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Abstract  18 

One important aspect of protein function is the binding of proteins to ligands, including small 19 
molecules, metal ions, and macromolecules such as DNA or RNA. Despite decades of 20 
experimental progress many binding sites remain obscure. Here, we proposed bindEmbed21, a 21 
method predicting whether a protein residue binds to metal ions, nucleic acids, or small molecules. 22 
The Artificial Intelligence (AI)-based method exclusively uses embeddings from the Transformer-23 
based protein Language Model ProtT5 as input. Using only single sequences without creating 24 
multiple sequence alignments (MSAs), bindEmbed21DL outperformed existing MSA-based 25 
methods. Combination with homology-based inference increased performance to F1=29±6%, 26 
F1=24±7%, and F1=41±% for metal ions, nucleic acids, and small molecules, respectively; it 27 
reached F1=45±2% when merging all three ligand classes into one. Focusing on very reliably 28 
predicted residues could complement experimental evidence: the 25% most strongly predicted 29 
binding residues, at least 73% were correctly predicted even when counting missing annotations 30 
as incorrect. The new method bindEmbed21 is fast, simple, and broadly applicable - neither using 31 
structure nor MSAs. Thereby, it found binding residues in over 42% of all human proteins not 32 
otherwise implied in binding.  33 

 34 

Key words:  function prediction, binding residue prediction, machine learning, deep learning, 35 
language model, transfer learning, convolutional neural networks   36 

Abbreviations used:  AI, artificial intelligence (expanding ML through deep learning, i.e., using 37 
more free parameters); CI, confidence interval; CNN, Convolutional Neural Network; HBI, 38 
homology-based inference; (p)LM, (protein) language model; MCC, Matthews Correlation 39 
Coefficient; ML, machine learning; MSA, multiple sequence alignment; PDB, Protein Data Bank; 40 
PIDE, pairwise sequence identity; SOTA, state-of-the-art; SVM, support vector machine. 41 
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Introduction 1 

Experimental data for protein binding remains limited.  Knowing protein function is crucial to 2 
understand the molecular mechanisms of life1. For most proteins, function of proteins depends on 3 
binding to other molecules called ligands2; these include metal ions, inorganic molecules, small 4 
organic molecules, or large biomolecules such as DNA, RNA, and other proteins. Although the 5 
variation in characteristics of protein binding sites resembles the diversity of the biophysical 6 
properties of the ligands, binding sites are highly specific and often determined by a few key 7 
residues 2. Binding residues are experimentally determined most reliably through high-resolution 8 
structures of the protein in complex with the respective ligand and identifying residues in close 9 
proximity to this ligand as binding residues (e.g., ≤ 5Å)3.  10 

Prediction methods usually rely on evolutionary information.  Despite immense progress in 11 
quantitative high-throughput proteomics, experimentally verified binding residues remain 12 
unknown for most proteins4. In fact, reliable binding data remains so sparse to render even 13 
Machine Learning (ML) approaches optimizing fewer parameters than tools from Artificial 14 
Intelligence (AI) extremely challenging5. Thus, reliable prediction methods become an important 15 
bridge, e.g., to study the effect of sequence variation in human populations6,7. Homology-based 16 
inference allows the transfer of binding residues from sequence-similar proteins with known 17 
annotations to experimentally uncharacterized proteins5,8. If unavailable, de novo prediction 18 
methods based on ML try to fill the gap. Structure-based methods usually outperform sequence-19 
based methods9,10, but they also rely on the availability of experimental high-resolution structures 20 
and are computationally intensive10-14. For instance, COACH10 is an ensemble classifier combining 21 
five individual approaches and has been considered the state-of-the-art (SOTA) method for 22 
binding residue prediction for many years15,16. However, the prediction for a single protein takes 23 
about 10 hours on their webserver and a local installation of the method requires 60GB free disk 24 
space to download the necessary databases of structural templates. On the other hand, 25 
sequence-based methods usually depend on sufficiently diverse and reliable experimental data 26 
and expert-crafted input features including evolutionary information to represent protein 27 
sequences5,15,17,18. Our previously published method bindPredictML175 allowed predictions of 28 
binding residues for enzymes and DNA-binding proteins while relying mainly on information from 29 
sequence variation19,20 and co-evolving residues21, both requiring the time-consuming 30 
computation of multiple sequence alignments (MSAs). Similarly, ProNA202017 uses evolutionary 31 
profiles and various features from PredictProtein22 to predict protein-protein, protein-DNA, and 32 
protein-RNA binding again requiring the computation of MSAs. In addition to the complexity of 33 
their input features, many methods specialize on specific ligands or sets thereof, since the 34 
biophysical features optimal for prediction differ between ligands5,14,16-18,23-27. For instance, 35 
PredZinc18 only predicts zinc ions and IonCom16 provides predictions for 13 metals and four radical 36 
ion ligands. Most existing somehow reliable sequence-based methods cannot be applied to large 37 
sets of protein sequences due to time limitations for feature computation or due to restriction to a 38 
very limited set of ligands. 39 

Here, we propose a new method dubbed bindEmbed21 predicting binding residues for three 40 
main classes of ligands. To overcome the limitation of expert-crafted input features and the 41 
necessity to create MSAs, we represent protein sequences as embeddings, i.e., fixed-length 42 
vectors derived from pre-trained protein Language Models (pLMs), in particular tapping into the 43 
power of the pLM ProtT528. Based on those embeddings, bindEmbed21 predicts whether or not 44 
a residue binds to metal ions, nucleic acids (DNA and RNA), and/or regular small molecules. 45 
Combining the de novo prediction method with homology-based inference further improved 46 
performance. Because embeddings can be easily extracted for any protein sequence, 47 
bindEmbed21 allows fast and easy predictions for all available protein sequences. 48 
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Results & Discussion 1 

Embedding-based predictions from bindEmbed21DL successful.  Inputting raw ProtT528 2 
embeddings into a shallow two-layer CNN, our new method, bindEmbed21DL, predicted for each 3 
residue in a protein, whether or not it binds to a metal ion, a nucleic acid (DNA or RNA), or a small 4 
molecule. The prediction differed substantially between the three classes (Fig. 1, Table S1 in 5 
Supporting Online Material (SOM)): binding residues were predicted best for small molecule and 6 
worst for nucleic acids (Table 1, DevSet1014; Fig. 1A-C). Performance appeared highest when 7 
dropping the distinction between ligand classes, i.e., simplifying the task to the prediction of 8 
binding vs. non-binding (Table 1; Fig. 1D).  9 

