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Abstract 

Only ~40% of the human proteome has structural coordinates available from experiment 

(i.e., X-ray crystallography, NMR spectroscopy, or cryo-EM) or homology modeling with quality 

templates (i.e., 30% sequence identity or greater), leaving most of the proteome structurally 

unsolved. Deep learning (DL) methods for predicting protein structure can help close knowledge 

gaps where experimental and homology models are difficult to obtain. Recent advances in these 

DL methods have shown promising results in expanding structural coverage to the scale of the 

entire human proteome, providing researchers with more complete protein structural information. 

Here, we improve upon an existing DL algorithm for protein structure prediction, the Recurrent 

Geometric Network (RGN). We first expand the training dataset to include experimental 

uncertainty data in the form of atomic displacement parameters, then derive a maximum likelihood 

loss function that incorporates this uncertainty data into model training. Compared to the original 

RGN, our novel maximum likelihood model improves the rate of convergence of initial model 

training and ultimately results in more accurate structure prediction according to the root mean 

square deviation (RMSD) of backbone atoms, the Global Distance Test (GDT), the Global 

Distance Test High Accuracy (GDT-HA), and the Template-Modeling Score (TM-Score). Our 

model also predicts structures with more favorable backbone torsions, which provide more 

accurate starting coordinates for downstream physics-based simulations. Based on these results, 

our maximum likelihood reformulation provides a framework for improving existing or future 

machine learning algorithms for protein structure prediction. The augmented dataset, data 

collection scripts, reformulated RGN source code, and a series of trained models are publicly 

available at https://github.com/SchniedersLab/likelihood-rgn.  
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Introduction 

Nearly 180,000 biomolecular structures obtained using experimental techniques, such as 

X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, or cryogenic electron 

microscopy (cryo-EM), are available within the Protein Data Bank (PDB)(1), yet the majority of 

the human proteome lacks structural coverage. Only ~40% of the human proteome has been 

structurally solved through either experimental methods or homology modeling using templates 

with greater than 30% sequence identity(2). The fold of a protein can be used to assist in 

understanding protein function and identifying potential drug therapy targets. For these reasons, 

the lack of structural coverage for the human proteome is a central problem in biochemistry(3). 

Computational methods can supplement the structural data available from experiment, and recent 

advances in such methods(4-6) have increased the feasibility of predicting a protein’s structure 

from its primary amino acid sequence (i.e., the protein folding problem)(7). 

Traditional computational methods for predicting a protein fold combine a physics-based 

model of intermolecular forces(8-16), an explicit(17) or continuum(8-16, 18-20) solvation model, 

and a sampling algorithm(5, 21) that builds upon molecular dynamics simulations. However, a 

limiting factor of a physics-based approaches is that protein folding often occurs on millisecond 

(10-3 seconds) or longer timescales, whereas GPU-accelerated molecular dynamics simulations are 

largely limited to microsecond (10-6 seconds) time scales due to the computational expense of 

computing interactions over all atoms in a protein system. 

Advances in machine learning—specifically, deep learning (DL)—have prompted the 

development of new data-driven approaches to predicting protein structure(22, 23). These DL 

algorithms use existing protein data, such as 3D coordinates, evolutionary data, and multiple 
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sequence-alignments (MSAs), to train a computational model that predicts protein structure from 

an amino acid sequence. Two benefits these DL methods provide are 1) faster predictions after 

model training compared to physics-based protein folding methods and 2) predicted structures that 

can be used for downstream computational analyses (e.g., free energy perturbation, docking, etc.) 

in cases where coordinates from experiment or homology remain unavailable. These data-driven 

solutions to the protein folding problem have become so significant that comprehensive, 

homogenous datasets of protein structures have been curated specifically for machine learning(24, 

25).  

The success of DL methods for protein structure prediction was demonstrated by the 

DeepMind(26) research group at the 14th Critical Assessment of Structure Prediction (CASP14) 

competition using their AlphaFold2 algorithm(27). At CASP14, AlphaFold2 achieved a median 

Global Distance Test (GDT) of 92.4, corresponding to an average root-mean-square-deviation 

