1	
2	
3	
4	
5	
6	
7	
8	
9	
10	The genetics of eating behaviors: research in the age of COVID-19
11	
12	
13	
14 15	Mackenzie E. Hannum ^{1*} , Cailu Lin ^{1*} , Katherine Bell ¹ , Aurora Toskala ¹ , Riley Koch ¹ , Tharaka Galaniha ² , Alissa Nolden ² , Danielle R Reed ¹ # and Paule Joseph ^{3,4}
16	
17	¹ Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA, USA
18	² Department of Food Science, University of Massachusetts, Amherst, MA, USA
19	³ National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
20	⁴ National Institute of Nursing Research, Bethesda, MD, USA.
21	
22	
23	
24	#Corresponding
25	*equal contributions
26	
27	
28	Please address correspondence to:
29 30	Danielle P. Pood. PhD
30 31	Danielle R Reed, PhD Monell Chemical Senses Center
32	35 Market St
33	Philadelphia PA 19104
34	reed@monellorg
35	267-280-3248
36	
20	
37	
20	
38	

Genetics of eating

39 Abstract

40 How much pleasure we take in eating is more than just how much we enjoy the taste of 41 food. Food involvement – the amount of time we spend on food beyond the immediate 42 act of eating and tasting – is key to the human food experience. We took a biological 43 approach to test whether food-related behaviors, together capturing food involvement, 44 have genetic components and are partly due to inherited variation. We collected data 45 via an internet survey from a genetically informative sample of 419 adult twins (114 46 monozygotic twin pairs, 31 dizygotic twin pairs, and 129 singletons). Because we 47 conducted this research during the pandemic, we also ascertained how many 48 participants had experienced COVID-19-associated loss of taste and smell. Since these 49 respondents had previously participated in research in person, we measured their level 50 of engagement to evaluate the quality of their online responses. Additive genetics 51 explained 16-44% of the variation in some measures of food involvement, most 52 prominently various aspects of cooking, suggesting some features of the human food 53 experience may be inborn. Other features reflected shared (early) environment, 54 captured by respondents' twin status. About 6% of participants had a history of 55 COVID-19 infection, many with transitory taste and smell loss, but all but one had 56 recovered before the survey. Overall, these results suggest that people may have inborn 57 as well as learned variations in their involvement with food. We also learned to adapt to

- research during a pandemic by considering COVID-19 status and measuring
- 59 engagement in online studies of human eating behavior.
- 60 Keywords: food involvement, survey, twins, COVID-19-associated taste loss, COVID-
- 61 19-associated smell loss, engagement.
- 62 Abbreviations: EQ Engagement Questionnaire; FIS Food Involvement Score; MZ –
- 63 monozygotic; DZ dizygotic
- 64

Genetics of eating

-
)

1. Introduction

66	The pleasure and perils of food start not on the tongue but, rather, well before the
67	meal. Human eating behavior is more than the act of tasting, chewing, and swallowing
68	food in the moment of eating – it also involves many preparatory and subsequent
69	behaviors (Bell & Marshall, 2003), such as planning a meal, food shopping, cooking, and
70	cleanup afterward. Drawing on studies demonstrating genetic effects on food
71	preferences (Reed, Bachmanov, Beauchamp, Tordoff, & Price, 1997) and taste
72	perception (Reed, Tanaka, & McDaniel, 2006), we took a biological approach to ask
73	whether aspects of these other food behaviors have a genetic component. We tested this
74	hypothesis using a genetically informative sample of adult human twins who answered
75	questions about their own involvement with food via an online survey. These twins had
76	participated in prior research projects about the sense of taste and smell (Knaapila, et
77	al., 2012; Lin, et al., 2020; Wise, Hansen, Reed, & Breslin, 2007).
78	This research was conducted during the summer of 2020, when most research
79	laboratories were closed due to the COVID-19 pandemic. Therefore, by necessity, we
80	conducted the survey remotely. We also considered whether participants might have
81	been ill or were currently ill with COVID-19 and how this might affect their responses.
82	We knew at that time that taste and smell loss were cardinal features of COVID-19
83	illness (Parma, et al., 2020), more predictive of infection than other more general
84	symptoms like fever (Gerkin, et al., 2021; Menni, et al., 2020), and that for some people

Genetics of eating

85	the sensory loss lingers (Boscolo-Rizzo, et al., 2021). Therefore, it was reasonable to
86	suspect that COVID-19 status, including the current state of a person's ability to taste or
87	smell, might affect responses to questions about food involvement (Hannum & Reed,
88	2021; Weir, Reed, Pepino, Veldhuizen, & Hayes, in review).
89	We were also concerned that participants who had participated in past research
90	in a face-to-face setting, with supervision from investigators, might be less facile with
91	remote research procedures. To address this concern, we included questions about
92	engagement, drawing on a newly developed engagement scale, the Engagement
93	Questionnaire (EQ), to discern the qualities of their responses: how active they were in
94	thinking about the question, how much importance they attributed to the process, and
95	how much they enjoyed taking the survey (Hannum & Simons, 2020). We could thus
96	interpret participants' responses about their food involvement by considering both their
97	current or past taste and smell loss with COVID-19 and how well they adapted to the
98	remote testing procedures.
99	2. Methods
100	2.1 Participants. We previously conducted research with human participants as part of
101	the Twins Days Festival held annually in Twinsburg, Ohio (Knaapila, et al., 2012; Lin, et
102	al., 2020; Wise, et al., 2007). As part of this research, the twins provided their contact

103 information, including email addresses to be recontacted for future studies. Protocols

104 compiled with the Declaration of Helsinki and were approved by the University of