 10 

Table 1: F1 score (harmonic mean of precision and recall). * 11 

Method Dataset F1-metal F1-XNA F1-small F1-all 
bindEmbed21DL DevSet1014 24±2% 18±3% 26±2% 39±2% 
bindEmbed21DL TestSet300 22±4% 24±6% 33±3% 43±2% 
bindEmbed21DL TestSetNew46 26±14% 19±11% 29±9% 37±6% 
      
bindEmbed21DL TestSet225 n/a n/a n/a 47±2% 
bindPredictML17 TestSet225 n/a n/a n/a 34±2% 
      
bindEmbed21DL  TestSet300XNA66 n/a 31±5% n/a n/a 
ProNA2020 TestSet300XNA66 n/a 33±7% n/a n/a 
      
bindEmbed21DL TestSet300Zinc51 58±8% n/a n/a n/a 
PredZinc TestSet300Zinc51 58±10% n/a n/a n/a 

 12 
* Measure: F1 (Eqn. 3); ± : 95% confidence intervals (1.96 standard errors); Methods: bindEMbed21DL: method 13 

introduced here, bindPredictML175: MSA-based method predicting binding, ProNA202017: method specialized 14 
on predicting binding to DNA, RNA, and other proteins; PredZinc18: method specialized on predicting zinc-15 
binding; Data: DevSet1014: development set (validation/cross-training) set with 1,014 proteins, TestSet300: Test 16 
set used for development with 300 proteins, TestSet225: subset of test set shared with bindPredictML17, 17 
TestSetNew46: 46 sequence-unique proteins added since development of this work began – all sequence-18 
unique with respect to each other and all other proteins used, TestSet300XNA66: subset with DNA or RNA (dubbed 19 
XNA) binding proteins from our test set. TestSet300Zinc51: subset with zinc-binding proteins from our test set. 20 

 21 

Performance for the individual ligand classes appeared limited by over-prediction (binding 22 
predictions not experimentally confirmed, yet) and cross-predictions (predicted to bind ligand C1, 23 
annotated for C2). Thus, predicting individual ligand classes was more challenging than the binary 24 
distinction of residue binding/non-binding. Nevertheless, bindEmbed21DL performed similar to a 25 
method trained solely on this binary task (Table S4; SOM section 1.1 for more details). 26 

 27 
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 1 

 2 
Fig. 1: Performance of new method bindEmbed21DL.  Performance captured by four per-residue measures: precision 3 
(Eqn. 2), recall (Eqn. 1), F1 score (Eqn. 3), and MCC (Eqn. 4). Data sets: DevSet1014 (validation/cross-training set of 4 
cross-validation development, most light colors), TestSet300 (fixed test set used during development, darker colors), 5 
and TestSetNew46 (additional test set compiled after development, most dark colors). Predictions of residues binding 6 
to A. metal ions, B. nucleic acids (DNA or RNA), C. small molecules, and D. any ligand class grouping all three classes 7 
into one (considering each residue predicted/observed to bind to one of the three ligand classes as binding, all others 8 
as non-binding). On the cross-training set DevSet1014, bindEmbed21DL predicted any binding residue with F1=39±2%. 9 
Surprisingly, the number was slightly higher for the test set TestSet300 (F1=43±2%) while being similar on the additional 10 
test set TestSetNew46 (F1=37±6%). Error bars indicate 95% CIs. 11 

 12 

 In a typical cross-validation split (training, validation/cross-training, test), performance 13 
values are higher for the validation than for the test set, because hyper-parameters are optimized 14 
on the former. We observed the inverse (Table 1, Fig. 1) although most differences were within the 15 
confidence intervals (Fig. 1, Table S1). We had frozen and set aside our test set, to simplify the 16 
comparison to an older method (bindPredictML175) which was trained solely on enzymes and 17 
DNA-binding proteins. Thus, the higher numbers for the test set could indicate that binding 18 
residues are better defined and therefore easier to predict for enzymes.  19 

 To investigate, we created an independent test set from recent annotations 20 
(TestSetNew46, Methods: 46 unique from a total of 1,592 new proteins). For these, 21 
bindEmbed21DL reached values that, within the 95% confidence interval, agreed with both the 22 
original test and validation sets because two years did not accumulate enough experimental data 23 
to distinguish similar values with statistical significance. When merging all ligand classes, the new 24 
test set was large enough to establish with statistical significance (95% CI) that our performance 25 
estimates reflected what is to be expected from the next 1,592 proteins submitted for prediction 26 
(Methods).  27 

To provide binding predictions for as many proteins as possible, we considered a protein to 28 
bind to a specific ligand class if at least one residue was predicted to bind to this class. However, 29 
binding usually involves more than one residue. Therefore, predictions could be further filtered by 30 
only considering residues as binding if at least x residues were predicted to bind to this ligand 31 
class. Applying this filter led to an increase in CovNoBind(l) (Eqn. 9) for larger x while decreasing 32 
CovOneBind (Eqn. 8; Fig. S1). While precision and recall were set to 0 for proteins annotated but 33 
not predicted to bind to a certain ligand class, those performance values still increased up to a 34 
certain threshold (Fig. S1; optimal threshold of 3, 10, and 8 residues for metal ions, nucleic acids, 35 
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and small molecules, respectively) because more proteins falsely predicted to bind to this ligand 1 
class were removed than proteins actually binding to a certain ligand. Therefore, the number of 2 
residues predicted to bind to a certain ligand class could help finding incorrect predictions (too 3 
few residues predicted: prediction less likely correct). 4 

 5 

Embeddings clearly outperformed MSA-based predictions.  Recently, we had developed 6 
bindPredictML175 predicting binding residues based on MSAs, namely information about co-7 
evolving residues and sequence variant effect predictions. A subset of the test set (225 of the 300 8 
proteins in TestSet300) enabled an unbiased comparison of both methods: bindEmbed21DL, 9 
statistically significantly (beyond 95% CI) outperformed the old MSA-based method 10 
bindPredictML17 (Fig. 2A), e.g., raising the harmonic mean over precision and recall by 13 11 
percentage points (Table 1, bindEmbed21DL vs. bindPredictML17 last column for TestSet225). 12 
However, bindEmbed21DL predicted binding for only 222 of the 225 test proteins 13 
(CovOneBind=99%, Eqn. 8), while its predecessor predicted for all 225. 14 

