
1 

 

Strategy-dependent effects of working-memory limitations on human perceptual decision-making 

 

 

Kyra Schapiro1, Krešimir Josić2,3, Zachary P. Kilpatrick4,5, and Joshua I. Gold1 

1Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA 
2Department of Mathematics, University of Houston, Houston, TX, USA 
3Department of Biology and Biochemistry, University of Houston, Houston, TX, USA 
4Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO, USA 
5Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA 

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.03.458917doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458917
http://creativecommons.org/licenses/by-nc/4.0/


2 

 

Abstract  1 

Deliberative decisions based on an accumulation of evidence over time depend on working 2 

memory, and working memory has limitations, but how these limitations affect deliberative decision-3 

making is not understood. We used human psychophysics to assess the impact of working-memory 4 

limitations on the fidelity of a continuous decision variable. Participants decided the average location of 5 

multiple visual targets. This computed, continuous decision variable degraded with time and capacity in 6 

a manner that depended critically on the strategy used to form the decision variable. This dependence 7 

reflected whether the decision variable was computed either: 1) immediately upon observing the 8 

evidence, and thus stored as a single value in memory; or 2) at the time of the report, and thus stored as 9 

multiple values in memory. These results provide important constraints on how the brain computes and 10 

maintains temporally dynamic decision variables.   11 
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Introduction 12 

Many perceptual, memory-based, and reward-based decisions depend on an accumulation of 13 

evidence over time (Brody & Hanks, 2016; Gold & Shadlen, 2007; Ratcliff et al., 2016; Shadlen & 14 

Shohamy, 2016; Summerfield & Tsetsos, 2012). This dynamic process, which can operate on timescales 15 

ranging from tens to hundreds of milliseconds for many perceptual decisions to seconds or longer for 16 

reward-based decisions (Bernacchia et al., 2011; Gold & Stocker, 2017), depends on working memory 17 

to maintain representations of new, incoming evidence and/or the aggregated, updating decision variable. 18 

Working memory is known to be constrained by capacity and temporal limitations (Bastos et al., 2018; 19 

Cowan et al., 2008; Funahashi et al., 1989; Oberauer et al., 2016; Panichello et al., 2019; Ploner et al., 20 

1998; Schneegans & Bays, 2018; White et al., 1994), which implies such limitations may also constrain 21 

decision performance when the decision requires information to be maintained in working memory. 22 

Several previous studies failed to identify such constraints on working-memory-dependent decisions but 23 

used tasks involving binary choices, which may have a low sensitivity to known working-memory 24 

limitations (Liu et al., 2015; Waskom & Kiani, 2018). It remains unclear how working-memory 25 

limitations affect decisions that require interpreting and storing continuously valued quantities, 26 

representations of which are known to degrade in working-memory (Ploner et al., 1998; Schneegans & 27 

Bays, 2018; Wei et al., 2012; White et al., 1994). 28 

To assess such effects, we examined the relationship between decision-making and working 29 

memory in the context of visuo-spatial tasks about continuous variables (visual target locations) that are 30 

sensitive to capacity and temporal limitations of working memory (Bastos et al., 2018; Funahashi et al., 31 

1989; Panichello et al., 2019; Ploner et al., 1998; Schneegans & Bays, 2018; White et al., 1994). 32 

Specifically, we required human participants to indicate a spatial location that was informed by one or 33 

more briefly presented visual stimuli (“disks”; Fig. 1) after a variable delay. We compared the effects of 34 

variable set size and delay when the remembered location corresponded to either: 1) the perceived 35 
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location (angle) of a specific disk, identified at the time of interrogation (comparable to prior studies 36 

(Ploner et al., 1998; Schneegans & Bays, 2018; Wei et al., 2012; White et al., 1994)); or 2) the computed 37 

mean angle of a set of multiple disks, which has not been examined in detail. Additionally, we examined 38 

the effects of working-memory limitations on computed locations under two conditions that are 39 

representative of certain decision-making tasks. The first was a “simultaneous” condition in which all 40 

disks (and thus all information) were presented at once. The second was a “sequential” condition in which 41 

one disk was presented later than the others. This condition required participants to adjust to a within-42 

trial change of available decision-relevant information, typifying decisions that require evidence 43 

accumulation over time.  44 

Figure 1: Behavioral task. Participants were asked to maintain visual fixation on the center cross 

while an array of colored disks was presented for 0.5 s, followed by a variable delay and finally the 

presentation of a visual cue that had a color that was either: 1) the same as one of the disks, indicating 

that the participant should use the mouse to mark the remembered location of that disk (“perceptual” 

trial) or 2) white, indicating that the participant should mark the mean angle of the array (“computed” 

trial).  Perceptual and Computed trials were separated by blocks.  Participants knew in advance which 

block they were performing, but not which disk would be probed on any given trial, during Perceptual 

blocks.  The number of disks and length of the delay period were varied randomly within each block. 

Blocks were also defined by the temporal presentation of the disks.  In “simultaneous” blocks all disks 

were presented at once, whereas in “sequential” blocks, the final disk (most counterclockwise) was 

presented midway through the variable delay. 
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For spatial working-memory tasks, the precision of working memory for perceived spatial 45 

locations is often well described by diffusion dynamics (Compte, 2000; Kilpatrick, 2018; Kilpatrick et 46 

al., 2013; Laing & Chow, 2001) that  are commonly implemented in “bump-attractor” models of working 47 

memory (Compte, 2000; Constantinidis et al., 2018; Laing & Chow, 2001; Riley & Constantinidis, 2015; 48 

Wei et al., 2012; Wimmer et al., 2014) (Fig. 2a). Our analyses built on this framework by examining 49 

memory diffusion dynamics for the different task conditions and potential decision strategies. For the 50 

conditions we tested, most participants behavior was well fit by one of two strategies, each with its own 51 

constraints on decision performance based on different working-memory demands. The first strategy was 52 

to compute the decision variable (mean disk angle) immediately upon observing the evidence (individual 53 

disk angles), and then store that value in working memory in a manner that, like for the memory of a 54 

single perceived angle, could be modeled as a single particle with a particular diffusion constant 55 

(Average-then-Diffuse model; AtD; Fig. 2b parallel purple and solid black lines). The second strategy 56 

was to maintain the representations of all disk locations in working memory, modeled as separate 57 

diffusing particles, and then to combine them into a decision variable only at the time of the decision 58 

(Diffuse-then-Average model; DtA).  Such strategy use results in a diffusion constant for the average that 59 

is inversely related to the number of points (Fig. 2b; magenta and dashed black lines).  These two 60 

strategies had slightly different predictions and formulations when samples were presented sequentially 61 

(Fig. 2c,d). Our results show that like perceived angles, memory for computed mean angles degraded 62 

with increased set size (of relevant information) and delay between presentation and report. However, 63 

the degree of degradation depended strongly on the strategy used to compute the decision variables, 64 

implying that multiple, strategy- and task-dependent effects of working-memory should be considered in 65 

the construction of future neural and computational models of decision-making.   66 
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Figure 2: Diffusion model and predictions for different strategies. a) 50 simulated trials of the modeled 

representation of a single memorandum, x̂i, experiencing Brownian diffusion. At time t, the report, rt,1, is the 

location of the particle (motor noise is included in η1). Note the increase in variance over time, which corresponds 

to decreased memory precision. b) Linear accumulation of noise (variance) for single or multiple perceived items 

(colors as indicated) or computed mean values using two different strategies. In each case, the memory 

representation starts with some initial, additive error, N, and diffuses over time with a diffusion constant N
2, 

where N indicates set size. For the Average-then-Diffuse (AtD) model, the average over the presented stimuli is 

calculated immediately, and this single value is stored. Thus, the diffusion constant is identical between a 