105	Pennsylvania Institutional Review Board (Protocol #843798). For data collection, we
106	used this contact information to invite each twin to complete on online survey
107	(described below) via REDCap, an electronic data capture tool used often in biomedical
108	research (Harris, et al., 2009). The survey invitations were sent in waves starting
109	September 3, 2020, and ending June 5, 2021; prospective participants who did not
110	respond to the first message were sent an email reminder. All adult twins with internet
111	access who could be reached by email were eligible to participate. All subjects provided
112	informed consent to the research before starting the online survey. We collected
113	demographic data from each participant, including their sex, age, race, and whether
114	they were a current or former smoker or had never smoked in their lifetime.
115	Participants received compensation for their time spent completing the survey.
116	2.2 Zygosity status. All twins surveyed had been previously genotyped as part of other
117	research projects [4-6], and with appropriate consent, we used these genotypes to
118	establish zygosity as monozygotic (MZ) or dizygotic (DZ). To establish zygosity, we
119	relied on four methods. The twins self-reported on their zygosity, we took facial
120	photographs which were rated for zygosity by two independent investigators, we typed
121	all genomic DNA samples with a small panel of taste-related DNA markers, and for
122	cases in which there was any uncertainty about the zygosity status using the first three
123	methods, we genotyped the genomic DNA with the OmniChip from the Human
124	OmniExpressExome-8v1.2 from Illumina Inc. (USA). In total, we genotyped 154

Genetics of eating

125 samples with the Omni-Chip and the remaining 265 samples using the first three126 methods.

127	2.3 Food involvement. Participants were asked to complete the Food Involvement
128	Survey [1] (see Table 1), rating each item on a 7-point scale (1 = disagree strongly; 7 =
129	agree strongly), as recommended in the original reference. The overall food
130	involvement score has a theoretical range between 12 and 84, with higher numbers
131	indicating more food involvement. The scale has two subscales: (1) presentation of the
132	table and disposal of food and (2) preparation and eating of the food itself, in which
133	certain items are summed into a final subscale score (see Table 1 for specific items).
134	2.4 Engagement. We measured engagement as the degree to which participants enjoyed,
135	paid attention to, and made their best effort to respond to the questions in the survey.
136	Our past research with these participants had been conducted in person, in an
137	environment where they received face-to-face and individual instruction and
138	supervision. Thus, in our view engagement was especially important to quantify for
139	this internet survey, necessitated by our inability to conduct in-person research during
140	the COVID-19 pandemic. We chose the newly developed Engagement Questionnaire
141	(EQ) because it was developed specifically for sensory research and because of the
142	expertise of the co-authors, one of whom developed it (Hannum & Simons, 2020). This
143	tool as three subscales: active involvement (how vigorously they applied themselves to
144	the task), purposeful intent (how they evaluated the importance or value of the survey),

145	and affective value (how much they enjoyed the survey experience). We computed the
146	average engagement scores from the subscales as described in the original report
147	(Hannum & Simons, 2020).
148	2.5 COVID-19. This research was conducted during the COVID-19 pandemic
149	(September 3, 2020-June 5, 2021). Because cardinal symptoms of COVID-19 are loss of
150	taste, smell, and chemesthesis (e.g., the burn of chili pepper or the cool of menthol)
151	(Parma, et al., 2020), it was important to establish whether participants had an active
152	infection, or had been sick and lost their sense of taste or smell, because these senses
153	affect food enjoyment (Hannum & Reed, 2021; Reed, et al., 2020). We therefore
154	evaluated COVID-19 history using modified survey questions originally designed by
155	members of the Global Consortium for Chemosensory Research (Parma, et al., 2020).
156	We collected other measures for projects unrelated to the hypothesis tested here, and
157	these measures are not reported.
158	2.6 Data analysis.
159	2.6.1 Data cleaning and descriptive analyses. To analyze the resulting data, we removed
160	implausible age data, which we defined as having an age of >120 or <18 years (e.g., they
161	provided the current date as their birthday). We next performed descriptive statistics on
162	the food involvement total score, subscale scores, and individual item scores;
163	engagement scores, subscale scores, and individual item scores; and COVID-19
164	measures, reporting the data as medians and interquartile ranges. Additionally, we

165	calculated coefficient alpha (α) (Cronbach, 1951) to determine the internal reliability and
166	consistency of each instrument, e.g., the Food Involvement Scale and Engagement
167	Questionnaire).
168	2.6.2 Covariate determination. Our goal was to establish the heritability of the food
169	involvement traits, but first we needed to establish the appropriate covariates. To that
170	end, the data from all participants were included in a linear regression to establish the
171	influence of covariates on food involvement total score and individual items using age,
172	sex, race, COVID-19 status, past chemosensory loss with COVID-19 (coded yes or no),
173	and engagement subscale scores as dependent variables (Carlin, Gurrin, Sterne, Morley,
174	& Dwyer, 2005). The participants who reported having had COVID-19 and past
175	chemosensory loss did not differ in any food involvement scores compared to those
176	without COVID-19 (S1 Table). Therefore, we dropped those COVID-19 factors from the
176 177	without COVID-19 (S1 Table). Therefore, we dropped those COVID-19 factors from the model and reconducted the analysis. Sex, age, and engagement subscale scores were the
177	model and reconducted the analysis. Sex, age, and engagement subscale scores were the
177 178	model and reconducted the analysis. Sex, age, and engagement subscale scores were the most influential covariates (p<0.05) for at least some of the individual items on the Food
177 178 179	model and reconducted the analysis. Sex, age, and engagement subscale scores were the most influential covariates (p<0.05) for at least some of the individual items on the Food Involvement Scale and were therefore included as covariates in the heritability analysis
177 178 179 180	model and reconducted the analysis. Sex, age, and engagement subscale scores were the most influential covariates (p<0.05) for at least some of the individual items on the Food Involvement Scale and were therefore included as covariates in the heritability analysis below. See S2 Table for details.
177 178 179 180 181	 model and reconducted the analysis. Sex, age, and engagement subscale scores were the most influential covariates (p<0.05) for at least some of the individual items on the Food Involvement Scale and were therefore included as covariates in the heritability analysis below. See S2 Table for details. 2.6.3 Heritability analyses. Heritability was calculated using data from all 419 twin

Genetics of eating

environmental, and unique environmental effects using the *mets* package (version 1281)
of R statistical software (Holst, Scheike, & Hjelmborg, 2016; Scheike, Holst, &
Hjelmborg, 2014).