 15 

 16 

 17 
Fig. 2: Embeddings outperformed MSA-based predictions.  This graph compares the performance between 18 
bindPredictML175 using multiple sequence alignments (MSAs) and the new method introduced here, bindEmbed21DL, 19 
using only embeddings from ProtT5 28. We also compare using binding annotations from BioLiP9 or the PDB29. Panel A: 20 
bindEmbed21DL (embeddings-only) clearly outperformed bindPredictML17 (MSA+BioLiP) by 13 percentage points 21 
(F1=47±2% vs. F1=34±2%). We used annotations from BioLiP9 to assess the performance for both methods. Although, 22 
bindPredictML17 had been trained on annotations from PDB29 for enzymes and PDIdb30 for DNA-binding proteins, it 23 
reached higher performance (lighter shaded colors vs. lightest shaded colors) for BioLiP annotations.  Panel B: 24 
Investigating the number of true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN) revealed 25 
that bindPredictML17 predicted many more FN when measured by PDB annotations than by BioLiP annotations. Hence, 26 
bindPredictML17 captured the incorrect binding annotations from the PDB correctly predicting those as non-binding 27 
which worsened its performance when assessing on those annotations but actually better captured the true binding 28 
residues. Error bars indicate 95% CIs. More details on the comparison of bindPredictML17 using BioLiP or PDB 29 
annotations can be found in SOM, Section 1.2.  30 

 31 

bindEmbed21DL competitive to specialist methods. bindEmbed21DL simultaneously 32 
predicted whether a residue is binding to metal ions, nucleic acids, or small molecules, while many 33 
state-of-the-art (SOTA) methods specialize on one ligand class. For instance, ProNA202017 34 
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focuses on predicting protein-, DNA-, or RNA-binding, both on the per-protein (does protein bind 1 
DNA or not?) and the per-residue (which residue binds DNA?) level. ProNA2020 depends 2 
completely on MSAs. While ProNA2020 shines through unifying a hierarchy of prediction tasks, it 3 
also appeared to outperform all available other methods in predicting whether or not a residue 4 
binds DNA or RNA (dubbed XNA)17. We compared the specialist ProNA2020 with the generalist 5 
bindEmbed21DL using 66 nucleic acid binding proteins in TestSet300 (dubbed TestSet300XNA66 in 6 
Table 1). For those 66 proteins, the MSA-based specialist ProNA2020 performed slightly worse in 7 
XNA-binding prediction than the embedding-based MSA-free bindEmbed21DL (F1=31±5% vs 8 
F1=33±7%, Fig. 3A). However, when analyzing how many proteins had at least one residue 9 
predicted as XNA-binding (DNA or RNA), namely using the measure CovOneBind (Eqn. 8), the 10 
situation reversed: CovOneBind(ProNA2020)=85% vs. CovOneBind(bindEmbed21DL-XNA)=77% 11 
(Fig. 3A). When considering all residues predicted by bindEmbed21DL as binding (bind=nucleic 12 
acids + metal ions + small molecules), F1 rose almost ten percentage points to 43±5% and 13 
CovOneBind to 97% (Fig. 3A, bindEmbed21DL). This clearly indicated that performance of 14 
bindEmbed21DL for the individual ligand classes was limited due to cross-predictions (Table S3), 15 
i.e., residues predicted to bind to one ligand class and observed to bind to another ligand class. 16 

 PredZinc18 is another specialist trained to predict residues binding to zinc ions. While it is 17 
not the most recent method available, it provides a webserver which is still maintained and 18 
generates results quickly. With newer metal-binding prediction methods, we experienced 19 
problems either those were unavailable or took too long to predict for multiple proteins. Therefore, 20 
we chose PredZinc as a specialist predictor for metal binding. 51 proteins in TestSet300 were 21 
annotated to bind to zinc ions (dubbed TestSet300Zinc51 in Table 1), and we used those to compare 22 
PredZinc to the generalist bindEmbed21DL. While not being trained to predict zinc-binding, 23 
bindEmbed21DL achieved the same performance in terms of F1 score as PredZinc (F1=58±8% 24 
vs. F1=58±10%, Fig. 3B) with a lower precision, but higher recall than PredZinc (Fig. 3B). 25 
bindEmbed21DL also achieved a higher CovOneBind (Eqn. 8) than PredZinc making a prediction 26 
for 94% of the proteins compared to 80% for PredZinc. Different to the observation for nucleic 27 
acid binding, performance dropped when considering all residues predicted by bindEmbed21DL 28 
as binding (F1=34±5%, Fig. 3B). While there were some cross-predictions as seen by the gain in 29 
recall (Fig. 3B), only a few residues are usually involved in metal binding. Therefore, combining all 30 
binding prediction introduced many false positives (predicted to bind, not observed), while only 31 
removing few false negatives (observed to bind, not predicted). 32 

 33 

 34 

 35 
Fig. 3: bindEmbed21DL competitive with specialists.  Panel A: XNA binding.  Data: 66 DNA- or RNA-binding (dubbed 36 
XNA) proteins from the test set TestSet300. ProNA202017 (lightest shaded bars) uses MSAs to predict DNA-, RNA-, and 37 
protein-binding, while the method introduced here uses embeddings only (no MSA); bindEmbed21DL-XNA (darkest 38 
shaded bars) marked predictions of either DNA or RNA (XNA); bindEmbed21DL-all (lighter shaded bars) marked using 39 
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all binding predictions and assessing only XNA-binding. While the difference in F1 scores between the three methods 1 
was within the error bars (95% CIs), bindEmbed21DL (-XNA and -all) achieved a statistically significant higher 2 
performance than ProNA2020 while ProNA2020 achieved a higher recall. Also, the fraction of proteins with at least one 3 
XNA prediction (CovOneBind, Eqn. 8) was higher for ProNA2020 than for bindEmbed21DL-XNA. However, when 4 
considering any residue predicted as binding (bindEmbed21DL-all: nucleic acid, or metal ion, or small molecule), our 5 
new method apparently reached the highest values due to confusions between XNA and other ligands (Table S3). Panel 6 
B: Zinc-binding. Data: 51 zinc-binding proteins from TestSet300. PredZinc18 (lightest shaded bars) predicts zinc-7 
binding; bindEmbed21DL-metal (darkest shaded bars) marked predictions for metal ions, bindEmbed21DL-all (lighter 8 
shaded bars) marked using all binding predictions and assessing only metal binding. bindEmbed21DL-metal achieved 9 
a similar performance as PredZinc, while providing predictions for more proteins (CovOneBind(bindEmbed21DL-10 
metal)=94% vs. CovOneBind(PredZinc)=80%).  11 