Perceived and a Computed item (parallel purple and black lines), though the encoding may be different (i.e., the 

initial errors, 1 and MN, may not be equal). For the Diffuse-then-Average (DtA) model, all items are stored until 

the probe time. Thus, the diffusion constant of the Computed item is 1/Nth the diffusion constant of the multiple 

Perceived items held in memory. c) Accumulation of noise for Perceived items presented sequentially. Note that 

when the new point is added at time T/2, the diffusion constant for previously presented items (Early) changes 

slightly because of the increased load. The “effective Early” trace shows the net gain in variance over time that 

would be expected when sampling the error only at time T, as was done in this study. d) Accumulation of noise 

for Computed items under sequential presentation conditions for both models. At time=T/2, the final point is 

averaged, causing a change in the diffusion coefficients. The effective lines represent the measured change in 

variance over time one would measure when recording only at time T, as we did. In these examples N=5, A=0.5. 
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Results 67 

We measured the ability of human participants to remember spatial angles as a function of set 68 

size (1, 2, or 5 items), delay duration (0, 1, or 6 s), and task context (Perceived or Computed blocks). We 69 

measured error between reported and probed angles as a proxy for working memory-representations and 70 

inferred rates of memory degradation (diffusion constants) from the increase in variance of these errors 71 

over time. Below we first describe results from Simultaneous conditions, in which all items were 72 

presented simultaneously at the beginning of each trial, and show how capacity and temporal constraints 73 

on working memory relate to the accuracy of computed decision variables. We then describe our findings 74 

from Sequential conditions, in which one item was presented after the others in each trial, and show how 75 

capacity and temporal constraints affect the process of evidence integration over time. 76 

Simultaneous condition behavior 77 

The difference in reports of Perceived spatial angles and the true probed location (i.e., the 78 

response error) tended to be relatively unbiased in that the mean error across participants was not 79 

significantly different from zero (Fig. 3a, full distributions in Fig. S1, individual participant mean errors 80 

in Fig. S3-4). However, the variance of these errors increased roughly linearly over time (Fig. 3c), 81 

consistent with predictions of particle diffusion models (Compte, 2000; Kilpatrick, 2018; Kilpatrick et 82 

al., 2013; Laing & Chow, 2001). This error variance also depended systematically on set size (Fig. 3c). 83 

However the change in error variance over time (slope of variance increase) did not depend on set size 84 

(ANOVA, significant effect of set size, F(2,32)=83.87, p=1.88e-13, and delay, F(2,32)=29.55, p=5.37e-85 

08, but no significant interaction between set size and delay, F(4,64)=1.36, p=0.256). 86 

Errors in reports of Computed (i.e., inferred mean) spatial angles relative to true mean angles 87 

showed similar trends, albeit with a much weaker dependence on the number of items. Specifically, 88 

Computed angle reports were also unbiased (mean error from the true value was not significantly 89 

different from zero; Fig. 3b, S1,S3-4) but degraded (became more variable) with a roughly linear increase 90 
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in variance over time (Fig. 3d). Error variance was higher at higher set sizes (set size 5 had higher 91 

variances), but the rate of degradation in accuracy did not depend on set size (ANOVA, significant effect 92 

of set size, F(2,32)=13.53 p=5.515e-5, and delay, F(2,32)=130.79, p=4.441e-16, but not their interaction, 93 

F(4,64)= 0.538, p=0.708). 94 

 

Figure 3: Behavioral summary for the Simultaneous condition. A) Mean Perceptual error for different set 

sizes (colors, as indicated) and delay time (abscissa). Filled points indicate two-tailed t-test for H0: mean=0, 

p<0.05. B) Mean Computed (inferred mean) error for different set sizes (colors, as indicated) and delay time 

(abscissa); for all tests mean error was not significantly different from zero (open circles). C) Variance in 

Perceptual errors, plotted as in A. D) Variance in Computed (mean) errors, plotted as in B. In each panel, 

points and error bars are mean±SEM across participants.  
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Simultaneous condition model fits 95 

To better understand the effects of delay and set size on working-memory representations of 96 

Perceived and Computed angles for individual participants, we fit the AtD and DtA models (see Methods 97 

for details) separately to data from each condition and participant (Table 1; the two models each had the 98 

same number of free parameters and thus were compared using the log-likelihoods of the fits). Both 99 

models include terms that quantify separately the effect of set size on non-time-dependent noise (i.e., the 100 

variance in report errors with no delay; η) and the diffusion constant (i.e., the rate at which the variance 101 

of the errors increases over time for a single Perceived point; σ1
2). The A parameter governs the 102 

relationship between σ1
2 and the diffusion constant for multiple Perceived points (σN

2) (i.e., σN
2=σ1

2*NA). 103 

 Set 

size 

(N) 

Number 

best-fit 

participants 

η1 ηN ηMN σ1
2 A 

AtD 2 8 10.79±1.45 16.49±2.67 9.39±1.07 4.85±0.44 0.0892±0.24 

 5 14 9.80±1.18 36.88±5.33 14.79±1.50 4.34±0.47 0.0051±0.07 

DtA 2 9 8.22±1.35 14.16±3.13 10.45±2.09 3.67±0.58 0.61±0.22 

 5 3 7.63±0.30 45.49±17.03 21.10±7.59 5.14±0.28 0.49±0.14 

For the participants best fit by the AtD model, the mean, best-fitting values of A were close to zero, 104 

which reflects the lack of interaction between set size and delay seen in the Perceptual ANOVA in Fig. 3c 105 

(because in this model, σN
2=σ1

2 when A=0). Conversely, for the participants best fit by the DtA model, 106 

the mean, best-fitting values of A were slightly higher, which reflects the lack of interaction in the 107 

Computed ANOVA in Fig. 3d (because in this model, the diffusion of a Computed point scales with σN
2, 108 

specifically σMN
2=σN

2/N; thus, σMN
2 does not differ from σ1

2 in DtA only when σN
2 > σ1

2, which occurs 109 

when A>0). Of note, when A=1, the AtD and DtA models make identical predictions, namely σMN
2=σ1

2= 110 

Table 1. Summary of model fits for the Simultaneous condition. Parameters are: 1) η1, non-time-

dependent noise of a single value; 2) ηN, non-time-dependent noise of N points; 3) ηMN, non-time-

dependent noise of the mean of N points; 4) σ1
2, diffusion constant of a single point; and 5) A, 

diffusion cost of additional points. For each parameter, the maximum likelihood estimates (mean 

over participants±SEM) are given for the participants best fit with a particular model.  
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σ1
2*NA/N=�̂�N

2/N. Across the population, the 95% confidence intervals for A (as determined by the SEM 111 

A values across the population) did not overlap with 1, supporting the distinguishability of the two models 112 

on average participants (although not for each individual participant; Fig. S7).  113 

Simultaneous condition model validation 114 

When A differs from one, AtD and DtA make distinct, strong assumptions about the diffusion 115 

constant relationships between either single (AtD) or multiple (DtA) Perceived angles(s) versus a 116 

Computed average angle, as depicted in Fig. 2b. We used these assumptions to validate whether the 117 

better-fitting model and best-fit parameters for a given participant at a given set size were likely to 118 

produce the participant’s behavior. Specifically, the AtD model assumes that the diffusion constant for a 119 

single Perceived angle and for a Computed average angle are the same because both involve the memory 120 

of a single value (eq. 9). In contrast, the DtA model assumes that the diffusion constant for a Computed 121 

average angle is 1/Nth the diffusion constant for N points because all N points are held in memory prior 122 

to averaging (eq.10). We analyzed how consistent these assumptions were with the behavioral data (Fig. 123 