188

3. Results

189 3.1 Participants. We invited 1,742 twins to participate, and 434 (24.9%) responded by 190 clicking the website link and attempting to complete the survey. We removed from the 191 downstream data analysis anyone who did not consent (N=3), and those who provided 192 implausible ages (N=12). After these data-cleaning steps, in total there were 419 193 participants (145 twin pairs (N=290) and 129 singletons). The participants were mainly 194 female nonsmokers of European descent, with a median (IQR) age of 33 (29-46) years 195 (Table 2). While 27 participants indicated they had COVID-19 at some point prior to the 196 survey, and more than half of those had experienced taste and/or smell loss when they 197 were ill, only one person indicated problems with current ability to taste or smell. 198 Regardless, food involvement scores did not differ significantly between those infected 199 with SARS-CoV-2 and experienced chemosensory loss and those that did not (S1 200 Table). 201 3.2 Food involvement scores. Median scores and their IQRs for total food involvement 202 and the individual items are provided in **Table 1**. Items are coded on a 7-point scale (1 = 203 disagree strongly; 7 = agree strongly). The median scores were 5 or 6 for most positive 204 items (e.g., *I enjoy cooking*) and 2 for most negative items (e.g., *Cooking or barbequing is*

205	not much fun). The most variable trait based on the IQR was food shopping (I do most or
206	all of my food shopping). The median total food involvement score, calculated by
207	reversing the scores for the negative items and then summing scores for all items, was
208	63, with an IQR of 55–69. Overall, the Food Involvement Scale had a Cronbach's α of
209	0.77 (95% CI: 0.73-0.80), demonstrating acceptable internal reliability.
210	3.3 Effects of engagement. Participants' engagement scores showed that most had made
211	their best effort (active involvement, median = 5.7 and IQR = 4.7-6.0), considered the
212	research important (purposeful intent; median = 5.5 and IQR = 5.0-6.0), and enjoyed
213	answering the questions (affective value; median =4.7 and IQR = 4.0-5.3). With a
214	Cronbach's α of 0.84 (95% CI: 0.82-0.87), the Engagement Questionnaire has internal
215	consistency. Overall, participant's level of engagement was significantly related to their
216	level of reported food involvement (Table 3). Specifically, whether participants thought
217	the research and their role as a participant were important (captured via the purposeful
218	intent subscale) had the strongest effect on their reported food involvement score and
219	sub-scale score (coefficients >1, Table 3). Whether subjects were actively involved in the
220	task did not influence their reported level of involvement with set and disposal
221	procedures of consuming food. Including questions about engagement allowed us to
222	assess the participant's level of engagement in the online task, and control for lack of
223	attention, increasing the accuracy of the heritability estimates.

224	3.4 Heritability of the food involvement scores. About 40% of individual differences in
225	food involvement scores was explained by additive genetic variance (additive genetics;
226	$a^2 = 0.39$; 95% CI = 0.24–0.55, <i>P</i> <0.001). However, although food involvement could be
227	considered a single entity, each item from the scale contributed to this result in a
228	different way (Figure 1 and S3 Table). The traits for cooking ("I enjoy cooking for myself
229	and others"; $a^2 = 0.40$; 95% CI = 0.25–0.56, P<0.001) and especially chopping ("I do not like
230	<i>to mix or chop food"</i> ; $a^2 = 0.44$; 95% CI = 0.30–0.58, <i>P</i> <0.001) were the most highly heritable
231	as measured by additive genetics, which points to a heritable component for food
232	preparation. We observed a similar but weaker effect for the trait 'dishes' ("I do not wash
233	<i>dishes or clean the table";</i> a ² =0.17; 95% CI =0.01 - 0.32, p<0.001].
234	The effects of a shared environment, for which twins are the most similar
234 235	The effects of a shared environment, for which twins are the most similar regardless of zygosity, are captured by questions assessing thinking ($c^2 = 0.37$; 95% CI =
235	regardless of zygosity, are captured by questions assessing thinking ($c^2 = 0.37$; 95% CI =
235 236	regardless of zygosity, are captured by questions assessing thinking ($c^2 = 0.37$; 95% CI = 0.22–0.52, <i>P</i> <0.001) and talking about food ($c^2 = 0.41$; 95% CI = 0.27–0.55, <i>P</i> <0.001) and
235 236 237	regardless of zygosity, are captured by questions assessing thinking ($c^2 = 0.37$; 95% CI = 0.22–0.52, <i>P</i> <0.001) and talking about food ($c^2 = 0.41$; 95% CI = 0.27–0.55, <i>P</i> <0.001) and interest in food during travel ($c^2 = 0.26$; 95% CI = 0.12–0.41, <i>P</i> <0.001). The trait most
235 236 237 238	regardless of zygosity, are captured by questions assessing thinking ($c^2 = 0.37$; 95% CI = 0.22–0.52, <i>P</i> <0.001) and talking about food ($c^2 = 0.41$; 95% CI = 0.27–0.55, <i>P</i> <0.001) and interest in food during travel ($c^2 = 0.26$; 95% CI = 0.12–0.41, <i>P</i> <0.001). The trait most influence by the unique environment unshared among twins was cleanup (" <i>I do most or</i>
 235 236 237 238 239 	regardless of zygosity, are captured by questions assessing thinking ($c^2 = 0.37$; 95% CI = 0.22–0.52, <i>P</i> <0.001) and talking about food ($c^2 = 0.41$; 95% CI = 0.27–0.55, <i>P</i> <0.001) and interest in food during travel ($c^2 = 0.26$; 95% CI = 0.12–0.41, <i>P</i> <0.001). The trait most influence by the unique environment unshared among twins was cleanup (" <i>I do most or all the cleanup after eating</i> "; $e^2 = 0.87$; 95% CI = 0.70–1.04, <i>P</i> <0.001). Drawing on the
 235 236 237 238 239 240 	regardless of zygosity, are captured by questions assessing thinking ($c^2 = 0.37$; 95% CI = 0.22–0.52, <i>P</i> <0.001) and talking about food ($c^2 = 0.41$; 95% CI = 0.27–0.55, <i>P</i> <0.001) and interest in food during travel ($c^2 = 0.26$; 95% CI = 0.12–0.41, <i>P</i> <0.001). The trait most influence by the unique environment unshared among twins was cleanup (" <i>I do most or all the cleanup after eating</i> "; $e^2 = 0.87$; 95% CI = 0.70–1.04, <i>P</i> <0.001). Drawing on the subscales to help summarize these results, food preparation is more heritable