 12 

More reliable predictions better.  For the prediction of binding vs non-binding residues, 13 
bindEmbed21DL achieved precision=37±2% and recall=52±2% (Fig. 1D, lighter colored bars) 14 
while making predictions for 1,000 of 1,014 proteins in the cross-training set (DevSet1014) 15 
(CovOneBind=99%). These values resulted from the default threshold optimized by the ML 16 
method considering all predictions with probability≥0.5 as binding, all others as non-binding. If 17 
only the 1,000 proteins with a prediction were considered, precision and recall rose by one 18 
percentage point to 38% and 53%, respectively (Fig. 4). We analyzed the trade-off between 19 
precision, recall, and CovOneBind in dependence of the output probability: Precision decreased 20 
for lower cutoffs but recall and CovOneBind increased allowing more binding predictions for more 21 
proteins (Fig. 4, Table S5). For instance, at a cutoff of 0.28, at least one binding prediction was 22 
generated for every protein (CovOneBind=100%) corresponding to a drop in precision by nine 23 
percentage points (Fig. 4, Table S5). On the other hand, precision could be increased by applying 24 
higher cutoffs to define a residue as binding. For instance, for a cutoff of 0.95, precision almost 25 
doubled (Fig. 4, Table S5). While recall and CovOneBind in general decreased for higher cutoffs, 26 
bindEmbed21DL still made predictions for more than half of the proteins and for one fourth of all 27 
binding residues at this very high cutoff of 0.95 (Fig. 4, Table S5). 28 

 29 

 30 

 31 
Fig. 4: Residues predicted stronger more often correctly predicted.  Data set: DevSet1014. Precision and recall are 32 
only shown for the proteins for which at least one residue was predicted as binding where the number of such proteins 33 
is indicated by CovOneBind. The x-axis gives the output probability of bindEmbed21DL for a prediction corresponding 34 
to the prediction strength. The y-axis gives the average performance or percentage of proteins with a prediction at the 35 
respective probability cutoff. All curves give the cumulative values, e.g., the precision of all residues predicted with 36 
probability ≥ 0.95 was 73% corresponding to a recall of 25%; and at that value, at least one binding residue was 37 
predicted in 51% of the proteins. While higher probabilities correspond to more reliable binding predictions, lower 38 
probabilities correspond to highly reliable non-binding predictions (Table S5). 39 

 40 
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Considering different ligand classes, we observed similar results for precision and 1 
CovOneBind, i.e., precision increased while CovOneBind dropped for higher cutoffs and vice versa 2 
for lower cutoffs (Fig. S3). However, the trend was different for recall: While recall decreased as 3 
expected for higher cutoffs for small molecules (Fig. S3C), it first decreased and then increased 4 
for metal ions (Fig. S3A), and first increased and then decreased for nucleic acids (Fig. S3B). For 5 
proteins not binding to a certain ligand class x for which any residue was predicted to bind to x, 6 
precision and recall were set to 0. Increasing the cutoff to define a residue as binding decreased 7 
the number of residues incorrectly predicted to bind to x. Therefore, for more proteins not bound 8 
to x, there were also no residues predicted to bind to x, and those proteins were then ignored for 9 
the performance assessment (i.e., recall and precision are not set to 0). Therefore, recall could 10 
increase for higher cutoffs because CovNoBind increased (Fig. 3).  11 

Since the probability cutoff correlated with the reliability of the predictions, we transformed 12 
the probability into a single-digit integer reliability index (RI) (Eqn. 10) ranging from 0 (unreliable; 13 
probability=0.5) to 9 (very reliable). This RI allowed the user to easily focus on the most reliable 14 
predictions either for binding or non-binding residues. 15 

 16 

Reliable predictions could help refining experimental annotations.  Using a cutoff of 0.95 to 17 
classify a residue as “binding”, bindEmbed21DL achieved a precision of 73% with at least one 18 
residue predicted as binding for 519 proteins (CovOneBind=51%; Fig. 4, Table S5). Despite this 19 
high precision, for 84 of the 519 proteins (16%), none of the reliably predicted residues predicted 20 
that reliably had been experimentally annotated as binding. We analyzed two of those 84 in more 21 
detail.  22 

 For instance, the DNA-binding protein HMf-2 (UniProt ID: P19267) is annotated to bind to 23 
a metal ion at positions 34 and 38 based on the PDB structure 1A7W29,31 with a resolution of 1.55Å. 24 
However, none of those positions was predicted as binding, either at a cutoff of 0.5 or 0.95. In 25 
addition, the name and the available functional annotations suggested this protein to bind DNA. If 26 
correct, the observed metal-binding might point to allosteric binding. Four residues were also 27 
predicted reliably (probability≥0.95) to bind nucleic acids (Fig. 5A, dark red residues). For another 28 
PDB structure of this protein (PDB identifier 5T5K29,32 at 4.0Å resolution), BioLiP annotates DNA-29 
binding, including for all four reliably predicted residues. Due to our threshold in resolution, this 30 
protein had not been included in our data sets. Overall, BioLiP annotates 13 residues in 5T5K as 31 
binding, 10 of those were correctly predicted as nucleic acid-binding (Fig. 5A, lighter red residues) 32 
corresponding to a recall of 77%. With respect to the three remaining: although our sequence-33 
based method clearly did not aspire to reach anywhere near the power of X-ray crystallography, 34 
at least some of the parts of the proteins seemingly bridged over by the major grove (Fig. 5A: dark 35 
blue) might, indeed not bind DNA. 36 

 We observed similar results for the ribonuclease P protein component (UniProt ID: 37 
Q9X1H4): Using the PDB structure 6MAX29,33 with a resolution of 1.42Å, this protein is annotated 38 
to have seven residues binding to a small molecule while bindEmbed21DL did not predict any of 39 
those with a high probability above 0.95. In fact, the available functional annotations clearly 40 
suggest this protein to be binding to nucleic acids and the small molecule bound according to the 41 
PDB structure 6MAX seems to mainly serve as inhibitor for RNA-binding33. Four residues were 42 
also predicted to bind to nucleic acids above a probability of 0.95 (Fig. 5B, dark red residues). The 43 
low-resolution structures 3Q1Q (3.8Å)29,34 and 3Q1R (4.21Å)29,34 also provided annotations for 44 
binding to nucleic acids for this protein. The four most reliable predictions were also annotated as 45 
binding based on those two structures, and of the 21 residues annotated as binding, 16 were also 46 
predicted to be binding with a probability ≥ 0.5 (Fig. 5B, lighter red residues; recall=76%). 47 