4). Specifically, for each participant we fit a line to the measured error variances as a function of delay 124 

for a given set size in both Perceived and Computed blocks to estimate the change in variance over time 125 

(the empirical diffusion constant estimates: �̂�1
2, �̂�N

2, �̂�MN
2, where N=2 or 5 for the two set sizes). We then 126 

compared the differences of these empirical estimates to the differences predicted between diffusion 127 

constants by the best fit model for a given participant. 128 

In general, the participant data conformed to the model predictions of the best-fit model for that 129 

participant, despite substantial individual variability. For participants whose data were best fit by the AtD 130 

model, empirical estimates of the diffusion constant (�̂�MN
2) from Computed blocks tended to be similar 131 

to the empirical estimates of the diffusion constant for a single Perceptual point (�̂�1
2; Fig. 4a,c). 132 
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Specifically, for all but two participants, the empirical diffusion constant differences fell within the 95% 133 

confidence interval of simulated distribution. Likewise, for participants whose data were best fit by the 134 

DtA model, empirical estimates of the diffusion constant (�̂�MN
2) from Computed blocks tended to be 135 

similar to the empirical estimates of the diffusion constant for multiple Perceptual points divided by the 136 

set size (�̂�N
2/N; Fig. 4b,d). Specifically, for all but one participant, empirical diffusion constant differences 137 

fell within the 95% confidence interval of the simulated distribution. For some participants, the diffusion 138 

Figure 4: Comparisons of empirical and model-based diffusion constant relationships for the 

Simultaneous condition. In each panel, the abscissa shows the difference between: 1) empirical estimates 

of the diffusion constant for a Computed value measured by fitting a line to measured variance as a 

function of delay time for set size 2 (�̂�M2
2, a,b) or 5 (�̂�M2

2, c,d), and 2) the empirical estimates of the 

diffusion constant for a single Perceived value (�̂�1
2). The Average-then-Diffuse (AtD) model predicts a 

difference of zero. The ordinate shows the difference between: 1) the empirical estimate of Computed 

diffusion constants �̂�M2
2 or �̂�M5

2, and 2) the empirical estimates of the diffusion constant for multiple 

Perceived values (�̂�2
2 or �̂�5

2) divided by the number of points. The Diffuse-then-Average (DtA) model 

predicts a difference of zero. Each point was obtained using data from individual participants, separated 

by whether they were best fit by the AtD (a,c) or DtA (b,d) model for the given set-size condition. Lines 

represent 95% confidence intervals computed by simulating data using the best-fit parameters for the 

given fit and repeating the empirical estimate comparison procedure. Closed symbols indicate 

participants who fell within the 95% confidence interval for their best-fit model. 
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constant relationship conformed to the expectations of both models (point lying near origin in Fig. 4). 139 

These analyses thus support the idea that for most subjects, their behavior was well captured by their 140 

better-fitting model.  141 

Summaries of the predicted report-error variances by the AtD and DtA fits for well-fit participants 142 

are shown in Fig. 5. Overall, the model predictions match participant behavior. In general, AtD 143 

participant behavior was predicted by diffusion constants that were the same for either one Perceived 144 

location or the mean Computed location based on 2 or 5 points (i.e., parallel lines in Fig. 5e,g). DtA 145 

participant behavior was well predicted by diffusion constants that were larger for multiple Perceived 146 

points compared to Single Perceived points (Fig. 5f,h). As predicted by the DtA model, the Computed 147 

point errors for DtA participants were well predicted by 1/Nth the diffusion constant for multiple 148 

Perceived points (Fig. 5e-h). 149 

Figure 5. Comparison of model prediction to participant data for the Simultaneous condition. Each 

panel shows the empirical variance of participant errors (points and error bars are mean±SEM data 

across participants) and model predictions (lines, based on the mean best-fitting parameters across 

participants for the given model) for the participants best fit by the given model (AtD or DtA) for the 

given condition, as labeled above each column. A–D) Perceived blocks. E–F) Computed blocks.  
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Simultaneous condition strategy comparisons 150 

Across the population, participants had different tendencies to use the two strategies (AtD or DtA) 151 

for the two set-size conditions (Fig. 6). Specifically, equal numbers of well-fit participants were best fit 152 

by the AtD (n=8) and the DtA (n=8) model for a set size of 2, and as such neither model was significantly 153 

more likely to be a better fit (Wilcoxon signed-rank two-sided test for the median difference in the log-154 

likelihoods of fits of the two models to data from each participant=0, p=0.756). In contrast, at set size 5, 155 

the well-fit participants were more likely to be better fit by the AtD (n=12) than the DtA (n=3) model 156 

(p=0.0027). Participants who were not poorly fit at either set size were more likely to be better fit by AtD 157 

in set size 5 compared to set size 2 (Wilcoxon signed-rank two-sided test for equal median log-likelihoods 158 

difference of fits of the two models across set sizes, p=0.029). Additionally, the log likelihood difference 159 

of strategy use did not correlate with the age of the participants (Pearson correlation, Fig. S8a, p>0.20). 160 

These findings suggest that working-memory load may affect people’s decision strategies, such that a 161 

higher load seems to correspond to an increased tendency to discard information about individual samples 162 

(disk locations) and hold only the relevant computed decision variable in memory. 163 

Figure 6. Difference in log likelihood between AtD and DtA fits for the Simultaneous condition. 

Negative values favor AtD. Each point represents the difference in fit log likelihoods for one 

participant; horizontal bars are medians (solid bar for set size 5 indicates two-sidesd Wilcoxon signed-

rank test for H0: median=0, p=0.0027).  Positive values favor DtA, whereas negative favor AtD.  Grey 

lines connect data generated by the same participant. Only participants whose data were well matched 

to one of the two models (i.e., within the 95% confidence intervals depicted in Fig. 4) were included. 
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Sequential condition behavior 164 

We separately analyzed errors for Perceived reports of disks presented at the beginning (Early) 165 

or middle (Late) of a trial. Early Perceived reports tended to be relatively unbiased (mean error not 166 

significantly different from zero; Fig. 7a, full distributions in Fig. S2) but became more variable over 167 

time in a roughly linear manner (Fig. 7d), consistent with the predictions of the particle diffusion model. 168 

For higher set sizes, errors were more variable than at lower set sizes. The rate of variance increase over 169 

time did not depend on set size (ANOVA, significant effect of set size, F(2,32)=33.44, p=1.45e-08, and 170 

delay, F(1,16)=77.02, p= 1.64e-07, but not their interaction, F(2,32)=0.15, p=0.256). Late Perceived 171 

reports were likewise unbiased (mean error not significantly different from zero; Fig. 7b, full distributions 172 

in Fig. S2) and degraded in precision (i.e., increased in variance) over time (Fig.7e). However, this 173 

degradation did not depend on set size (ANOVA, significant effect of delay, F(1,16)=39.28, p=1.12e-05, 174 

but not set size, F(1,16)=0.90, p= 0.36 or their interaction, F(1,16)=0.0029, p=0.96). 175 

Conversely, Computed (i.e., inferred mean) reports that required integrating both Early and Late 176 

points tended to be slightly biased towards the Early points for set size 2 (student two-sided t-test, 177 

p<0.001) but not set size 5 (p>0.5; Fig. 6c, full distributions in Fig. S2). The Computed report errors also 178 

increased in variance over time (Fig. 7f). The overall magnitude of this imprecision and its change over 179 

time depended systematically on the number of items to remember, such that more items corresponded 180 

to a slightly greater overall variance in reports at short delays, but less gain in variance over time 181 