Genetics of eating

4. Discussion

245	While much research into the biology of human food behavior focuses on the moment
246	of eating – how much is eaten and the types of food chosen, e.g.,(Grimm & Steinle, 2011;
247	Pallister, Spector, & Menni, 2014) – or even being fearful of new foods (Knaapila, et al.,
248	2007), other types of behavior are also important parts of the total food experience,
249	including the selection and preparation of food, ruminating about food, looking
250	forward to eating in new places, and the cleanup afterward (Bell & Marshall, 2003). The
251	results of our online survey of twins show that there is a genetic determinant to at least
252	some aspects of these food behaviors, with cooking and food preparation the most
253	heritable (i.e., genetically identical twins were more similar in these types of behavior
254	than were fraternal twins).
255	However, while cooking, and especially the chopping and mixing of food, had a
256	heritability component, other types of food behaviors were affected more by shared
257	common environment, and twins were thus similar regardless of their degree of genetic
258	relatedness (i.e., genetically identical twins were as similar in these types of behavior
259	than dizygotic twins). The most striking examples of this effect of shared common
260	environment are the scores for talking and thinking about food, with more than 40% of
261	the variance in these traits accounted for being raised in a shared household.
262	Some aspects of food and eating were unaffected either by genetics or by shared
263	common environment and thus appeared to be determined by each person's own

Genetics of eating

experience. The most prominent examples of this were the results for setting the table
and cleaning up afterward, which were unrelated to shared experience or genetics
between the twins.

These results suggest that the proclivity for cooking may be more determined by genetic variation, whereas the centrality of food in the family – how much importance is attached to it – may be more learned in the family home. Taken together, it appears that love (or dislike) of cooking may be difficult to modify but that the centrality of food (e.g., as topic of conversation) may be influenced by the family environment and that the willingness to set up and clean-up is entirely amenable to change (e.g., through learning or instruction, or by the encouragement of certain behaviors).

274 This research was conducted in unusual circumstances because of the pandemic. 275 We learned from this research that, while a handful of the participants had COVID-19 at 276 some point immediately before the survey, only one person still had problems with 277 taste and smell at the time of their survey response. We saw no differences in food 278 involvement scores based on whether the participants had past or active COVID-19 279 infection, and it is encouraging that people recovered with little or no effect in their 280 food behaviors. While only one person reported problems with taste and smell, studies 281 of recovery suggest that 10% or more of people have sustained taste and smell loss after 282 many months (Boscolo-Rizzo, et al., 2021). Though not tested presently, we hypothesize 283 that people with long-haul COVID-19 symptoms and sustained taste and smell loss

284	might have much less food enjoyment (Boesveldt, et al., 2017; Temmel, et al., 2002),
285	however, its resultant effect on food involvement has yet to be determined. Since food
286	involvement is thought to be a stable individual characteristic (Bell & Marshall, 2003), it
287	would be of interest to explore how sudden and <i>sustained</i> loss of taste and/or smell
288	might affect someone's overall level of food involvement. Regardless, questions about
289	COVID-19 and its effect on taste and smell should be included in human food research
290	in future, as a basic demographic question like age or sex.
291	We quantified engagement because we were concerned about the abrupt change
292	of testing procedures from in person to remote, owing to the laboratory lockdowns
293	during COVID-19. This decision proved to be more fruitful than we anticipated. Not
294	only did participants' scores reassure us that most had made their best effort,
295	considered the research important, and enjoyed answering the questions, but we found
296	that aspects of engagement – whether participants thought the research and their role as
297	a participant were important – were strongly related to participants' food involvement
298	scores. An aspect of individual food involvement encompasses a higher level of
299	cognitive interest in a task related to food, such as explaining the differences between
300	products or discussing food in general (Bell & Marshall, 2003). Thus, participants who
301	reported a higher level of food involvement additionally reported higher levels of
302	purposeful intent during the survey suggesting they found value in discussing food-
303	related topics. This supports the converging (e.g., similar) aspects between engagement

304	and food involvement, an important aspect to using validated scales in research
305	(DeVellis, 2016). In general, including questions about engagement allowed us to
306	validate using a remote survey tool and increase the accuracy of the heritability
307	estimates, similar to using age and sex as covariates.
308	This research has at least two limitations. First, because of our recruitment
309	strategy – former attendees and research participants from an annual festival for twins –
310	we had more genetically identical than fraternal twin pairs, which might reduce our
311	power to detect additive genetic variance. Second, some twins responded but their co-
312	twin did not. We attribute this situation to two factors (neither of which was in our
313	immediate control): some contact information was outdated, so we could not reach the
314	co-twin; and the vicissitudes of COVID-19 and the pandemic, with constant upheaval
315	and changes, made it hard for some to prioritize participating in research. These
316	singletons are not without value, because they provided information for estimating the
317	effects of covariates and also about variation when computing heritability. However,
318	we recognize that it would be more valuable from a genetics perspective to have all
319	twin pairs in our sample rather than include singletons.
320	The heritable variations we identified in interest and liking for cooking and food
321	preparation are not surprising, if we consider that cooking is often a recreational or
322	leisure activity, like competitive or team sports, which are often related to heritable
323	traits (e.g., (van der Zee, Helmer, Boomsma, Dolan, & de Geus, 2020)). However, this