 48 
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 1 

 2 
Fig. 5: Annotations from low-resolution structures supported through reliable predictions.  A: Our development 3 
set (DevSet1014) contained the PDB structure 1A7W29,31 for the DNA-binding protein HMf-2 (UniProt ID: P19267). No 4 
DNA/nucleic acid binding was annotated in that structure, but our new method, bindEmbed21DL, reliably predicted 5 
(probability ≥0.95) four residues to bind nucleic acids. Shown is the PDB structure 5T5K29,32 for the same protein that 6 
has a resolution of 4.0Å and annotations of DNA-binding, including the four most reliable predictions (dark red). Overall, 7 
10 of 13 (77%) residues annotated as DNA-binding in 5T5K were also predicted by bindEmbed21DL (shown in lighter 8 
red; blue residues indicate experimental annotations which were not predicted). B: For the ribonuclease P protein 9 
component (UniProt ID: Q9X1H4), four residues were predicted with a probability ≥0.95 (indicated in dark red), none of 10 
these matched the annotations in the PDB structure 6MAX29,33. However, those four residues were considered as binding 11 
according to the two low-resolution structures 3Q1Q (3.8Å)29,34 (visualized) and 3Q1R (4.21Å)29,34. In total, those 12 
structures marked 21 binding residues; 15 of those 21 (71%) were correctly predicted (light red; blue residues observed 13 
to bind but not predicted). These two examples highlighted how combining low-resolution experimental data and very 14 
reliable predictions from bindEmbed21DL could refine those annotations and/or help designing new investigations. 15 

 16 

 These two of 84 examples pitched bindEmbed21DL as a candidate tool to help in 17 
experimentally characterizing new binding residues completely different from the annotations it 18 
was trained on. On the one hand, this facilitates the identification of previously unknown binding 19 
sites, and on the other hand, it might also help to verify and refine known, but potentially unreliable 20 
binding annotations, especially if multiple structures annotating different binding sites are 21 
available. In the two examples shown here, both proteins had already been annotated as binding 22 
to nucleic acids in less well-resolved structures, while the binding annotations from high-resolution 23 
structures rather pointed to binding of co-factors or inhibitors. Combining the low-resolution 24 
annotations with the very reliable predictions from bindEmbed21DL clearly suggested four 25 
positions (Fig. 5, dark red residues) to be involved in nucleic acid binding. Those strongly predicted 26 
binding residues could be further complemented by surrounding residues with weaker predictions 27 
(Fig. 5, lighter red residues). The 3-5 residues with experimental annotations that were not 28 
predicted (Fig. 5, blue residues) might even point to potential annotation mistakes originating from 29 
the limited experimental resolution. Overall, the examples suggested that the seemingly low 30 
performance of bindEmbed21DL clearly partially rooted in the incomplete experimental 31 
annotations used to assess performance (not yet observed to bind treated as non-binding, which 32 
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proved incorrect for most residues of the two proteins assessed). In fact, of the 84 proteins with 1 
incorrect, highly reliable predictions, 32 were predicted to bind nucleic acids. For 6 of those 32 2 
proteins (19%), low resolution structures with binding annotations at least partially matching the 3 
predictions were available. On the other hand, only one of the 75 proteins with incorrect metal 4 
predictions (1%) and one of the 80 proteins with incorrect predictions to small molecules could be 5 
explained by annotations from low resolution structures. This clearly suggested that the highly 6 
reliable predictions from bindEmbed21DL did not only correspond to binding annotations from 7 
low-resolution structures but could in fact point towards still unknown binding sites. 8 

 9 

Final method bindEmbed21 combines HBI and ML to top performance.  Homology-based 10 
inference (HBI) assumes that two sequence-similar proteins are evolutionary related, and 11 
therefore, also share a common function. Using HBI to predict binding residues for three different 12 
ligand classes for our training set yielded very good results for low E-value thresholds, but at those 13 
thresholds, hits were only found for very few proteins (Fig. S4). For instance, for E-values ≤ 10!"#, 14 
HBI achieved F1=56±4% (Fig. S4, leftmost dark red bar), but at that restrictive E-value, only 198 15 
of the 1,014 proteins found a hit, i.e., another protein with experimental annotations. When only 16 
using HBI to make a prediction for all proteins, a random decision would have to be made if no 17 
homolog with experimentally known binding annotations were available at the given threshold. 18 
Penciling in such a random decision dropped performance immensely (F1=21±2% for E-value≤19 
10!"#; Fig. S4, leftmost light red bar). To harness the strong performance of HBI while allowing 20 
better than random predictions for proteins without close homologs, we combined 21 
bindEmbed21DL with HBI applying a simple protocol: Predict binding residues through HBI if a 22 
sequence-similar protein with annotations is available; otherwise use ML. This combination 23 
achieved optimal performance at an E-value threshold of 10!$ leading to F1=45±2% (Fig. S4A, 24 
blue bar at E-value = 10!$) and precision=46±2% (Fig. S4B, blue bar at E-value = 10!$). While F1 25 
and precision were also higher than the performance for only using the ML method 26 
bindEmbed21DL for higher E-value cutoffs, recall dropped below the level of bindEmbed21DL 27 
(Fig. S4C). Therefore, we considered 10!$ the optimal threshold.  28 

 Combining ML and HBI improved performance on the test set TestSet300 by five 29 
percentage points for F1 (F1=48±3%; Fig. 6D). HBI also improved performance for each ligand 30 
class (F1=29±6%, 24±7%, and 41±4% for binding to metal ion, nucleic acid, or small molecule, 31 
respectively; Fig. 6A-C). Performance improved for all ligand classes and for all performance 32 
measurements except for the precision in predicting nucleic acid binding (Fig. 6B). The 33 
performance of bindEmbed21DL was limited by the low CovNoBind (Eqn. 9), especially for metal 34 
ions and small molecules (Tables S3 & S7), i.e., many proteins were predicted to bind to those 35 
ligand classes while not annotated to bind. Combining the ML method with HBI increased 36 
CovNoBind for all three ligand classes, while CovOneBind (Eqn. 8) dropped slightly (Table S6). 37 
Since the drop in CovOneBind was largest for nucleic acids, this could also explain the drop in 38 
performance of bindEmbed21 compared to only the ML method, because precision is set to zero 39 
for proteins annotated but not predicted to bind to a ligand class. 40 

 41 
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 1 

 2 
Fig. 6: Best performance by combining ML and HBI.  We combined homology-based inference (HBI) and Machine 3 
Learning (ML) by transferring annotations between homologs (E-value<10-3) if available and running de novo ML 4 
predictions using bindEmbed21DL, otherwise. This combination improved performance for the prediction of whether a 5 
residue binds to a certain ligand class for A. metal ions, B. nucleic acids, C. small molecules, and D. the combined, 6 
unspecific prediction of binding any of those three ligand classes vs. non-binding any of the three. The final version of 7 
bindEmbed21 achieved F1=29±6%, F1=24±7%, and F1=41±% for metal ions, nucleic acids, and small molecules, 8 
respectively. Lighter colored bars indicate the performance for the ML method, darker colors indicate the performance 9 
for the combination of ML and HBI. 10 