(ANOVA, significant effect of set size, F(2,32)=7.73 p=1.8e-3, delay, F(1,16)=73.76, p=2.18e-07, and 182 

their interaction, F(2,32)= 6.81, p=3.4e-3). This interaction of delay and set size suggests the 183 

representation of the Computed value diffused in working memory with a different diffusion constant 184 

than for a single Perceived value. This interaction is consistent with predictions of both the AtD and DtA 185 

models under these conditions, though the nature of this interaction depends on the specific model, as 186 

detailed below.  187 
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Sequential condition model fitting 188 

To better understand the effects of delay and set size on working-memory representations of 189 

Perceived and Computed locations for individual participants under Sequential conditions, we fit the AtD 190 

and DtA models separately to data from each condition and participant (Table 2; the two models each 191 

had the same number of free parameters and thus were compared using the log-likelihoods of the fits). 192 

Recall that the η parameters quantify the effect of set size on non-time-dependent noise (noise when delay 193 

is zero), whereas σ1
2 is the model-based estimate of the diffusion constant for a single Perceived point. 194 

Figure 7: Behavioral summary for the Sequential condition. a) Mean error for initially presented (Early) 

Perceptual points for different set sizes (colors, as indicated) and delay time (abscissa). b) Mean error for 

midway presented (Late) Perceptual points for different set sizes (colors, as indicated) and delay time 

(abscissa). c) Mean Computed (inferred mean) error for different set sizes (colors, as indicated) and delay time 

(abscissa). Filled points in a-c indicate two-tailed student t-test for H0: mean=0, p<0.05. d) Variance in Early 

Perceptual errors plotted as in a. e) Variance in Late Perceptual errors, plotted as in b. f) Variance in Computed 

(mean) errors, plotted as in c. In each panel, points and error bars are mean ± SEM across participants.  
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For participants best fit by AtD at both set sizes, the average A was close to zero, which is 195 

consistent with the lack of interaction between set size and delay seen in the Early and Late Perceptual 196 

ANOVA. Unlike in the Simultaneous Condition, the participants best fit by DtA had negative A values 197 

at both set sizes, implying that the diffusion constant for multiple Perceived items became closer to zero 198 

as the number of points increased. While counterintuitive to the concept that adding more points should 199 

increase the diffusion constant, such a negative A can be explained by ceiling effects: if a participant has 200 

high levels of non-time-dependent noise, they have less room to degrade while still accurately tracking 201 

the target (i.e., not having a lapse). Alternatively, the presentation of a new point may have had a 202 

stabilizing effect on the ensemble by creating directional drift towards the new point rather than random 203 

diffusion in the remaining points (Almeida et al., 2015; Wei et al., 2012), which is not inherently 204 

accounted for in any of the present models. As in the Simultaneous condition, the models make identical 205 

predictions when A=1. Across the population, 95% confidence intervals of A did not overlap with one, 206 

supporting the distinguishability of the two models; however, this difference from one was not always 207 

true for individual participants (Estimates of A on a participant-by-participant basis are shown in Fig. S5-208 

6).  209 

 Set 

size 

(N) 

Number 

best-fit 

participants 

η1 

 

ηNE 

 

ηNL 

 

ηMN-seq 

 

σ1
2 

 

A 

 

AtD 2 9 9.44±1.47 20.32±3.89 16.18±3.16 14.02±1.58 4.44±0.73 -0.34±0.44 

 5 9 10.69±1.21 37.06±5.22 13.19±2.06 15.94±1.69 4.22±0.73 -0.09±0.15 

DtA 2 8 10.25±1.53 18.30±3.31 17.43±1.88 14.00±3.11 4.58±0.52 -3.00±2.58 

 5 8 9.11±1.69 36.59±5.54 22.27±4.37 24.45±4.60 4.43±0.57 -3.89±2.90 

Table 2. Summary of model fits for the Sequential condition. Parameters are: 1) η1, non-time-dependent 

noise of a single value; 2) ηNE, non-time-dependent noise of the Early N–1 points; 3) ηNL, non-time-

dependent noise of the Late Nth points; 4) ηMN-seq, non-time-dependent noise of the mean of N points; 5) 

σ1
2, diffusion constant of a single point; and 6) A, diffusion cost of additional points. For each parameter, 

the maximum likelihood estimates (mean over participants±SEM) is given for the participants best fit 

with a particular model.  
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Sequential condition model validation 210 

As in the Simultaneous condition, the Sequential condition models also make predictions about 211 

the relationship between the diffusion constants of remembered Computed and Perceived values. Once 212 

again, we assessed how well participant behavior matched these assumptions, detailed in eq. 11 for AtD 213 

and eq. 12 for DtA (Fig. 8). We fit a line to the measured variances in reporting error as a function of 214 

delay for a given set size in both Perceived and Computed Sequential blocks to estimate the change in 215 

variance over time (the empirical diffusion constant estimates: �̂�1
2, �̂�NE

2, �̂�NL
2, �̂�MN-seq

2, where N=2 or 5 for 216 

the two set sizes). We then compared the difference of these empirical estimates to the predictions of the 217 

best-fit model for each participant (Fig. 8). We used our parametric bootstrapping variant to create 218 

simulated distributions of expected deviation from the model-defined diffusion constant relationships for 219 

each subject as described previously.  220 

In general, the participant data conformed to the model predictions of the best-fit model for that 221 

participant, despite substantial individual variability. For participants whose data were best fit by the AtD 222 

model (n=9 for both set sizes), empirical estimates of the diffusion constant (�̂�MN-seq
2) from Computed 223 

blocks tended to be similar to the expected fraction of the empirical estimates of the diffusion constant 224 

for a single point (Fig. 8a,c). Specifically, for every participant the empirical diffusion constant 225 

differences fell within the 95% confidence interval computed from simulations using the model fits. For 226 

participants whose data were best fit by the DtA model (n=8 for both set sizes), empirical estimates of 227 

the diffusion constant (�̂�MN
2) from Computed blocks tended to be similar to the expected average of 228 

empirical estimates of the diffusion constant for multiple points (0.5�̂�NL
2+(N–1)* �̂�NE

2)/N2 ; Fig. S10b,d). 229 

Specifically, for 7 participants, empirical diffusion constant differences fell within the 95% confidence 230 

interval computed from simulations using the model fits. The remaining subject was considered poorly 231 

fit and not considered in further analyses.  232 
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Summaries of the predictions of report errors variances for AtD and DtA fits are shown in Fig. 9. 233 

In general, participants best fit by AtD on average exhibited diffusion constants that were lower for 234 

Computed than Perceived values (Fig. 9i,k; lower slope of cyan/blue line versus purple line), with the 235 

difference decreasing with increased set size, as expected due to averaging process (Fig. 2d). Additionally 236 

for the participants best fit by AtD, both the Early and Late variances were on average fairly well matched 237 

by their model predictions as well (Fig. 9a,e,c,g). Conversely, participants best fit by DtA exhibited 238 

Figure 8: Comparisons of empirical and model-based diffusion constants. In each panel, the abscissa 

shows the difference between: 1) empirical estimates of the diffusion constant for a Computed value 

measured by fitting a line to measured variance as a function of delay time for set size 2 (�̂�M2
2, a,b) or 5 

(�̂�M5
2, c,d), and 2) the empirical estimates of the diffusion constant for a single Perceived value (�̂�1