(RMSD) error of 1.6 Å. AlphaFold2 was also recently used to predict structures for 98.5% of the 

human proteome, attaining confident predictions in 58% of all residues(28). Another DL model, 

the Recurrent Geometric Network (RGN)(29), uses end-to-end differentiable learning of protein 

structure and was able to predict coordinates within 1.5 Å RMSD of the top performing servers at 

the 12th CASP competition (CASP12) of 2016. RGN predicts three torsions (i.e., ϕ, ψ, and ω) for 

each amino acid in a protein sequence and sequentially builds the complete backbone by 

computing internal coordinates from known bond lengths and bond angles (Figure 1). Most 

recently, the second iteration of RGN—termed RGN2—was shown to successfully predict protein 

structure from single sequences without the use of MSAs(30). RGN2 outperformed both 

AlphaFold2 and RoseTTAFold(31) in predicting the structures of orphan proteins while also 

achieving a 106-fold reduction in compute time. 
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 Further improvements to these DL 

approaches will help facilitate structure 

prediction for new amino acid sequences, 

nucleic acids, and their complexes. 

Currently, most DL models for structure 

prediction, including RGN, RGN2, and 

AlphaFold2 are trained and evaluated using 

a least-squares style target function (e.g., 

RMSD between the predicted structure and 

the experimental structure). This target 

function trains the neural network as if all 

atomic coordinates within a structure are 

equally certain, which is not the case for 

experimentally determined structures due to 

factors such as the intrinsic flexibility of the 

protein and the overall quality of the 

experiment.  

In fields such as experimental 

biology, structural refinement is performed 

using a maximum likelihood approach, where the target function is modified to account for the 

uncertainty of each atomic coordinate prior to optimization. The use of these maximum likelihood 

approaches in experimental structural biology has a rich history(32, 33), which includes 

application to X-ray crystallography refinement(34, 35), molecular replacement(36-38), and NMR 

 
Figure 1. The three stages of RGN. In stage 1, 
a primary sequence and Position Specific 
Scoring Matrix (PSSM) are submitted to the 
RGN; in stage 2, three backbone torsions (i.e., 
y, w, and f) are predicted for each amino acid 
and the backbone is sequentially built; stage 3 
outputs the final 3D structure and computes the 
loss (i.e., dRMSD between the predicted 
structure and experiment). 
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refinement(39, 40). For example, the initial application of a maximum likelihood target function 

to X-ray refinement in XPLOR(41) achieved more than twice the improvement to average phase 

error compared to least-squares refinement(34). In the context of molecular replacement in the 

program Phaser(38), likelihood-enhanced rotation and translation targets were shown to be more 

sensitive to the correct orientation and translation, respectively, than the corresponding Crowther 

fast rotation function(36) and correlation-coefficient fast translation function(37). Finally, using 

maximum likelihood and Bayesian principles for NMR refinement resulted in structures that were 

optimal in terms of accuracy and structural quality(40). 

Here, we derive and implement a new DL model, Likelihood-RGN, which applies the 

principle of maximum likelihood refinement to the original RGN model to improve protein 

structure prediction. Structures available in the PDB vary in quality (the majority were determined 

based on a resolution worse than 2 Å(42)) and often exhibit different degrees of disorder among 

the regions of even a single protein domain. Using a maximum likelihood target to train a neural 

network allows higher quality regions of structures with more certainty in atomic coordinates to 

have a greater impact on model training, while poorer quality or more disordered regions of 

structures contribute to a lesser extent. To accomplish this, we first compile an improved, 

homogenous training dataset, termed the ProteinNetX, which includes B-factors from X-ray 

crystallography and computed atomic displacement parameters from NMR spectroscopy as 

measures of experimental uncertainty. Following the generation of the dataset, we derive a 

maximum likelihood loss function based on the electron density function from X-ray 

crystallography that incorporates uncertainty data into model training. We train a new model, 

Likelihood-RGN, using this maximum likelihood loss function and generate predictions for a 

series of target structures from CASP12. We compare our predicted structures to experiment, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2021. ; https://doi.org/10.1101/2021.09.03.458873doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458873
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

showing significant improvement over structures predicted by the original (least-squares loss) 

RGN according to several global distance and geometry metrics, such as the RMSD of backbone 

atoms, the Global Distance Test (GDT)(43), the Global Distance Test High Accuracy (GDT-

HA)(44), the Template-Modeling Score (TM-Score)(45), and the proportion of favored and 

outlying torsions. Finally, we perform physics-based optimizations on structures predicted by both 

RGN and Likelihood-RGN to determine their respective suitability for downstream computational 

analyses. These improved results strongly suggest that a maximum likelihood approach can be 

incorporated into more advanced DL models, such as RGN2 and AlphaFold2, in order to generate 

increasingly accurate predictions of protein structure.  
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Results 

