features into the next layer (no pooling) or are summarized into one faunal and 
one floral feature, by either extracting the maximum output value (max-pooling) or by 
summing all output values (sum-pooling) across all mammal and plant taxa, respectively. 
Following the initial two layers, the taxon-features (n=100 or n=2, depending on pooling 
strategy) are fed together with the additional abiotic features (n=6) into a fully connected 
neural network and eventually mapped to the binary vegetation classes in the output layer 
(Fig. 1C). We tested different network configurations in terms of number of layers and 
nodes per layer, different pooling strategies, as well as different combinations of training 
features and instances, and selected the best model based on the highest test set 
prediction accuracy (Table 1). 

During training, all weights of the model are initially drawn randomly from a normal 
distribution centered in 0 and are then updated and sampled using a Metropolis Hastings 
Markov Chain Monte Carlo (MCMC) algorithm 41. We used a standard normal prior for all 
weights (parameters of the model). Further, we applied a ReLU activation function for 
each hidden layer, and a softmax function for the output layer. The likelihood is calculated 
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as the cumulative loss across all training instances. For all models we ran an MCMC 
chain for 1 million generations, sampling every 200 iterations. 

Our BNN implementation allows not only to estimate the most probable vegetation label 
for a given point in time and space, but also to calculate the posterior probability of this 
label, providing an inherent measure of uncertainty. We calculated the posterior 
probability of each class label for a given instance as the mean class probability across 
all posterior samples. This ability makes BNNs an attractive alternative to regular neural 
network algorithms, which allow no such uncertainty modeling, although analogous 
approximations exist, such as Monte Carlo dropout 42. 

Feature importance 

To determine the relative importance of each feature used in our model, we applied the 
method of permutation feature importance (sensu Breiman 43). In this approach, the 
values of a given feature are randomly shuffled across all instances of the test set. This 
process masks any existing information that lies within the values of a given feature. The 
class labels for all test instances are then predicted using the modified feature matrix. The 
resulting test accuracy is then compared with that of the original feature matrix and the 
difference between these accuracies (𝛥𝑎𝑐𝑐) is interpreted as a measure of relative 
importance of the shuffled feature for the classification task. We repeated this process for 
each feature column in our feature matrix (n=106) and ranked the features based on their 
𝛥𝑎𝑐𝑐 values (Fig. 4). 

Predicting vegetation labels 
To produce continuous vegetation maps across North America, we constructed a 0.5° x 
0.5° grid across the cropping window defined in this study and extracted the coordinates 
of the cell-center for each grid cell. For these points, we extracted spatiotemporal taxon-
distances and abiotic features in the same manner as for the training instances. We 
repeated this process in 1 Ma steps starting in the present (t=0) throughout the last 30 
Ma (t=30), producing 31 feature-datasets of North America through time, considering 
tectonic movement (mapast 24). Based on the BNN weights sampled during training by 
the MCMC (excl. 10% burn-in) we determined the posterior probabilities of each 
vegetation label for each given point (Fig. 2). 
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