2) 

multiplied by the appropriate factor for the set size. The Average-then-Diffuse (AtD) model predicts a 

difference of zero. The ordinate shows the difference between: 1) the empirical estimate of Computed 

diffusion constants �̂�M2
2 or �̂�M5

2, and 2) the empirical estimates of the diffusion constant of a Computed 

value based on the DtA hypothesis. Therefore, a value of zero indicates a match between the DtA 

prediction of the Computed Diffusion constant and the empirically measured estimate.  Points are data 

from individual participants, separated by whether they were best fit by the AtD (a,c) or DtA (b,d) model 

for the given set-size condition. Lines are 95% confidence intervals computed by simulating data using 

the best-fit parameters for the given fit and repeating the empirical estimate comparison procedure. Close 

symbols indicate participants who fell within the 95% confidence interval for their best-fit model.  
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diffusion constants that were notably smaller for Computed mean locations versus single Perceived 239 

locations (Fig. 9j,l; lower slope of cyan/blue line versus purple line). The corresponding average 240 

predictions by the best fit DtA models for error variance of Early and Late Points also aligned with 241 

participant data from DtA fit participants (Fig. 9 b,f,d,h).  242 

 

Figure 9. Comparison of model fits for the Sequential condition. Each panel shows the empirical variance of 

participant errors (points and error bars are mean±SEM data across participants) and model predictions (lines, 

using mean predicted variance from each participant’s best-fitting parameters for the given model) for the 

participants best fit by the given model (AtD or DtA) for the given condition, as labeled above each Column. 

Panels a-d) errors for Ealy points in Perceived Sequential, e-h) errors for Late points in Sequential Perceived 

blocks. i-l) depict errors for Sequential Computed blocks. 
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Sequential condition strategy comparisons 243 

Across the population, participants had roughly equal tendencies to use either one the two 244 

strategies (AtD or DtA) for the two set-size conditions (Fig. 10). Specifically, about an equal number of 245 

participants were best fit by the AtD (n=9) or DtA (n=8) model for a set size of 2 (Wilcoxon signed-rank 246 

two-sided test for the median difference in the log-likelihoods of fits of the two models to data from each 247 

participant=0, p=0.868). An approximately equal number of participants were also best fit and well fit by 248 

the AtD (n=9) or DtA (n=7) model for a set size of 5 and neither model was more likely to be the better 249 

fit across participants (p=0.234). Participants not poorly fit at either set size were not significantly more 250 

likely to be fit by either model across set sizes (Wilcoxon signed-rank two-sided test for identical median 251 

log-likelihoods difference of fits of the two models across set size, p=0.283). Additionally, the log 252 

likelihood difference of each model producing the data did not correlat e with age of participants (Fig. 253 

S8b; Pearson correlation, p>0.20). In general, all of the participants lost fidelity in their representation of 254 

a Computed value when it needed to consider sequentially presented information, as in many processes 255 

of evidence accumulation. However, the dynamics of this degradation differed for the two strategies, 256 

neither of which was more likely than the other for a given participant.  257 

Figure 10. Difference in log likelihood per well-fit participant AtD and DtA fits. Negative values favor 

AtD. Each point represents the difference in fit log likelihoods for one participant and data from the 

same participant are connected across set sizes; horizontal bars are medians. Positive values favor DtA 

while negative values favor AtD.  We failed to reject the null hypothesis (two-sided Wilcoxon signed 

rank test for H0: median=0, p>0.05) for both set sizes. 
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Strategy comparisons across conditions 258 

The use of different strategies (i.e., those captured by the AtD and DtA models) did not appear to 259 

reflect a tendency of individual participants to use a particular strategy across different conditions. 260 

Specifically, we used Fisher’s exact test of independence based on set size across temporal conditions as 261 

well as based on temporal conditions across set sizes to test whether individual participants were best fit 262 

by the same model under different task conditions. We failed to reject the null hypothesis that there is no 263 

relationship between a participant’s strategy use across set size for both Simultaneous and Sequential 264 

conditions (i.e., strategy use in set size 2 Simultaneous was not predictive of use in set size 5 265 

Simultaneous, nor was it for Sequential conditions; p=0.31 and p=1 respectively). We also failed to reject 266 

the null hypothesis that there is no relationship between a participant’s strategy use across temporal 267 

conditions for both set sizes 2 and 5 (p=0.54 and p=1 respectively). Thus, we found that only under set 268 

size 5 were Simultaneous conditions participants more likely to use one strategy (AtD) over the other 269 

(DtA). In all other tested cases, participants were equally likely to use either strategy, and strategy use 270 

was not predictive across conditions for individual participants.  271 

Discussion 272 

The goal of this study was to better understand if and how capacity and temporal limitations of 273 

working memory affect human decision-making. We used a task that required participants to report 274 

remembered spatial locations based on different numbers of objects and for different delay durations, 275 

both of which are known to systematically affect the precision of memory reports (Bastos et al., 2018; 276 

Cowan et al., 2008; Funahashi et al., 1989; Oberauer et al., 2016; Panichello et al., 2019; Ploner et al., 277 

1998; Schneegans & Bays, 2018; White et al., 1994). We used two pairs of conditions to investigate these 278 

effects across decision-making circumstances. The first condition was Perceptual versus Computed, 279 

which allowed us to recapitulate previous findings of the effects of capacity and temporal limitations of 280 

working memory for directly observed (perceptual) quantities and then extend those findings to the kind 281 
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of computed quantity that is used as a decision variable for tasks that require integration or averaging to 282 

reduce uncertainty (Brody & Hanks, 2016; Gold & Shadlen, 2007; Ratcliff et al., 2016; Shadlen & 283 

Shohamy, 2016; Summerfield & Tsetsos, 2012). The second was Simultaneous versus Sequential 284 

conditions, which extended our investigation to include the effects of working-memory limitations on 285 

decision making under relatively simple conditions (i.e., when all relevant evidence was presented at 286 

once) to the effects in a basic case of evidence accumulation over time (i.e., in which a new piece of 287 

evidence is used to update a computed quantity). 288 

Our primary finding was that computed variables based on either simultaneously or sequentially 289 

presented information were susceptible to the same kinds of working-memory constraints as perceived 290 

variables. These working-memory limitations corresponded to a decrease in precision over time, which 291 

places critical constraints on the kinds of decision variables that are required to persist over time, such as 292 

when decisions are delayed. This result appears to contradict previous findings that found no effect of 293 

extra delays on the effectiveness of evidence accumulation for certain decisions (Liu et al., 2015; 294 

Waskom & Kiani, 2018). However, those studies used tasks with binary choices that required decision 295 

variables with less clear sensitivity to the kinds of working-memory effects we found in the context of a 296 

continuous, spatially based decision variable. Additionally, we found that increasing the number of 297 

decision-relevant points also decreased the accuracy of the continuous decision variable, although the 298 

nature of this effect was variable. More work is needed to fully characterize the conditions under which 299 

temporal and capacity limitations on the precision of working-memory representations affect decisions 300 

based on those representations. 301 

We also found that the exact nature of interactions between working-memory limitations and 302 

decision-making depend critically on the strategy used to form the decision, and those strategies can vary 303 

substantially across individuals and tasks. For our task, we focused on two primary strategies. The first 304 

strategy, captured by the Average-then-Diffuse (AtD) model, stipulated that a participant first calculates 305 
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and then stores the Computed value. Its key prediction is that a Computed value should be susceptible to 306 

the same effects of working-memory limitations as a single remembered Perceptual value in simultaneous 307 

conditions. The second strategy, captured by the Diffuse-then-Average (DtA) model, stipulated that all 308 

individual values are stored in working memory until the time of decision. Its key prediction is that the 309 

overall rate of variance increase is inversely related to the number of items. We found that participants 310 

tended to use an AtD strategy for the Simultaneous conditions with a relatively high load (five items), 311 

but otherwise were roughly equally likely to use either strategy, including for all Sequential conditions.  312 