A. The ProteinNetX Structure Prediction Dataset with Temperature Factors 

When limited to protein structures solved by X-ray crystallography with experimental B-

factors, ProteinNetX contains 84.7% of the structures included in the original CASP12 ProteinNet 

after filtering the dataset at 90% sequence identity. After including multi-model NMR structures 

with computed atomic displacement parameters, ProteinNetX covers 94.8% of the structures 

available in the original CASP12 ProteinNet dataset (Figure 2a). When computing NMR atomic 

displacement parameters, we add a constant of 20 Å2 to each value so that the peak of the 

distribution (Figure 2c) shifts to match the peak of the distribution of crystallographic B-factors 

(Figure 2b). This shift results in a final distribution of atomic displacement parameters (Figure 2d) 

that mirrors the distribution of experimental temperature factors. Computing atomic displacement 

parameters for single-model NMR and cryo-EM structures is beyond the scope of this work but 

may be explored in the future.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2021. ; https://doi.org/10.1101/2021.09.03.458873doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458873
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

A) 

 

B) 

 
C) 

 

D) 

 
Figure 2. A) Dataset sizes for three variations of ProteinNet. Left shows the ProteinNet dataset 
as originally published (49,600 structures), middle shows the ProteinNetX dataset with only 
structures from X-ray crystallography (42,019 structures), and right shows the full ProteinNetX 
dataset with multi-model NMR structures included (47,035 structures). B) Distribution of 
crystallographic B-factors for all X-ray structures in ProteinNetX. C) Distribution of computed 
atomic displacement parameters for multi-model NMR structures in ProteinNetX. D) 
Distribution of all atomic displacement parameters in the full ProteinNetX dataset. 

 

B. Improved Structure Prediction with a Maximum Likelihood Loss 

We first trained five pairs of models using the CASP12 ProteinNetX dataset containing 

only X-ray crystallography structures. Each pair was initialized from the same originally published 

hyperparameters(29) and random seed while controlling for all factors aside from the loss function. 

Within each pair, one model was trained using the original, least-squares loss function (i.e., 
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dRMSD) and the other model was trained using our maximum likelihood loss. Each model was 

trained for 1.5 million iterations (where one iteration of training occurs over a batch of 32 proteins), 

which was followed by an additional 10,000 iterations of training at a reduced learning rate to 

achieve a small but noticeable gain in prediction accuracy. Plotting a running mean of the average 

dRMSD of structures in the testing dataset over the training iterations for each trial reveals that 

using a maximum likelihood loss to reduce the contributions of highly disordered regions of 

proteins results in smoother convergence during initial training (Figure 3a). Similarly, using a 

maximum likelihood loss results in an improved final convergence compared to using the least-

squares, dRMSD loss (Figure 3c).  

A) 

 

B) 

 
C) 

  

D) 

  
Figure 3. Running average least-squares loss of the testing dataset. Five trials of the first 
400,000 training iterations using ProteinNetX with A) only X-ray structures and B) X-ray and 
NMR structures show that training with a maximum likelihood loss (blue curves) results in 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2021. ; https://doi.org/10.1101/2021.09.03.458873doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458873
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

smoother gradient descent over the initial training period compared to training with the least-
squares loss (yellow curves), as the network places less weight on highly disordered regions of 
proteins when B-factors are included in the loss function. Training over 1,500,000 iterations 
with C) only X-ray structures and D) both X-ray and NMR structures shows that the maximum 
likelihood RGN models (blue curves) tend to converge to a smaller value than the least-squares 
RGN models (yellow curves). 

 

This same procedure was used to train models using the full ProteinNetX dataset (i.e., 

including x-ray and multi-model NMR structures) generated from the 90% thinned CASP12 

ProteinNet. Using the full ProteinNetX dataset, the maximum likelihood model again showed 

increased stability during initial training (Figure 3b) and improved convergence (Figure 3d) when 

compared to the original, least-squares model trained on the same set of proteins. 