324	observation takes on new importance in the realm of health, because the willingness to
325	cook and prepare food at home is related to better overall health (Wolfson & Bleich,
326	2015) and people who have high food involvement scores have a healthier diet (Barker,
327	Lawrence, Woadden, Crozier, & Skinner, 2008; Marshall & Bell, 2004). Our results on
328	the genetics of food involvement have implications for personalized nutrition and how
329	much behavior change is likely to occur when people who do not like to cook at home
330	are encouraged to do so. These genetic aspects on the enjoyment of cooking may
331	constrain behavior change. However, more research is needed to explore this
332	hypothesis.
333	In contrast, how much people are preoccupied with thinking and talking about
334	food is highly affected by shared family environment, which suggests that the
335	standards set in the childhood home will persist into adulthood. Some families are more
336	focused on food as a hub of life, whereas others are less so, and level of parental
337	emphasis on food may have effects into adulthood. We hasten to add that the questions
338	on the Food Involvement Scale do not address pathological preoccupation with food,
339	such as with eating disorders including anorexia and bulimia, which have a strongly
340	heritable component (Thornton, Mazzeo, & Bulik, 2011). Rather, social discussion and
341	interest in food are affected by shared environment, at least in this population of human
342	twins.

343	Looking to the future, as the collective data from genetic studies bring larger and
344	larger databases and more available genotyping information, we will learn about how
345	inborn variation affects what people choose to eat (Cole, Florez, & Hirschhorn, 2020;
346	May-Wilson, et al., 2021). Our hope is that, as the capacity for this type of research
347	grows, behaviors such as those studied here, which are key parts of the full human
348	experience of food, will be included in future research. Although ultimately human
349	health is improved directly by what and how much people eat, these decisions are
350	made as people shop, cook, linger over one meal, and anticipate the next.

Genetics of eating

Item	Trait	n	Question	Median	IQR
All	Total food	406	All items scored and summed (range: 12-84)	63	55-69
	involvement score ^a				
Sub	Set and Disposal	412	Items 6, 11, 12 summed (range: 3 to 21)	16	14-18
Sub	Preparation/Eating	408	All other items summed (range: 9 to 63)	47	41-52
			Individual items (range: 1-7)		
1*	Thinking about food	413	I don't think much about food each day	2	2-4
2*	Cooking	412	Cooking or barbequing is not much fun	2	2-4
3	Talking about food	413	Talking about what I ate is something I like to do	5	4-6
4*	Choice importance	410	My food choices are not very important	2	2-4
5	Travel	413	When I travel, one of the things I anticipate most is eating food there	6	5-7
6	Cleanup	413	I do most or all the cleanup after eating	6	4-6
7	Enjoy cooking	411	I enjoy cooking for others and myself	5	4-6
8*	Eating out	413	When I eat out, I don't think or talk much about how the food tastes	2	2-3
9*	Chopping	413	I do not like to mix or chop food	2	2-4
10	Food shopping	413	I do most or all of my own food shopping	6	4-7
11*	Dishes	412	I do not wash dishes or clean the table	1	1-2
12	Setting table	412	I care whether or not a table is nicely set	4	3-5

Table 1. Food involvement questions and descriptive statistics

IQR=interquartile range. Some questions are paraphrased for brevity. Items are rated on a 7-point scale (1 = disagree strongly; 7 = agree strongly) and ordered by as they appeared in the original paper describing the Food Involvement Scale.

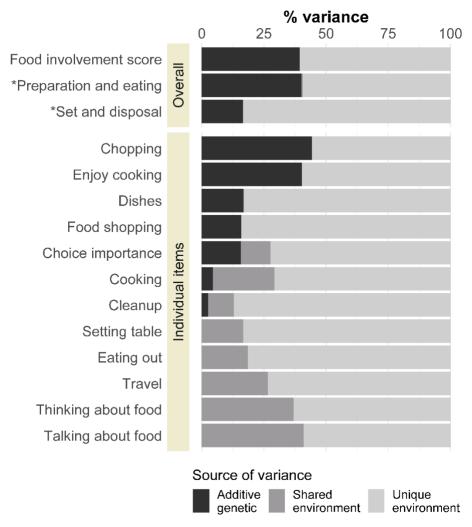
^a The total food involvement score was generated by reversing the scores for items with an asterisk (*) and then summing all scores.

Genetics of eating

Table 2: Participant characteristics

Table 2. 1 alticipalit characteristics	- 1			
Characteristic	N	%		
Total participants	419	100		
Currently able to taste/smell	418	99.8		
Age [median (IQR), years]	33 (29-4	46)		
Sex				
Female	346	82.6		
Male	72	17.2		
Prefer not to say	1	0.2		
Ancestry				
European	368	87.6		
African	22	5.3		
Asian	12	2.9		
Other	17	4.1		
Smoking				
Never	329	78.5		
Ever	77	18.4		
No response	13	3.1		
Twin status				
MZ	114	54.4		
DZ	31	14.8		
Singleton	129	30.8		
COVID-19 infection history	27	6.4		
Taste change	19	4.5		
Smell change	17	4.1		

MZ=monozygotic, DZ=dizygotic.