This finding of multiple strategy use raises several intriguing future questions. For example, we 313 

found that for the Simultaneous condition, several individuals switched from using DtA for the smaller 314 

set size to AtD for the larger set size, but we do not know if this switch was a consequence of their 315 

personal working-memory capacities. From an optimality standpoint, DtA better preserves a computed 316 

value compared to AtD for a given level of non-time-dependent noise and cost per storage item (A), but 317 

only if A remains low (<1). It would be interesting to see if for more intermediate set sizes (i.e., 3 or 4 318 

items) there is a reliable increase in the probability of a participant using AtD with a progression that 319 

relates to other measures of the individual’s working-memory capacity. Such future studies would more 320 

definitively support the conclusion that increased working-memory load corresponds to an increased 321 

tendency to discard information about individual samples and hold only the computed decision variable 322 

in memory. Future studies should also examine other factors that might govern which strategy is used for 323 

a given set of conditions. For example, participants in our study were instructed to report the average but 324 

given no additional details about how to do so, nor given strong incentives for choosing any particular 325 

strategy versus another. Future studies could provide more detailed instructions, incentives, and/or 326 

feedback to better understand the flexibility with which these different strategies can be employed. 327 

Future work should also examine in more detail several other facets of working memory that were 328 

not included in our models but in principle could affect decision variables that are computed and retained 329 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.03.458917doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458917
http://creativecommons.org/licenses/by-nc/4.0/


24 

 

over time. First, our DtA model assumed no interference between multiple items stored in memory. This 330 

assumption is undoubtedly an oversimplification, given that storage of multiple points has been both 331 

hypothesized and shown to create attraction and repulsion (Almeida et al., 2015; Kilpatrick, 2018; Wei 332 

et al., 2012). Such directional drift can create a decrease in variance over time that could affect decision 333 

variables that involve multiple quantities stored at once. Second, our DtA model also assumed that each 334 

item was stored individually. Alternatively, items could have been discarded or merged (chunked) 335 

(Kilpatrick, 2018; Wei et al., 2012), leading to different memory loads which could also affect 336 

performance. Third, we did not find strong evidence that participant behavior could not be described by 337 

the AtD or DtA model, but there was some evidence that our poorly fit subjects might have been using a 338 

strategy that started out storing multiple points as in DtA but that combined the evidence into a single 339 

variable midway through the delay in an AtD-like fashion. This kind of strategy would suggest extensive 340 

flexibility in when and how evidence is incorporated into computed decision variables, thereby placing 341 

potentially complex demands on working memory. 342 

Both of our models were based on assumptions of a drifting memory representation. This random 343 

drift is traditionally associated with attractor models of working memory (Bays, 2014; Compte, 2000; 344 

Macoveanu et al., 2007; Wei et al., 2012) that have been used extensively to describe the underlying 345 

neural mechanisms (Funahashi et al., 1989; Shafi et al., 2007; Takeda & Funahashi, 2002; Wimmer et 346 

al., 2014). In these models, neural network activity is induced by an external stimulus and then maintained 347 

via excitatory connections of similarly tuned neurons and long-ranged inhibition. Random noise causes 348 

the center of this activity (which represents the stimulus) to drift in a manner that, dependent on the 349 

implementation, can depend on the delay duration, set size, and/or their interaction (Almeida et al., 2015; 350 

Bays, 2014; Koyluoglu et al., 2017). A recent implementation even can naturally compute a running 351 

average based on sequentially presented information (Esnaola-Acebes et al., 2021). Our results imply 352 

that such models should be extended to support the flexible use of different strategies that govern when 353 
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and how incoming information is used to form such averages. It will be interesting to see if such a flexible 354 

model can account for neural activity in the dorsolateral prefrontal cortex (dlPFC), which includes 355 

neurons with persistent activity that has been associated with both spatial working memory11,22–25 and the 356 

formation of decisions based on an accumulation of evidence (Curtis & D’Esposito, 2003; H. R. Heekeren 357 

et al., 2006; Hauke R. Heekeren et al., 2008; Kim & Shadlen, 1999; Lin et al., 2020; Philiastides et al., 358 

2011).  359 

In conclusion, we found that in this spatial, continuous task, participant accuracy for both perceived 360 

and computed values was subject to working-memory limitations of both time and capacity. Additionally, we 361 

found behavior that was consistent with both the storage strategies we investigated. The fact that different 362 

participants employed different strategies for storing a computed value (such as a decision variable) and that 363 

these strategies have different consequences on overall accuracy has important implications for not only future 364 

neural network models of working memory, but also for future computational models of decision-making.   365 
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Materials and Methods 366 

Human psychophysics behavioral task.  367 

We tested 17 participants (4 male, 12 female, 1 chose not to answer; age range=22–87 yrs). The 368 

task was created with PsychoPy3(Peirce et al., 2019) and distributed to participants via Pavlovia.com, 369 

which allowed participants to perform the task on their home computers after providing informed consent. 370 

These protocols were reviewed by the University of Pennsylvania Institutional Review Board (IRB) and 371 

determined to meet eligibility criteria for IRB review exemption authorized by 45 CFR 46.104, category 372 

2. 373 

Participants were instructed to sit one arm-length away from their computer screens during the 374 

experiment and to use the mouse to indicate choices. Each participant completed 1–2 sets of 4 blocks of 375 

trials in their own time. 376 

The basic trial structure is illustrated in Fig. 1. Each trial began with the presentation of a central 377 

white fixation cross (1% of the screen height). The participant was instructed to maintain fixation on this 378 

cross when not actively responding. The participant began each trial by placing the mouse over the cross 379 

and clicking, to allow for self-pacing and pseudo-fixation. Initiating a trial caused a white annulus of 380 

radius 25% of the screen height to appear. A block-specific memory array appeared 250 ms later, centered 381 

at an angle chosen uniformly and at random on the anulus. The array consisted of 1, 2, or 5 colored disks 382 

sized 1.5% screen in diameter. The angular difference between any two adjacent disks was at least 6°, 383 

and between the two most distal disks was at most 60°. The disks from clockwise to counter-clockwise 384 

were always presented in the same order: green, red, blue, magenta, and yellow. When fewer than five 385 

disks were presented, the latter colors were omitted. The consistent color ordering was intended to reduce 386 

errors caused by mis-binding of location and color. The angular differences between disks in an array 387 

was randomly selected from 5 preselected sets. The memory array remained on the screen for 0.5 s, while 388 

the annulus remained on the screen throughout the delay of 0, 1, or 6 s. At the end of the delay, the 389 
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fixation cross was replaced with a response cue that either matched a color of a disk in the memory array, 390 

indicating a response to the remembered location of that disk, or was white, indicating a response to the 391 

mean angle of all disks in the present trial. The response type varied by block (see below). The participant 392 

then moved the mouse and clicked on the annulus at a position at which they remembered the requested 393 

response. Feedback was then given indicating the correct location, the participant’s response, and the 394 

difference between the two.  395 

We used four block-wise conditions: 1) Simultaneous Perceived blocks used arrays of 1, 2, or 5 396 

disks presented simultaneously at the beginning of the trial. Participants were told in advance that they 397 

would always be asked to report the location of one of the array disks but were not informed which one 398 

until the response period. The probed disk was picked randomly on each trial. 2) Simultaneous Computed 399 

blocks used arrays of 2 or 5 disks presented simultaneously at the beginning of the trial. Participants were 400 

told in advance they would need to report the average angle of all disks shown in the present trial. 3) 401 