 Using the final trained models resulting from each trial, predicted structures were generated 

for a testing dataset of 63 CASP12 target structures not present in the training dataset(24). When 

comparing the models that generated the most physically realistic protein structures (i.e., those 

with the largest proportion of favored backbone torsions) from each set of trials, Likelihood-RGN 

outperforms the original RGN when evaluating the global accuracy of the testing set structures 

using dRMSD, RMSD, GDT(43), GDT-HA(44), and TM-Score(45) (Table 1). This suggests our 

maximum likelihood model achieves improved global folding accuracy while maintaining local 

secondary structure. This increased predictive accuracy remains evident when we average over all 

five trials (Table S1), as well as when we train and evaluate models using the CASP11 training 

and testing sets (Table S3).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2021. ; https://doi.org/10.1101/2021.09.03.458873doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458873
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

 

  

 When examining the two models trained by the full ProteinNetX dataset, the original RGN 

converged to a minimum that predicted global protein topology with reasonable accuracy, but 

failed to predict local secondary structure. When using our maximum likelihood loss, the final 

trained Likelihood-RGN model converged to a minimum that predicted structures with a higher 

proportion of favored backbone torsions (Table 1). This increase in favored backbone torsions 

shown by the trained Likelihood-RGN models leads to a substantial improvement in local 

secondary structure prediction over the original RGN. Structures for six selected CASP12 targets 

demonstrate this improvement, both prior to physics-based optimization (Figure 4) and after 

physics-based optimization (Figure S1). The six selected targets show a variety of structures with 

different lengths (ranging from 89 to 409 amino acids) and varying secondary structure 

characteristics (i.e., both alpha helices and beta sheets). These targets demonstrate that Likelihood-

RGN generally predicts alpha helices more accurately than beta sheets, while the original RGN 

fails to reproduce either form of secondary structure. The physically realistic structures output by 

Likelihood-RGN are more amenable to downstream physics-based optimization and thus, are more 

useful for further computational analyses.  

Table 1. Average scores for 63 testing set proteins across the best performing trials for the RGN 
(least-squares loss) and Likelihood-RGN (maximum likelihood loss) DL models. The neural 
networks here were trained on both the X-ray only ProteinNetX dataset and the full ProteinNetX 
dataset consisting of X-ray and NMR protein structures. 
Training 
Dataset 

Model dRMSD RMSD GDT GDT
-HA 

TM-
Score 

Outlier 
Torsions 

Favored 
Torsions 

X-Ray RGN 8.87 14.14 0.19 0.09 0.32 52.7 23.9 
 L-RGN 8.61 13.66 0.21 0.10 0.33 42.6 40.8 
X-Ray+NMR RGN 9.24 16.53 0.14 0.06 0.24 23.3 48.1 
 L-RGN 8.81 14.68 0.18 0.09 0.30 6.6 77.8 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2021. ; https://doi.org/10.1101/2021.09.03.458873doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458873
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

  Though adding NMR structures to the CASP12 training dataset improved the backbone 

torsions predicted by the final model, the global distance metrics were slightly worse compared to 

the initial set of models trained using only X-ray crystallography structures. While X-ray 

diffraction data represent both short- and long-range interatomic distances, NMR experimental 

observations mainly capture local interactions, which may explain the improvement in secondary 

structure prediction but worsening of the global distance metrics. Representation of NMR models 

in the dataset could be modified to improve upon global distance metrics in addition to predicted 

backbone torsions. For example, the entire NMR ensemble could be used in model training, rather 

than only providing the coordinates of the first structure of the ensemble. Future work could 

include investigating alternative methods to represent NMR coordinates and their uncertainty.  
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Figure 4. Six targets from the CASP12 competition shown in their experimentally solved 
coordinates (green), the original RGN predicted coordinates (blue), and the Likelihood-RGN 
predicted coordinates (orange) from the training trial that provided the best backbone torsions 
and corresponding RMSDs to the experimentally known structure. These structures are output 
directly from the machine learning model and have undergone no additional physics-based 
optimization. The Likelihood-RGN structures have a smaller RMSD to the known experimental 
fold compared to the original RGN. 
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C. Physics-Based Optimization of Predicted Backbone Structures 

To determine the suitability of our predicted structures for downstream computational 

analyses, we performed a series of physics-based optimizations on the structures generated by both 

the RGN and Likelihood-RGN models trained using the full ProteinNetX dataset. The 63 testing 

set proteins were minimized using the Amber(12, 13) fixed charge and AMOEBA(15, 46) 

polarizable force fields with a generalized Kirkwood implicit solvent. Our minimization protocol 

causes a small increase in the average RMSD of the predicted structures. While the average favored 

and outlier torsions worsen for Likelihood-RGN during minimization (Table 2), Ramachandran 

plots show that the torsional angles for many test proteins disperse across favored regions more 

realistically compared to the clustered angles that are output directly from the DL network (Figure 

5). After minimization, the structures predicted by Likelihood-RGN continue to show an improved 

RMSD, GDT, GDT-HA and TM-Score compared to the original RGN (Table 2) and the proportion 

of favored and outlier torsions in Likelihood-RGN continues to significantly surpass RGN, 

suggesting that the Likelihood-RGN structures will better retain their folds upon downstream 

biophysical analyses. Ramachandran plots (Figure 5) for six proteins from the testing set show that 

Likelihood-RGN consistently has fewer torsion outliers and more favored torsions than RGN, both 

before and after minimization. 