Genetics of eating

Items	n	Active involvement	Purposeful intent	Affective value
Food involvement score	391	***1.76 [0.89 - 2.63]	***3.93 [2.52 - 5.35]	***2.61 [1.49 - 3.74]
Preparation and eating	393	***1.52 [0.74 - 2.30]	***2.78 [1.60 - 3.95]	***1.81 [0.88 - 2.74]
Set and disposal	395	0.24 [-0.03 - 0.50]	***1.14 [0.67 - 1.60]	***0.77 [0.43 - 1.12]
Thinking about food	397	-0.14 [-0.31 - 0.02]	0.06 [-0.17 - 0.29]	0.06 [-0.12 - 0.25]
Cooking	396	**-0.23 [-0.370.09]	***-0.51 [-0.710.3]	***-0.33 [-0.510.15]
Talking about food	397	0.03 [-0.13 - 0.19]	**0.3 [0.07 - 0.52]	***0.29 [0.12 - 0.46]
Choice importance	396	***-0.33 [-0.460.2]	***-0.42 [-0.630.22]	**-0.23 [-0.390.07]
Travel	397	-0.05 [-0.19 - 0.09]	0.01 [-0.20 - 0.22]	0.02 [-0.14 - 0.18]
Cleanup	397	*0.14 [0.02 - 0.25]	***0.39 [0.20 - 0.58]	***0.28 [0.13 - 0.42]
Enjoy cooking	395	***0.29 [0.14 - 0.45]	***0.61 [0.40 - 0.83]	***0.41 [0.22 - 0.6]
Eating out	397	-0.07 [-0.19 - 0.05]	-0.18 [-0.36 - 0.00]	-0.08 [-0.24 - 0.07]
Chopping	397	**-0.21 [-0.350.08]	**-0.32 [-0.520.13]	*-0.2 [-0.370.02]
Food shopping	397	*0.19 [0.04 - 0.34]	***0.42 [0.19 - 0.64]	*0.22 [0.04 - 0.41]
Dishes	396	**-0.15 [-0.260.04]	***-0.35 [-0.550.15]	*-0.19 [-0.340.03]
Setting table	396	-0.04 [-0.19 - 0.10]	***0.38 [0.16 - 0.60]	**0.3 [0.10 - 0.49]

Table 3: Engagement scale significantly correlated with food involvement scores (Coefficient [95%CI]).

Note: Bolded values are significant; *p<0.05, **p<0.01, ***p<0.001; Coefficient [95% CI] was determined in the twin regression model for each single engagement sub-scale separately.

Genetics of eating

Figure 1. Variance in food involvement, by additive genetic, shared environment, and unique factors. Food involvement score refers to the total score, computed as described in section 1.3. Scores for the two subscales (labeled with *) and the separate items are below (for fuller description, see Table 1), ordered from more to less additive genetic variance.

Genetics of eating

Figure Caption

Figure 1. Variance in food involvement, by additive genetic, shared environment, and unique factors. Food Involvement Scale refers to the total score, computed as described in section 1.3. Scores for the two subscales (labeled with *) and the separate items are below (for fuller description, see Table 1), ordered from more to less additive genetic variance.

Genetics of eating

Acknowledgments: We thank Maija Aurora Greis, Allison Cox, Elizabeth Cole, Rongze Sun, Sarah Lipson, Sarah Marks, and Corrine Mansfield for their assistance with data management. We are grateful to the twins for their participation in a time of upheaval and uncertainty and to the Twins Days Festival organizers including Sandy Miller and Janine Bregitzer. We acknowledge the assistance of the following people in data collection: Laura Alarcon, Kelsey Alderman, Tiffany Weiss Aleman, Charles J. Arayata, Nuala Bobowski, Seth Brockman, Lauren Colquitt, Danielle Crawford, Laurel Doghramji, Jennifer Douglas, Fujiko Duke, Hillary Ellis, Emily Evans, Brad Fesi, Brian Gantick, Federica Genovese, Nicole Greenbaum, Rebecca James, Desmond Johnson, Amin Khosnevisan, Matthew Kirkey, Antti Knaapila, Marie Knoll, Daniel Lee, Deborah Lee, John Lees, Anna Lysenko, Ivy Maina, Alex Mangroo, Corrine Mansfield, Michael Marquis, Elliott McDowell, Michelle Murphy Niedziela, Kevin Redding, Jake Saunders, Lauren Shaw, Molly Stein, Alyssa Treff, Casey Trimmer, Tom Uleau, Calvin Alarcon Uleau and Ana Ulloa.

Author Contributions: MEH designed the study, cleaned the data, assisted in the statistical analysis and contributed to the writing of the manuscript, CL performed the statistical analysis and contributed to the writing of the manuscript, KB, AT, and RK collected data and edited the manuscript, TG contributed to the design of the study, AN contributed to the design of the study, assisted in data collection and assisted in the

Genetics of eating

writing of the manuscript. DRR assisted in the design of the study, assisted in data analysis, and wrote the manuscript. PJ designed the study and assisted in the writing of the manuscript.

Funding: This work was funded by a contract from the NIH Institute of Nursing (75N98019P03096; DRR), NIH T32 DC000014 (MEH) and Monell Institutional Funds (DRR). Dr. Joseph is supported by the National Institute of Alcohol Abuse and Alcoholism under award number, Z01AA000135 and the National Institute of Nursing Research, the NIH Office of Workforce Diversity, National Institutes of Health Distinguished Scholar, and the Rockefeller University Heilbrunn Nurse Scholar Award.

Ethical statement: The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the University of Pennsylvania Institutional Review Board (Protocol #843798). The procedures performed were in accordance with the ethical standards of the committee. Electronic informed consent was obtained from all respondents before commencement of the study.