Sequential Perceived blocks were identical to Simultaneous Perceived blocks, except only arrays of 2 or 402 

5 disks were used, and all but one of the disks (the counter-clockwise most) was presented at the beginning 403 

of the trial. The final disk was presented for 0.5 s ending midway through the delay of 1 or 6 s. Participants 404 

were told in advance that the final disk would be presented in the middle of the delay for these blocks. 4) 405 

Sequential Computed blocks were identical to Simultaneous Computed blocks, but with delayed 406 

presentation of the final disk as in Sequential Perceived blocks. Again, participants were told in advance 407 

that the final disk would be presented in the middle of the delay.  408 

All participants completed one and most (12) participants completed two blocks of each type. Each 409 

block contained 50 trials at each set size and each delay time, the order of which was randomized. 410 
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Basic analyses.  411 

Trials were excluded from analysis if the response was >30° from the correct angle. This cutoff 412 

was based on assessment of the error distributions (Fig. S1-2); using a cutoff of 25° did not noticeably 413 

change the results. On average, <10% of trials were excluded per delay condition per set size per block 414 

(see Fig. S1-2). These trials were excluded to focus analysis on trials that were directed towards the 415 

correct location and avoid lapses of attention and extreme motor errors. We investigated both the bias 416 

and variance in participant responses, as follows.  417 

We quantified bias as the mean error between the response and the true probed angle for each 418 

participant and condition (positive/negative values imply errors that were systematically 419 

counterclockwise/clockwise respectively). A Bonferroni-corrected two-sided t-test was used to assess 420 

whether this mean response error was significantly different from zero across participants for each set 421 

size, delay, response type and temporal presentation. Additionally, the mean error and confidence interval 422 

for each subject were calculated for each condition (Fig. S3-6). 423 

We quantified the variance of the error between the response and the true probed angle for each 424 

participant and condition. We chose variance as opposed to other measures of dispersion for consistency 425 

with our particle models (see below) in which variance scales linearly with delay. We examined effects 426 

of set size, delay duration, and task context on response variability using a two-way repeated measures 427 

ANOVA. On Simultaneous Perceived and Computed blocks, we used a 3 (delay duration: 0, 1, or 6 s) x 428 

3 (set size: 1, 2, or 5 disks) within-participant design. On Sequential Perceived blocks, we used a 2 (delay 429 

duration: 1 or 6 s) x 3 (set size: 1, 2, or 5 disks) within-participants design for stimuli presented at the 430 

beginning of the trial (Early) and a 2 (delay: 0.5 or 3 s) x 2 (set size: 2 or 5 disks) design for stimuli 431 

presented halfway through the trial (Late). On Sequential Computed blocks, we used a 2 (delay duration: 432 

1 or 6 s) x 3 (set size: 1, 2, or 5 disks) within-participants design. When the comparison included set 433 

size=1, data were always taken from the Simultaneous Perceived block.  434 
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Model-based analyses. 435 

Our models were based on principles of working memory that are well described by bump-436 

attractor network models (Compte, 2000; Laing & Chow, 2001; Wimmer et al., 2014). In such models, 437 

stimulus location is represented by a “bump” in activity from neurons tuned to that and similar locations. 438 

These neurons recurrently activate each other, maintaining a bump of activity even after stimulus 439 

cessation. However, because of the stochastic nature of neural activity and synaptic transmission(Faisal 440 

et al., 2008), there is variability in which neurons have the most activity at any given time (and thus are 441 

the center of the bump representing the stimulus).  This variability in bump center corresponds to 442 

variability in the location representation and a degradation of the memory representation over time. The 443 

dynamics of this bump can be described as a diffusion process that obeys Brownian motion (Compte, 444 

2000; Kilpatrick, 2018; Kilpatrick et al., 2013; Laing & Chow, 2001). We used this simplified description 445 

in our models as follows. 446 

Perceived values in working memory.  447 

A single point (i.e., the central spatial location of a single disk), x1, is assumed to be represented 448 

in working memory by x̂t,1, where t represents the time since the removal of the stimulus. We assume that 449 

x̂t,1 evolves like a sample from a Brownian-motion process. Specifically, when 𝑥1 is observed, it is 450 

encoded with some perceptual noise, ηp. Therefore, at time zero, x̂0,1 ~ N(x, ηp). This representation 451 

accumulates noise over time with some diffusion constant, σ1
2, further degrading the representation of 452 

x̂t,1 from x1 such that x̂t,1 ~ N(x1, η
p+ t*σ1

2). There is additional motor noise in the participant’s report, rt,1, 453 

and we denote the variance of this motor noise by ηm. Mathematically, it is equivalent to add the motor 454 

noise at the beginning or the end of the diffusion of x̂t,1 when considering the report, rt,1. In our model, 455 

we thus represent the sum of the perceptual and motor noise as a single, non-time-dependent noise term. 456 

Hence, we show simulated trajectories of x̂t,1 in Fig. 2a with an initial variance of η1= ηp+ ηm so that at 457 

time t the report, rt,1 is the current angle of the trajectory. Therefore: 458 
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rt,1 ~N(x1, η1 + t* σ1
2).       (1) 459 

When multiple items are held in memory, they are held with less fidelity than a single point (Bays 460 

et al., 2009; Brady & Alvarez, 2015; Koyluoglu et al., 2017; Wei et al., 2012). We therefore assume that 461 

the sum of the initial perceptual noise and final motor noise, with variance denoted by ηN, can depend on 462 

the number of disks, N. Moreover we describe, x̂t,n , the representation of the nth item at time t, by a 463 

normal distribution with a diffusion constant that is potentially higher than for a single point. We assume 464 

that this new diffusion constant σN
2, equals σ1

2*NA and thus scales as a power of the total number of 465 

stimuli, N, held in memory (Bays et al., 2009; Bays & Husain, 2008; Wei et al., 2012), and is proportional 466 

to the diffusion constant corresponding to a single stimulus representation, σ1
2. Therefore: 467 

rt,n ~ N(xn, ηN + t* σ1
2*NA)       (2) 468 

All representations in a set of size N share the same magnitude of non-time-dependent noise, ηN, 469 

but the evolution of each representation is assumed to be independent. To examine distributions of 470 

responses across the various presented locations, we measured the error of the response rt,n relative to the 471 

true location of the target the observer was asked to report, xt,n. According to our model, the difference 472 

between the true and reported location (the error, et,n) is 473 

et,1 ~ N(0, η1 + t *σ1
2)        (3a) 474 

et,n ~ N(0, ηN + t *σ1
2*NA)       (3b) 475 

The linear relationship between total accumulated noise and time for both a single and multiple 476 

memoranda is illustrated in Fig. 2b. 477 

Average-then-Diffuse (AtD) Simultaneous model.  478 

For this model, the representation of the average is stored as a single particle and diffuses the 479 

same as a Perceived point (i.e., a location at which there was a visible stimulus) (See Fig. 2b). Thus, the 480 

diffusion term for the representation of a computed average of N points, σMN
2, is also σ1

2. We do not 481 
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assume that the representation of the average has the same non-time-dependent noise as a single point, 482 

because there could be additional noise from inaccurately averaging multiple points or conversely a 483 

reduction in overall noise resulting from the averaging of multiple random variables (constituent points). 484 