 11 

Prediction for complete human proteome discovered unknown binding residues. Of the 12 
20,386 sequences (corresponding to 11,362,967 residues) currently deposited as the human 13 
proteome to Swiss-Prot35, only 3,121 (15%) had any structure with binding annotations available 14 
in BioLiP (Table 2, Table S7). Using our protocol for HBI (transfer binding annotations of local 15 
alignment if E-value ≤ 10!$) allowed inference of binding residues for another 7,199 proteins 16 
pushing the annotations of experiment + HBI to 51% (Table 2, Table S7). This number rose to 54% 17 
if we applied a less strict E-value cutoff of 1. Although most proteins likely bind ligands to function 18 
correctly, many of those remain obscure (on top the above statistics completely under-estimated 19 
the lack of knowledge by considering a single binding annotation as “protein covered” although 20 
80% of the proteins have several domains36,37). Due to speed, applicability to three main ligand 21 
classes, and performance, bindEmbed21DL bridged this sequence-annotation gap predicting 22 
binding for 92% of the human proteins, for 42% of all human proteins (8,510), no binding 23 
information had been available without our prediction (Table 2, Table S7) and 21% of those 8,510 24 
(1,751) were predicted reliably (probability≥0.95 corresponding to >73% precision, Table S5). In 25 
addition, for 21% of the proteins with experimental or HBI-inferred annotations, bindEmbed21DL 26 
provided highly reliable binding predictions previously unknown. 27 

 As seen for the example of the human proteome, binding annotations are far from complete 28 
leading to two major observations: (1) fast and generally applicable prediction methods such as 29 
bindEmbed21DL are an important tool for the identification of new binding residues and ligands 30 
that could guide future experiments, and (2) our performance estimates are most likely too 31 
conservative because the assumption that all residues not annotated as binding are non-binding 32 
was possibly wrong. In fact, while 48,700 residues were annotated as binding in structures with a 33 
resolution ≤2.5Å, an additional 21,057 residues were predicted as binding with a probability≥0.95. 34 
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Assuming that 15,372 of those are correct (precision at 0.95 is 73%, Table S5), our current set of 1 
annotations is likely missing 24% of binding residues. 2 

Given its speed, bindEmbed21DL could also be easily applied to other complete 3 
proteomes. Predictions for all human proteins were completed within 80 minutes using one single 4 
Xeon machine with 400GB RAM, 20 cores and a Quadro RTX 8000 GPU with 48GB vRAM (40 5 
minutes for the generation of the embeddings, 40 minutes for the predictions), i.e., generating 6 
binding residue predictions for one protein sequence took around 0.2 seconds allowing fast 7 
predictions for large sets of proteins.  8 

Table 2: Binding predictions for complete human proteome. * 9 

Method Nprot Pprot Cumulative 
BioLiP/PDB 3,121 15% 15% 
(bindEmbed21)HBI 9,694 48% 51% 
HBI_error prone 10,526 52% 52% 
bindEmbed21DL 
reliable 

5,962 29% 60% 

bindEmbed21DL 
all 

18,663 92% 93% 

 10 
* Method: BioLiP/PDB: experimental annotations, (bindEmbed21)HBI: homology-based inference at EVAL≤10-3 11 

integrated into bindEmbed21, HBI error-prone: HBI at EVAL≤1, bindEmbed21DL-reliable: probability ≥0.95 with 12 
expected precision >73%, bindEmbed21DL-all: prediction at probability≥0.5 (default threshold); Data: human 13 
proteome from Swiss-Prot35 with 20,386 proteins; Nprot: number of proteins; Pprot: percentage of proteins; 14 
Cumulative: cumulative percentage, assuming the hierarchy: experimental, HBI, DL.  15 

 16 

Availability. The data set including predictions for the human proteome, the source code, and the 17 
trained model are available via GitHub (https://github.com/Rostlab/bindPredict). Embeddings can 18 
be generated using the bio_embeddings pipeline38. In addition, bindEmbed21DL is publicly 19 
available as a standalone method as part of bio_embeddings.20 
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Conclusion 1 

We proposed a new method, bindEmbed21, predicting whether a residue in a protein sequence 2 
binds to a metal ion, a nucleic acid (DNA or RNA), or a small molecule. The method combines 3 
homology-based inference (HBI: bindEmbed21HBI) with Artificial Intelligence (AI), in particular 4 
using deep learning (DL: bindEmbed21DL). bindEmbed21DL neither relied on knowledge of 5 
protein structure nor on expert-crafted features, nor on evolutionary information derived from 6 
multiple sequence alignments (MSAs). Instead, we inputted embeddings from the pre-trained 7 
protein Language Model (pLM) ProtT528 into a two-layer CNN. The major problem with 8 
experimental data is the lack thereof: high-resolution data was available for fewer than 1,100 non-9 
redundant proteins from any organism. Given the data sparsity, it is likely that many binding 10 
residues remain unknown even in the subset of 1,100 proteins with experimental data. 11 
Nevertheless, our evaluation equated “not observed” with “not binding”, treating predictions of 12 
non-observed binding as false positives. Although apparently blatantly underestimating 13 
precision, this crude simplification was needed to avoid over-prediction: methods only 14 
considering “what fraction of the experimental annotations is predicted?” (Recall, Eqn. 1) tend to 15 
optimize recall. The simplest non-sense path toward that end of “always predict binding” was 16 
carefully steered clear off by bindEmbed21DL which outperformed its MSA-based predecessor, 17 
bindPredictML175, by 13 percentage points (Fig. 2A) and appeared competitive with the DNA- 18 
and RNA-prediction expert MSA-based method ProNA202017 and the zinc-binding prediction 19 
method PredZinc18 (Fig. 3). Prediction strength correlated with performance (Fig. 4), e.g., of the 20 
one third of all binding residues predicted with a probability ≥0.84, 59% corresponded to 21 
experimentally known binding annotations available today (Table S5). Detailed analysis of very 22 
reliable predictions not matching known experimental annotations revealed that bindEmbed21DL 23 
correctly predicted binding residues which were not annotated in the high-resolution structure 24 
used for development (Fig. 5). The analysis of predictions for the entire human proteome 25 
underlined that most binding annotations remain unknown today (51% with binding annotations 26 
through experiments or homology) and that bindEmbed21 can help in identifying new potential 27 
binding sites (Table 2, Table S7). The proteome analysis also suggested our performance 28 
estimates to be much too conservative: for all carefully investigated case studies when 29 
bindEmbed21DL reliably predicted ligands that had not been observed, we found evidence that 30 
bindEmbed21DL was right and that some experimental evidence had been overlooked, missing, 31 
or dubious. We combined the best from both worlds, namely AI/ML and HBI, to simplify 32 
predictions for users and to optimally decide when to use which (Fig. 6). The new method, 33 
bindEmbed21, is freely available, blazingly simple and fast, and apparently outperformed our 34 
estimates. 35 
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Materials & Methods 1 