 

Table 2. Average scores over the best trials for the 63 testing set protein structures directly 
predicted by both RGN and Likelihood-RGN, as well scores for the structures following 
minimization under the AMOEBA force field. This data was collected from trials that were 
trained using the X-ray+NMR ProteinNetX dataset. 
Model Optimization RMSD GDT GDT-

HA 
TM-

Score 
Torsion 
Outliers 

Favored 
Torsions 

RGN None 16.53 0.14 0.06 0.24 23.3 48.1 
 Minimize 17.45 0.12 0.06 0.22 20.5 49.3 
L-RGN None 14.68 0.18 0.09 0.30 6.6 77.8 
 Minimize 15.52 0.17 0.08 0.28 11.8 68.3 
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After minimizing the 63 testing set protein structures, we applied our many-body sidechain 

repacking algorithm(47) to each structure. The RGN outputs only the backbone coordinates for 

each protein; therefore, applying our algorithm finalizes each structure by building sidechain atoms 

and placing the sidechains in their global minimum energy conformation. After optimizing 

sidechain placement in each of the testing set structures, we assessed quality of the structures prior 

to and after sidechain optimization using the heuristic MolProbity(48, 49) algorithm. MolProbity 

is used widely by crystallographers to aid refinement of x-ray structures and to evaluate the 

 
Figure 5. Ramachandran plots for the structures of six CASP12 targets as predicted by RGN 
and Likelihood-RGN. Ramachandran plots are also shown for the six targets after minimization 
with the AMOEBA force field.  
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structures for steric clashes, rotamer placement, and favorable backbone torsions. The MolProbity 

algorithm provides a score that is calibrated to predict the resolution for an x-ray structure (i.e., a 

MolProbity score of 1.0 corresponds to an x-ray resolution of 1.0 Angstroms). Lower MolProbity 

scores are consistent with higher quality x-ray diffraction data. Optimizing sidechain placement of 

the output structures from RGN and Likelihood-RGN substantially improves the MolProbity 

score, clash score (i.e., the number of steric clashes per 1000 atoms), and favored torsions, and 

reduces the percentage of torsion and rotamer outliers (Table 3).  

 While both the RGN and Likelihood-RGN testing set structures improve from side-chain 

repacking, the Likelihood-RGN achieves lower average MolProbity and clash scores than RGN. 

RGN testing set structures achieve an average MolProbity score of 3.4 and clash score of 74.4; 

Likelihood-RGN achieves average MolProbity and clash scores of 2.9 and 38.1, respectively. 

Average MolProbity statistics suggest that the improvement in structure prediction by Likelihood-

RGN results in structures that are better suited for biophysical simulations.  

Table 3. Refinement statistics for the 63 testing set protein structures before and after use of our 
many-body side-chain optimization.  
Model Optimization MolProbity 

Score 
Clash 
Score 

Favored 
Torsions 

Rotamer 
Outliers 

Torsion 
Outliers 

RGN Minimize 4.1 158.1 49.3 16.7 20.5 
 Sidechains 3.4 74.4 52.9 9.9 9.9 
L-RGN Minimize 3.3 84.5 68.3 10.2 11.8 
 Sidechains 2.9 38.1 69.9 6.6 10.6 

 

Discussion 

 In this work, we described an improved dataset and loss function for use in DL approaches 

to protein structure prediction. We generated the ProteinNetX dataset, which incorporates 

crystallographic B-factors and computed NMR atomic displacement parameters into the existing 
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ProteinNet protein structure prediction dataset. By reformulating the loss function in the RGN 

from a least-squares target to a maximum likelihood target, we were able to incorporate these B-

factors and atomic displacement parameters as experimental uncertainty measures in model 

training. Our maximum likelihood model consistently improved network training over a series of 

trials, both in the initial stability and convergence of model training and in the accuracy of the 

structures predicted by the final models based on a series of global distance metrics. Likelihood-

RGN also predicted structures with more physically realistic backbone torsions, likely a result of 

the well-defined regions of secondary structure with relatively small B-factors contributing more 

to model training. 