Genetics of eating

References

- Barker, M., Lawrence, W., Woadden, J., Crozier, S. R., & Skinner, T. C. (2008). Women of lower educational attainment have lower food involvement and eat less fruit and vegetables. *Appetite, 50*, 464-468.
- Bell, R., & Marshall, D. W. (2003). The construct of food involvement in behavioral research: scale development and validation☆. *Appetite, 40*, 235-244.
- Boesveldt, S., Postma, E. M., Boak, D., Welge-Luessen, A., Schopf, V., Mainland, J. D., Martens, J., Ngai, J., & Duffy, V. B. (2017). Anosmia-A Clinical Review. *Chem Senses, 42*, 513-523.
- Boscolo-Rizzo, P., Menegaldo, A., Fabbris, C., Spinato, G., Borsetto, D., Vaira, L. A.,
 Calvanese, L., Pettorelli, A., Sonego, M., Frezza, D., Bertolin, A., Cestaro, W., Rigoli,
 R., D'Alessandro, A., Tirelli, G., Da Mosto, M. C., Menini, A., Polesel, J., & Hopkins,
 C. (2021). Six-Month Psychophysical Evaluation of Olfactory Dysfunction in
 Patients with COVID-19. *Chem Senses, 46*.
- Carlin, J. B., Gurrin, L. C., Sterne, J. A., Morley, R., & Dwyer, T. (2005). Regression models for twin studies: a critical review. *Int J Epidemiol, 34*, 1089-1099.
- Cole, J. B., Florez, J. C., & Hirschhorn, J. N. (2020). Comprehensive genomic analysis of dietary habits in UK Biobank identifies hundreds of genetic associations. *Nat Commun, 11*, 1467.
- Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. *Psychometrika, 16*, 297-334.
- DeVellis, R. F. (2016). *Scale development: Theory and applications* (Vol. 26): Sage publications.
- Gerkin, R. C., Ohla, K., Veldhuizen, M. G., Joseph, P. V., Kelly, C. E., Bakke, A. J., Steele, K. E., Farruggia, M. C., Pellegrino, R., Pepino, M. Y., Bouysset, C., Soler, G. M., Pereda-Loth, V., Dibattista, M., Cooper, K. W., Croijmans, I., Di Pizio, A., Ozdener, M. H., Fjaeldstad, A. W., Lin, C., Sandell, M. A., Singh, P. B., Brindha, V. E., Olsson, S. B., Saraiva, L. R., Ahuja, G., Alwashahi, M. K., Bhutani, S., D'Errico, A., Fornazieri, M. A., Golebiowski, J., Dar Hwang, L., Ozturk, L., Roura, E., Spinelli, S., Whitcroft, K. L., Faraji, F., Fischmeister, F. P. S., Heinbockel, T., Hsieh, J. W., Huart, C., Konstantinidis, I., Menini, A., Morini, G., Olofsson, J. K., Philpott, C. M., Pierron, D., Shields, V. D. C., Voznessenskaya, V. V., Albayay, J., Altundag, A., Bensafi, M., Bock, M. A., Calcinoni, O., Fredborg, W., Laudamiel, C., Lim, J., Lundstrom, J. N., Macchi, A., Meyer, P., Moein, S. T., Santamaria, E., Sengupta, D., Rohlfs Dominguez, P., Yanik, H., Hummel, T., Hayes, J. E., Reed, D. R., Niv, M. Y., Munger, S. D., Parma, V.,

Genetics of eating

& Author, G. G. (2021). Recent Smell Loss Is the Best Predictor of COVID-19 Among Individuals With Recent Respiratory Symptoms. *Chem Senses, 46*.

- Grimm, E. R., & Steinle, N. I. (2011). Genetics of eating behavior: established and emerging concepts. *Nutr Rev, 69*, 52-60.
- Hannum, M. E., & Reed, D. R. (2021). COVID-19-associated loss of taste and smell and the implications for sensory nutrition. In P. Joseph & V. B. Duffy (Eds.), *Sensory Science and Chronic Diseases: Clinical Implications and Disease Management.*: Springer International Publishing (Verlag).
- Hannum, M. E., & Simons, C. T. (2020). Development of the engagement questionnaire (EQ): A tool to measure panelist engagement during sensory and consumer evaluations. *Food Quality and Preference, 81*.
- Harris, P. A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. G. (2009). Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. *J Biomed Inform*, 42, 377-381.
- Holst, K. K., Scheike, T. H., & Hjelmborg, J. B. (2016). The liability threshold model for censored twin data. *Computational Statistics & Data Analysis, 93*, 324-335.
- Knaapila, A., Hwang, L. D., Lysenko, A., Duke, F. F., Fesi, B., Khoshnevisan, A., James, R. S., Wysocki, C. J., Rhyu, M., Tordoff, M. G., Bachmanov, A. A., Mura, E., Nagai, H., & Reed, D. R. (2012). Genetic analysis of chemosensory traits in human twins. *Chemical Senses, 37*, 869-881.
- Knaapila, A., Tuorila, H., Silventoinen, K., Keskitalo, K., Kallela, M., Wessman, M., Peltonen,
 L., Cherkas, L. F., Spector, T. D., & Perola, M. (2007). Food neophobia shows heritable variation in humans. *Physiol Behav, 91*, 573-578.
- Lin, C., Colquitt, L., Wise, P., Breslin, P. A. S., Rawson, N. E., Genovese, F., Maina, I., Joseph, P., Fomuso, L., Slade, L., Brooks, D., Miclo, A., Hayes, J. E., Sullo, A., & Reed, D. R. (2020). Studies of human twins reveal genetic variation that affects dietary fat perception. *Chem Senses*.
- Marshall, D., & Bell, R. (2004). Relating the food involvement scale to demographic variables, food choice and other constructs. *Food Quality and Preference, 15*, 871-879.
- May-Wilson, S., Matoba, N., Wade, K., Hottenga, J.-J., Concas, M. P., Mangino, M., Grzeszkowiak, E. J., Menni, C., Gasparini, P., Timpson, N. J., Veldhuizen, M. G., de Geus, E., Wilson, J. F., & Pirastu, N. (2021). Large-scale genome-wide association study of food liking reveals genetic determinants and genetic correlations with distinct neurophysiological traits. *bioRxiv*, 2021.2007.2028.454120.
- Menni, C., Valdes, A. M., Freidin, M. B., Sudre, C. H., Nguyen, L. H., Drew, D. A., Ganesh, S.,
 Varsavsky, T., Cardoso, M. J., El-Sayed Moustafa, J. S., Visconti, A., Hysi, P., Bowyer,
 R. C. E., Mangino, M., Falchi, M., Wolf, J., Ourselin, S., Chan, A. T., Steves, C. J., &

Genetics of eating

Spector, T. D. (2020). Real-time tracking of self-reported symptoms to predict potential COVID-19. *Nature Medicine*.