Data sets.  Protein sequences with annotations of binding residues were extracted from BioLiP9. 2 
BioLiP provides binding annotations for residues based on structural information from the Protein 3 
Data Bank (PDB)29, i.e., proteins for which several PDB structures with different identifiers exist 4 
may have multiple binding annotations. To obtain binding annotations, we extracted and 5 
combined (union) all binding information from BioLiP for all chains of PDB structures matching a 6 
given sequence, which have been determined through X-ray crystallography39 with a resolution 7 
of £2.5Å (≤0.25nm). All residues not annotated as binding were considered non-binding. 8 

BioLiP distinguishes four different ligand classes: metal ions, nucleic acids (i.e., DNA and 9 
RNA), small ligands, and peptides (protein-protein interactions). Here, we focused on the first 10 
three, i.e., on predicting the binding of metal ions, nucleic acids, or small ligands (excluding 11 
peptides). At point of accession (26-11-2019), BioLiP annotated 104,733 structures with high 12 
enough resolution and binding annotations which could be mapped to 14,894 sequences in 13 
UniProt35. This set was redundancy reduced using UniqueProt40 with an HVAL<0 (corresponding 14 
to no pair of proteins in the data set having over 20% pairwise sequence identity over 250 aligned 15 
residues41,42; more details about the data set in Table S8 and about the redundancy reduction in 16 
Section 2.1 of the Supporting Online Material (SOM)). The final set of 1,314 proteins was split 17 
into a development set with 1,014 proteins (called DevSet1014 with 13,999 binding residues, 18 
156,684 non-binding residues; Table S8) used for optimizing model parameters and 19 
hyperparameters (after another split into training and validation/cross-training), and test set with 20 
300 proteins (named TestSet300 with 5,869 binding residues, 56,820 non-binding residues; Table 21 
S8) which was frozen because it had been used by other methods that we compared 22 
performance to. 23 

In addition, we created a new and independent test set by extracting all sequences with 24 
binding annotations which were added to BioLiP after our first data set had been built (deposited 25 
between 26 November 2019 and 03 August 2021). This yielded a promising 1,592 proteins. 26 
However, upon redundancy reduction with HVAL<0 (HVAL(P,Q)<0 for all pairs of proteins P and 27 
Q within new set and between the new and the original sets) melted down to 46 proteins with 28 
575 binding and 5,652 non-binding residues (named TestSetNew46; Table S8). These numbers 29 
imply two interesting findings: Firstly, about 17 experiments with binding data have been 30 
published every week over the last 91 weeks. Secondly, only one experiment provides completely 31 
new insights into binding of residues not previously characterized (3% of all). These observations 32 
underscored the importance of complementing experimental with in silico predictions. 33 

 34 

Protein representation and transfer learning.  We used ProtT5-XL-UniRef5028 (in the following 35 
ProtT5) to create fixed-length vector representations for each residue in a protein sequence. The 36 
protein Language Model (pLM) ProtT5 was trained on BFD43 with 2.1 billion protein sequences 37 
and fine-tuned on UniRef5035 with 45 million protein sequences.  38 

ProtT5 is built in analogy to the NLP (Natural Language Processing) T544, a Transformer-39 
based model45 that stacks multiple attention layers46 to perform an all-against-all comparison 40 
between all input tokens (for ProtT5: all residues within one protein sequence) to compute a 41 
weighted sum for each residue against all other residues in the protein sequence. This 42 
mechanism is used to reconstruct corrupted input tokens (for ProtT5: single residues) from the 43 
non-corrupted sequence context (for ProtT5: the non-corrupted part of the protein sequence). 44 
After this so-called pre-training step, features learned by the pLM can be transferred to any 45 
(prediction) task requiring numerical protein representations by extracting vector representations 46 
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for single residues from the hidden states of the pLM (transfer learning). As ProtT5 was only 1 
trained on reconstructing corrupted input tokens from unlabeled protein sequences, there is no 2 
risk of information leakage or overfitting to a certain label during pre-training. To predict whether 3 
a residue is binding a ligand or not, we extracted 1024-dimensional vectors for each residue from 4 
the last hidden layer of the ProtT5 model (Fig. S6, Step 1) without fine-tuning it (no gradient was 5 
backpropagated to ProtT5). 6 

 7 

AI/Deep Learning architecture.  For bindEmbed21DL, we realized the 2nd level supervised 8 
learning through a relatively shallow (few free parameters) two-layer Convolutional Neural 9 
Network (CNN; Fig. S6, Step 2). The CNN was implemented in PyTorch47 and trained with the 10 
following settings: Adamax optimizer, learning rate: 0.01, early stopping, and a batch size of 406 11 
(resulting in two batches). The ProtT5 embeddings which consisted of the last layer of ProtT5 12 
corresponding to a vector of 1024 dimensions per residue were used as the only input. The first 13 
CNN layer consisted of 128 feature channels with a kernel (sliding window) size of k=5 mapping 14 
the input of size L x 1024 to an output of L x 128. The second layer created the final predictions 15 
by applying a CNN with k=5 and three feature channels resulting in an output of size L x 3, one 16 
channel per ligand class. A residue was considered as non-binding if all output probabilities were 17 
< 0.5. The two CNN layers were connected through an exponential linear unit (ELU)48 and a 18 
dropout layer49, with a dropout rate of 70%. 19 

To adjust for the substantial class imbalance between binding (8% of residues) and non-20 
binding (92%), we weighted the cross-entropy loss function. Individual weights were assigned 21 
for each ligand class and were optimized to maximize performance in terms of F1 score (Eqn. 3) 22 
and MCC (Eqn. 4). Higher weights in the loss function increased recall (Eqn. 1), lower weights 23 
increased precision (Eqn. 2). The final weights were 8.9, 7.7, and 4.4 for binding metal ions, 24 
nucleic acids, and small molecules, respectively. 25 