 These improvements in secondary structure predictions proved evident in physics-based 

optimizations. The structures predicted by Likelihood-RGN were more amenable to physics-based 

optimizations and retained their overall fold better than the structures predicted by the least-squares 

RGN following energy minimization protocols. This suggests that a maximum likelihood loss 

model may be better suited for downstream biophysical structural refinement, such as molecular 

dynamics-based backbone folding(5, 21) or global side-chain optimization(42, 47). Beginning 

physics-based protein folding from backbones predicted by deep learning, rather than attempting 

ab initio folding, decreases simulation time and improves the resulting structures. 

 Future directions of our work include improving upon NMR structure coordinate and 

uncertainty representations in the ProteinNetX, developing a method to compute atomic 

displacement parameters for single-model NMR and cryo-EM structures, and training a neural 

network to predict B-factors alongside protein coordinates. Predicted B-factors could help quantify 

the uncertainty within an individual structure prediction. Knowledge of uncertainty in predicted 
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atomic coordinates would benefit downstream physics-based refinement by guiding optimization 

methods toward improving lower confidence protein regions. 

Our reformulation of RGN’s least-squares loss to a maximum likelihood loss is a novel 

approach in the effort to apply DL methods to protein structure prediction. The ideas presented 

here are complementary to existing machine learning approaches to protein backbone folding and 

can be easily incorporated into other DL models, such as RGN2 and AlphaFold2, to continue to 

improve our structural coverage of the human proteome. As researchers continue to develop 

increasingly complex DL models, improvements to loss functions, training datasets, and 

optimization procedures are imperative to furthering the public effort toward solving the protein 

folding problem.  
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Methods 

A. Curating a Dataset with Atomic Displacement Parameters 

Existing Protein Datasets for Machine Learning 

ProteinNet(24) is a standardized machine learning database of protein sequences, 

structures, and evolutionary data designed to help develop and assess data driven methods for 

protein structure prediction. ProteinNet contains six separate datasets that emulate the conditions 

of prior CASP competitions (CASP7-12). For each CASP, ProteinNet provides a training dataset 

that contains all protein structures published in the PDB prior to the start date of the competition 

after filtering out similar or repeated structures based on sequence identity and structures with a 

poor quality (e.g., >90% of the sequence being unresolved). The corresponding testing datasets 

include target sequences and structures from the selected CASP competition. A validation dataset 

for each CASP was also generated using a clustering process based on sequence identity to mirror 

the difficulty of the testing dataset. By separating the data in this manner, ProteinNet allows users 

to directly evaluate their models against results from former CASP competitions and determine 

algorithmic improvements. The training dataset for our maximum likelihood framework augments 

the ProteinNet by adding atomic displacement parameters as measures of coordinate uncertainty. 

Atomic Displacement Parameters 

In X-ray crystallography, the B-factor (also called the atomic displacement parameter, 

Debye–Waller factor, or temperature factor) of an atom describes its vibrational motion about a 

mean position and thereby influences the X-ray diffraction pattern of the structural model(50). The 

B-factor is computed using the relationship: 
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𝐵 =
8𝜋!	
3 〈𝑢!〉 

Equation 1. 

where 〈𝑢!〉 is the mean squared displacement of the atom(51). A large B-factor is correlated with 

structural regions that have higher flexibility or less certainty in atomic coordinates, whereas a 

small B-factor is consistent with more rigid, folded regions of a protein structure that have reduced 

conformational uncertainty. For these reasons, B-factors can serve to indicate uncertainty in 

protein interatomic distances when training a DL algorithm for structure prediction. 