- Pallister, T., Spector, T. D., & Menni, C. (2014). Twin studies advance the understanding of gene-environment interplay in human nutrigenomics. *Nutr Res Rev, 27*, 242-251.
- Parma, V., Ohla, K., Veldhuizen, M. G., Niv, M. Y., Kelly, C. E., Bakke, A. J., Cooper, K. W., Bouysset, C., Pirastu, N., Dibattista, M., Kaur, R., Liuzza, M. T., Pepino, M. Y., Schopf, V., Pereda-Loth, V., Olsson, S. B., Gerkin, R. C., Rohlfs Dominguez, P., Albayay, J., Farruggia, M. C., Bhutani, S., Fjaeldstad, A. W., Kumar, R., Menini, A., Bensafi, M., Sandell, M., Konstantinidis, I., Di Pizio, A., Genovese, F., Ozturk, L., Thomas-Danguin, T., Frasnelli, J., Boesveldt, S., Saatci, O., Saraiva, L. R., Lin, C., Golebiowski, J., Hwang, L. D., Ozdener, M. H., Guardia, M. D., Laudamiel, C., Ritchie, M., Havlicek, J., Pierron, D., Roura, E., Navarro, M., Nolden, A. A., Lim, J., Whitcroft, K. L., Colquitt, L. R., Ferdenzi, C., Brindha, E. V., Altundag, A., Macchi, A., Nunez-Parra, A., Patel, Z. M., Fiorucci, S., Philpott, C. M., Smith, B. C., Lundstrom, J. N., Mucignat, C., Parker, J. K., van den Brink, M., Schmuker, M., Fischmeister, F. P. S., Heinbockel, T., Shields, V. D. C., Faraji, F., Santamaria, E., Fredborg, W. E. A., Morini, G., Olofsson, J. K., Jalessi, M., Karni, N., D'Errico, A., Alizadeh, R., Pellegrino, R., Meyer, P., Huart, C., Chen, B., Soler, G. M., Alwashahi, M. K., Welge-Lussen, A., Freiherr, J., de Groot, J. H. B., Klein, H., Okamoto, M., Singh, P. B., Hsieh, J. W., Author, G. G., Reed, D. R., Hummel, T., Munger, S. D., & Hayes, J. E. (2020). More Than Smell-COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis. Chem Senses, 45, 609-622.
- Posthuma, D., Beem, A. L., de Geus, E. J. C., van Baal, G. C. M., von Hjelmborg, J. B., Iachine, I., & Boomsma, D. I. (2012). Theory and Practice in Quantitative Genetics. *Twin Research, 6*, 361-376.
- Reed, D. R., Alhadeff, A. L., Beauchamp, G. K., Chaudhari, N., Duffy, V. B., Dus, M.,
 Fontanini, A., Glendinning, J. I., Green, B. G., Joseph, P. V., Kyriazis, G. A., Lyte, M.,
 Maruvada, P., McGann, J. P., McLaughlin, J. T., Moran, T. H., Murphy, C., Noble, E.
 E., Pepino, M. Y., Pluznick, J. L., Rother, K. I., Saez, E., Spector, A. C., Sternini, C., &
 Mattes, R. D. (2020). NIH Workshop Report: sensory nutrition and disease. *Am J Clin Nutr*.
- Reed, D. R., Bachmanov, A. A., Beauchamp, G. K., Tordoff, M. G., & Price, R. A. (1997). Heritable variation in food preferences and their contribution to obesity. *Behav Genet, 27*, 373-387.
- Reed, D. R., Tanaka, T., & McDaniel, A. H. (2006). Diverse tastes: Genetics of sweet and bitter perception. *Physiol Behav, 88*, 215-226.
- Scheike, T. H., Holst, K. K., & Hjelmborg, J. B. (2014). Estimating heritability for cause specific mortality based on twin studies. *Lifetime Data Anal, 20*, 210-233.

- Temmel, A. F. P., Quint, C., Schickinger-Fischer, B., Klimek, L., Stoller, E., & Hummel, T. (2002). Characteristics of Olfactory Disorders in Relation to Major Causes of Olfactory Loss. *Archives of Otolaryngology–Head & Neck Surgery, 128*, 635-641.
- Thornton, L. M., Mazzeo, S. E., & Bulik, C. M. (2011). The heritability of eating disorders: methods and current findings. *Curr Top Behav Neurosci, 6*, 141-156.
- van der Zee, M. D., Helmer, Q., Boomsma, D. I., Dolan, C. V., & de Geus, E. J. C. (2020). An Extended Twin-Pedigree Study of Different Classes of Voluntary Exercise Behavior. *Behav Genet, 50*, 94-104.
- Weir, E. M., Reed, D. R., Pepino, M. Y., Veldhuizen, M. G., & Hayes, J. E. (in review).
 Massively collaborative crowdsourced research on COVID19 and the chemical senses: some initial insights and lessons learned. *Food Quality and Preference*.
- Wise, P. M., Hansen, J. L., Reed, D. R., & Breslin, P. A. (2007). Twin study of the heritability of recognition thresholds for sour and salty taste. *Chemical Senses, 32*, 749-754.
- Wolfson, J. A., & Bleich, S. N. (2015). Is cooking at home associated with better diet quality or weight-loss intention? *Public Health Nutr, 18*, 1397-1406.