 26 

Homology-based inference.  Homology-based inference (or homology-based annotation 27 
transfer; HBI) proceeds as follows: Given a query protein Q of unknown binding and a protein E 28 
for which some binding residues are experimentally known, align Q and E; if the two have 29 
significant sequence similarity (SIM(Q,E)>T), transfer annotations from E to Q. The threshold T 30 
and the optimal way to measure the sequence similarity (SIM) are typically determined 31 
empirically. Most successful in silico predictions of function are predominantly based on 32 
homology-based inference4,8,50-55. We aligned all proteins with MMseqs256, creating evolutionary 33 
profiles for each protein (family) (two MMseqs2 iterations, at E-value ≤ 10!$) against a 80% non-34 
redundant database combining UniProt35 and PDB29 adapting a standard protocol based on PSI-35 
BLAST57 which was implemented for other methods before17,22,51. The resulting profiles were then 36 
aligned at E-value ≤ 10!$ against a set of proteins with experimentally known binding 37 
annotations. To save resources, we redundancy reduced this set at 95% (PIDE(x,y)<95% for all 38 
protein pairs x, y). For performance estimates, self-hits were excluded. From all hits, the local 39 
alignment with the lowest E-value and highest pairwise sequence identity (PIDE) to the query was 40 
chosen. If this hit contained any binding annotations in the aligned region, binding annotations 41 
were transferred between aligned positions and all non-aligned positions in the query were 42 
considered as non-binding. If no binding annotations were located in the aligned region, the hit 43 
was discarded and no inference of binding annotations through homology was performed. 44 
Combining bindEmbed21HBI with the ML method bindEmbed21DL led to our final method, 45 
bindEmbed21. 46 

 47 
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Performance evaluation.  To assess whether a prediction was correct or not, we used the 1 
following standard annotations: True positives (TP) were residues correctly predicted as binding, 2 
false positives (FP) were incorrectly predicted as binding, true negatives (TN) were correctly 3 
predicted as non-binding, and false negatives (FN) were not predicted as binding while being 4 
annotated as binding. Based on this classification for each residue, we evaluated performance 5 
using standard performance measurements, namely recall (or sensitivity, Eqn. 1), precision (Eqn. 6 
2), F1 score (Eqn. 3), and Matthews Correlation Coefficient (MCC, Eqn. 4). 7 

 𝑅𝑒𝑐𝑎𝑙𝑙 = %&
%&'()

  (Eqn. 1) 8 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = %&
%&'(&

 (Eqn. 2) 9 

 𝐹1 = 2 ∙ *+,-..	∙&1+,23245
*+,-..'&1+,23245

 (Eqn. 3) 10 

 𝑀𝐶𝐶 = %&∙%)!(&∙()
6(%&'(&)(%&'())(%)'(&)(%)'())

 (Eqn. 4) 11 

Negative recall (Eqn. 5), negative precision (Eqn. 6), and negative F1 score (Eqn. 7) focusing on 12 
the negative class, i.e., non-binding residues, could be defined analogously: 13 

 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑅𝑒𝑐𝑎𝑙𝑙 = %)
%)'(&

  (Eqn. 5) 14 

 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = %)
%)'((

 (Eqn. 6) 15 

 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝐹1 = 2 ∙ )+9-:2;+	*+,-..	∙	)+9-:2;+	&1+,23245
)+9-:2;+	*+,-..')+9-:2;+	&1+,23245

 (Eqn. 7) 16 

The measure CovOneBind (Eqn. 8) indicated the fraction of proteins for which at least one residue 17 
was predicted as binding. Accordingly, the inverse of this, the CovNoBind (Eqn. 9), indicated the 18 
fraction of proteins for which predictions as well as experiments detected no binding. Since our 19 
data set only consisted of proteins with a binding site, CovNoBind had to be computed for 20 
different classes of ligands, i.e., the fraction of proteins for which ligand l was neither observed 21 
nor predicted (Eqn. 9). 22 

 𝐶𝑜𝑣𝑂𝑛𝑒𝐵𝑖𝑛𝑑 = )<=>+1	4?	@14:+253	A2:B	45+	>25C259	1+32C<+	@1+C2,:+C
)<=>+1	4?	@14:+253	A2:B	>25C259	-554:-:2453

 (Eqn. 8) 23 

 𝐶𝑜𝑣𝑁𝑜𝐵𝑖𝑛𝑑(𝑙) = )<=>+1	4?	@14:+253	A2:B4<:	>25C259	@1+C2,:2453	?41	.29-5C	.
)<=>+1		4?	@14:+253	A2:B4<:	>25C259	-554:-:2453	?41	.29-5C	.

 (Eqn. 9) 24 

When predicting whether a residue binds a specific ligand class or not, a false positive prediction 25 
for a certain ligand class could result from three cases: a residue (i) not binding anything, (ii) 26 
binding another ligand, or (iii) not known to bind, yet. To capture (ii), we calculated the number of 27 
cross-predictions to any other ligand class (confusion table), i.e., how many residues were 28 
predicted to bind ligand class l while experimentally observed to bind to ligand class m.  29 

Each performance measure was calculated for each protein individually. Then the mean was 30 
calculated over the resulting distribution and symmetric 95% confidence intervals (CI) assuming 31 
a normal distribution of the performance values were calculated as error estimates. 32 
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Reliability Index. We transformed the probability p into a single-digit integer reliability index (RI) 1 
ranging from 0 (unreliable; probability=0.5) to 9 (very reliable; probability=1.0 for binding and 2 
probability=0.0 for non-binding) (Eqn. 10). 3 

 RI(p) = '
(0.5 − 𝑝) ∙ !

".$
						𝑖𝑓	𝑝 < 0.5

(𝑝 − 0.5) ∙ !
".$
						𝑖𝑓	𝑝 ≥ 0.5

 (Eqn. 10) 4 

 5 

Comparison to other methods.  bindPredictML175 predicts binding residues from enzymes 6 
(trained on the PDB) and DNA-binding residues from PDIdb30. Queried with protein sequences, 7 
the method first builds multiple sequence alignments, and uses those to compute evolutionary 8 
couplings21 and effect predictions19,20. Those two main features, in turn, are used as input to the 9 
machine learning method. 10 

ProNA202017 predicts binding to DNA, RNA, and other proteins using a two-step 11 
procedure: The first per-protein level predicts whether a protein binds DNA, RNA, or another 12 
protein. For proteins that bind to other proteins, DNA, or RNA, the second per-residue level 13 
predicts which residue binds to any (or all) of the three ligand classes. ProNA2020 combines 14 
homology-based inference and machine learning using motif-based profile-kernel58,59 and word-15 
based approaches (ProtVec)60 for the per-protein prediction and uses standard neural networks 16 
with different expert-crafted features taken from PredictProtein22 as input. 17 

PredZinc18 predicts binding to zinc ions using a combination of homology-based 18 
inference and a Support Vector Machine (SVM). The SVM was trained on feature vectors 19 
representing the conservativity and physicochemical properties of single amino acids and pairs 20 
of amino acids. 21 

 22 
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