Deriving Atomic Displacement Parameters for NMR Structures 

 Protein structures resolved by NMR spectroscopy lack the defined temperature factors 

common to structures determined by X-ray crystallography. We derive experimental uncertainties 

for multi-model NMR structures by computing the root mean square fluctuation (RMSF) of each 

atom over the NMR ensemble. This per-atom RMSF can be computed in Angstroms via the 

following relationship: 

𝑅𝑀𝑆𝐹" = .∑ 0𝒓",$ − 𝒓3"0
!%

$&'
𝑚 	

Equation 2. 

where 𝑟" =
∑ )!,#
$
#%&
%

 is the average position of an atom over 𝑚 models and 𝑟",$ is the position of 

atom 𝑖 in the 𝑘th model(52). Though the dynamics of proteins in solution captured by NMR 

spectroscopy will differ from the motion of proteins observed in a crystal structure, general trends 

in uncertainty will remain the same: regions of defined secondary structure will have a lower per-

atom RMSF, while this computed value will be much higher in flexible loop regions. To mirror  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2021. ; https://doi.org/10.1101/2021.09.03.458873doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458873
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 

the units and scale of crystallographic B-factors, we multiply each RMSF by a constant factor to 

obtain the NMR uncertainty value: 

𝐵",*+, =
8𝜋!	
3

(𝑅𝑀𝑆𝐹")!	

Equation 3. 

Computing B-factors equivalents for single-model NMR and cryo-EM structures is beyond the 

scope of this work but can be considered in future work to increase the number of protein structures 

available in the training dataset. 

Augmenting the ProteinNet to Include Atomic Displacement Parameters 

Using BioJava, a software tool that obtains a protein’s structural information from the 

RCSB based on its PDB ID(53, 54), we collect B-factors for the backbone atoms of each X-ray 

crystallography structure in the CASP12 ProteinNet, which is the largest available ProteinNet 

dataset. We also compute NMR atomic displacement parameters for the backbone atoms of each 

multi-model NMR structure in the dataset. We compile these structures and atomic displacement 

parameters, along with the information for each protein included in the original ProteinNet, into a 

new dataset. We call this augmented dataset the ProteinNetX. 

B. Reformulating Training of the Recurrent Geometric Network Using a 
Maximum Likelihood Loss Function 

The RGN model takes as input an amino acid sequence and its corresponding position 

specific scoring matrix, and ultimately returns the 3D coordinates of a protein backbone. RGN is 

comprised of three stages: computation, geometry, and assessment. In the first stage, structural and 

evolutionary information from amino acids is integrated into adjacent units. Three values are 

output for each unit, corresponding to the backbone torsional angles (i.e., φ, ψ, and ω) of each 

residue. In the second stage, the 3D Cartesian coordinates of the protein backbone are defined by 
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iteratively extending the amino acid chain by one amino acid based on the predicted torsional 

angles and known bond lengths and bond angles. The third stage outputs the final 3D structure of 

the protein, evaluates the loss between predicted and experimental structures, and minimizes this 

loss using backpropagation of the gradient (Figure 1). The loss function used by the original RGN 

is the distance-based root-mean-square-deviation (dRMSD) metric. The dRMSD is computed by 

first evaluating the pairwise distances between all atoms in the predicted structure and all atoms in 

the experimental structure individually, followed by evaluating the RMSD between the two sets 

of distances. 

The ProteinNetX dataset serves as training data for Likelihood-RGN, a modified RGN 

model that employs the maximum likelihood loss function described below. To derive the loss 

function, we begin from the electron density 𝜌"(𝒅")	of an atom 𝑖 at coordinates 𝒅𝒊, which is used 

to model X-ray diffraction(40) 

𝜌"(𝒅") = 𝑎$ =
4𝜋

𝑏$ + 𝐵"
A
. !⁄

exp E
−4𝜋!|𝒅" − 𝐫"|!

𝑏$ + 𝐵"
H	

Equation 4. 

where 𝒓" are the coordinates of the atomic center, 𝐵" is the atom’s isotropic crystallographic B-

factor, and 𝑎$ and 𝑏$ parameterize a typical Gaussian atomic form factor amplitude and width, 

respectively(55). Taking the limit as the form factor width goes to zero (i.e., all electron density is 

located at the atomic center) and setting the amplitude to unity (𝑎$ = 1), gives the probability of 

finding the atom at coordinates 𝒅": 

𝑃"(𝒅") = =
4𝜋
𝐵"
A
. !⁄

exp E−
4𝜋!|𝒅" − 𝐫"|!

𝐵"
H	

Equation 5. 
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Similarly, a 3D normal distribution with equivalent standard deviations in each dimension 

K𝜎 = 𝜎0 = 𝜎1 = 𝜎2M and no correlations between dimensions can be modeled by: 

𝑓"(𝒅") =
1

𝜎".(2𝜋). !⁄ exp E−
|𝒅" − 𝐫"|!

2𝜎"!
H	

Equation 6. 

Comparing 𝑓"(𝒅") to 𝑃"(𝒅") shows the variance of Equation 5 is given by 

𝜎"! =
𝐵"
8𝜋!	

Equation 7. 

To mirror the dRMSD target used by the original RGN, we now consider a second atom j with a 

measured position 𝒓3 and a variance of 𝜎3! = 𝐵3 8𝜋!⁄ . The probability of a predicted atomic 

separation 𝒅"3 is a Gaussian centered at 𝒓"3 = 𝒓" − 𝒓3 with a total variance of 

𝜎"3! = 𝜎"! + 𝜎3! =
Q𝐵" + 𝐵3R
8𝜋! 	

Equation 8. 

giving the probability density function 

𝑓Q𝒅"3R = S
4𝜋

𝐵" + 𝐵3
T
. !⁄

exp U−
4𝜋!0𝒅"3 − 𝐫"30

!

Q𝐵" + 𝐵3R
V	

Equation 9. 

The overall likelihood of the experimental backbone coordinates 𝑋4 given the predicted backbone 

coordinates 𝑋5 is then given by a product of interatomic distance likelihoods 

𝑃(𝐗4; 𝐗5) =Z Z 𝑓Q𝒅"3R
6

3&"7'

68'

"&'

	

Equation 10. 
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where 𝒅"3 is the predicted atomic separation between the Cα atoms of residue 𝑖 and residue j and 

n is the total number of residues in the protein. The negative of the natural log of the total likelihood 

then becomes the loss that is minimized during Likelihood-RGN training, given by (ignoring 

constants): 

𝐹(𝐗4; 𝐗5) = ^ ^
4𝜋!0𝒅"3 − 𝐫"30

!

Q𝐵" + 𝐵3R

6

3&"7'

68'

"&'

	

Equation 11.      

We determine the success of our maximum likelihood loss reformulation by training 

Likelihood-RGN for protein structure prediction using ProteinNetX and comparing our results to 

models trained using the original RGN loss function. Hyperparameters for training our model 

mirror the hyperparameters selected in previous work(29), and the success of model training is 

initially monitored using the average dRMSD loss of the testing dataset. We then evaluate the 

accuracy of proteins from the testing dataset predicted by RGN and Likelihood-RGN using a series 

of geometry metrics, including the RMSD of backbone atoms, GDT(43), GDT-HA(44), TM-

Score(45), and favored backbone torsions.  

C. Physics-Based Optimization of Predicted Protein Backbones 

 We refine the structures of the testing dataset proteins predicted by our two trained models 

(i.e., RGN and Likelihood-RGN) with physics-based optimizations using the fixed-charge 

Amber(12, 13) and the 2018 AMOEBA(46, 56) polarizable force fields with a generalized 

Kirkwood implicit solvent. We first use the Amber force field to locally optimize the protein 

structures using the limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm to a 

root mean square (RMS) gradient convergence criterion of 0.1 kcal/mol/Å. We then further 

minimize the structures to an RMS gradient convergence criterion of 0.1 kcal/mol/Å using the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2021. ; https://doi.org/10.1101/2021.09.03.458873doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458873
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

AMOEBA force field. Minimizing to a tight convergence criterion using the Amber fixed charge 

force field first followed by minimization with AMOEBA allows relaxation of the tightly folded 

predicted backbones, enables a significant reduction in steric clashes, and allows the backbones to 

find more favorable torsions. This minimization protocol helps prepare the structures for future 

physics-based simulation and analyses such as molecular dynamics or global side-chain 

optimization. We evaluate the backbone RMSD, GDT, GDT-HA, TM-Score, and proportion of 

favored backbone torsions both prior to minimization and after minimization to determine which 

predicted structures retain their global folds better upon physics-based refinement. 

After completing a local optimization, we use our GPU-accelerated many-body 

optimization(47) to finalize each of the testing set protein structures. Our many-body algorithm 

builds side chains atoms and computes the global minimum energy conformation for each side 

chain under the AMOEBA forcefield with generalized Kirkwood implicit solvent. Many-body 

optimization of side chain atoms dramatically improves the quality of protein structures(47). We 

evaluate the quality of the testing set structures before and after applying our many-body method 

using the MolProbity(48, 49) scoring metric, which is widely used by crystallographers to identify 

high-energy steric clashes and unfavorable side chain or backbone conformations.  

Code and Data Availability 

The ProteinNetX datasets, both with and without NMR structures, all code for this work, 

and the fully trained models are publicly available at https://github.com/SchniedersLab/likelihood-

rgn. 
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