We denote the variance of the non-time-dependent noise for the Computed mean by ηMN. The difference 485 

between the true mean of N stimuli and the mean reported at time t is therefore, 486 

et,mNAtD ~ N(0, ηMNAtD + t*σ1
2)      (4) 487 

Diffuse-then-Average (DtA) Simultaneous model.  488 

For this model, the individual perceived points are stored as individual, independently diffusing 489 

particles and then averaged at the end of the trial. Thus, the diffusion constant of the Computed value is 490 

the variance of the average of N random variables each with the diffusion constant σ1
2*NA, resulting in 491 

an effective diffusion constant for the Computed value of σMN
2=σ1

2*NA/N, where the division by 𝑁 arises 492 

from averaging. Again, we allow for a free non-time-dependent-noise term because of the uncertain 493 

effects of the averaging calculation itself. For this model, the error in the reported location at time t of 494 

the average of the mean, M, of N points, et,MN, is: 495 

et,mNDtA~ N(0, ηMNDtA + t*σ1
2*NA/N)      (5) 496 

If A=1, the AtD and DtA models are identical. We thus used best-fitting values of A to help assess 497 

model distinguishability for each participant and task condition (see Fig. S7). Also, if A<1, then the DtA 498 

strategy results in a lower diffusion constant for a Computed value than predicted by the AtD model and 499 

results in a smaller average reporting error (see Fig. 2c). If A>1, then AtD results in the lower diffusion 500 

constant and thus a lower average reporting error. However, we did not find that participants necessarily 501 

used the objectively optimal (i.e., lowest-error) strategy in making their decisions.  502 
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Sequentially presented values in working memory.  503 

In the Sequential blocks, N–1 points were presented immediately (Early points), and the Nth point 504 

was presented halfway through the delay (Late point). Therefore, both our modeling assumes that the 505 

diffusion constant for the representation of the N–1 early stimuli change with the addition of the Nth point. 506 

In contrast, the representation of the Late stimulus diffuses only for half of the delay time, T, as shown 507 

in Fig. 2c. We formalize this process by the following model for the report error of the Early (eT,NE), and 508 

Late (eT,NL) stimuli:  509 

eT,NE ~ N(0, ηNE + T/2* σ1
2*(N-1)A+ T/2* σ1

2*NA)   (6a) 510 

eT,NL ~ N(0, ηNL + T/2* σ1
2*NA)     (6b) 511 

Here T is the total time of the delay, and we assumed different non-time-dependent noise for both 512 

Early and Late points, ηNE and ηNL, respectively. 513 

AtD Sequential model:  514 

This model assumes that the Early points are averaged immediately and stored as a single point. 515 

At t=T/2, the Late point is presented and the stimulus is immediately combined, through appropriate 516 

weighted averaging, with the mean of the Early points. This new mean again diffuses with the same 517 

accumulating noise as a single point, as depicted in Fig. 2d. Therefore: 518 

eT,MN-seqAtD ~ N(0, ηMN-SeqAtD + ((N-1)/N)2*T/2* σ1
2 + T/2* σ1

2)  (7) 519 

At t=T/2, the representation of the Nth stimulus has not accumulated any diffusion noise and only 520 

has non-time-dependent noise, which is absorbed in the ηMN-Seq term. The first time-dependent term, ((N-521 

1)/N)2*T/2* σ1
2, results from the appropriate weighted averaging of the mean of the Early points (time-522 

dependent noise of T/2* σ1
2) with the Late point (time-dependent noise=0). The final term, T/2* σ1

2, is 523 

the diffusion of the resultant mean until the end of the delay.  524 
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DtA Sequential model:  525 

This model assumes that the representations of all N points diffuse as they are presented, resulting 526 

in N–1 points described by eq. 6a and one point described by eq. 6b. These points are then averaged at 527 

the end of the delay, resulting in an overall error of: 528 

eT,MN-seqDtA ~ N(0, ηMN-SeqDtA + ( T/2*σ1
2*NA +… 529 

 (N-1) [ T/2* σ1
2*(N-1)A + T/2* σ1

2*NA] )/N2)  (8) 530 

where the constant noise terms from the Early and Late points are absorbed in the ηMN-SeqDtA term, the 531 

next term T/2*σ1
2*N.  is the diffusion in the representation of the last disk shown, and the remaining terms 532 

arise from the first N-1 disks shown. The effect of this averaging on the effective diffusion constant are 533 

shown in Fig. 2d. 534 

Model fitting.  535 

To fit both the AtD and DtA models to data from the Perceived and Computed blocks we had to 536 

estimate 5 parameters: 1) the non-time-dependent noise of a single point (η1), 2) the diffusion noise of a 537 

single point (σ1
2), 3) the non-time-dependent noise of N points (ηN), 4) the exponent of storing N points 538 

(A), and 5) the non-time-dependent noise of the mean (ηMN(AtD or DtA)). We fit these models for N=2 and 539 

N=5 separately using trials from the following conditions: Perceived Simultaneous delays of 1, 3, and 6 540 

s, with array sizes 1 (eq. 3a) and N (eq. 3b); Computed Simultaneous, delays of 1, 3, and 6 s, with array 541 

size N (eq. 4 for AtD, eq. 5 for DtA). 542 

Data from the Sequential Perceived and Sequential Computed blocks were fit to the AtD and DtA 543 

models with 6 parameters. The additional parameter accounted for differences in the non-time-dependent 544 

noise for Early and Late points. We fit these models for N=2 and N=5 separately using trials from the 545 

following conditions: Perceived, delay 1, 3, and 6 s with array sizes 1 (eq. 3a); Sequential Perceived, 546 
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delay of 3 and 6 s, array size N for both Early (eq. 6a) and Late (eq. 6b) points; Sequential Computed, 547 

delay of 3 and 6 s, array size N (eq. 7 for AtD or eq. 8 for DtA).  548 

Because the mean error for each individual participant was not always zero, when fitting the AtD 549 

and DtA models we used the empirical mean error from the condition being fitted as a fixed bias term in 550 

the model. Mean error and confidence intervals for each participant for each condition are shown in Fig. 551 

S3-6. 552 

We obtained separate maximum-likelihood fits for AtD and DtA models for each individual 553 

participant, using the function fmincon in MATLAB to minimize the summed negative log likelihood of 554 

obtaining the observed errors for a given condition according to the above equations. Initial parameter 555 

values were randomized and the fitting repeated to avoid local minima. Because all models within a given 556 

condition had the same number of parameters, we compared log likelihoods to determine the best-fitting 557 

model for a given participant. Because the number of parameters are the same, comparing likelihoods 558 

produces equivalent model selection to BIC or AIC.  559 

Goodness-of-fit.  560 

To assess how well each participant’s data matched the assumptions of the AtD and DtA models, 561 

we also fit a line to the variances of response errors across delays for a given condition for a given 562 

participant to obtain empirical estimates of the various diffusion constants (e.g., slope of lines in Fig. 2b; 563 

empirical estimate of a Perceived value, �̂�N
2, for set size N; empirical estimate of a Computed value, 564 

�̂�MN
2, set size N). These empirical estimates of the diffusion constants did not enforce the relationships 565 

imposed by the AtD and DtA models between the different diffusion constants in each model 566 

respectively. We compared the relationships of these empirical estimates of diffusion constants to the 567 

relationships assumed by our models.  568 
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AtD Simultaneous expected diffusion constant relationship:  569 

Under the AtD hypothesis, for Simultaneous conditions, the Computed mean diffuses with the 570 

same diffusion constant as a single value. Thus:  571 

𝜎1
2 - 𝜎MN

2=0       (9)  572 

DtA Simultaneous expected diffusion constant relationship:  573 

Under the DtA hypothesis, for Simultaneous conditions, the Computed mean is the average of N 574 

points each diffusing with a constant of σN
2. Thus: 575 

𝜎N
2/N - 𝜎MN

2=0      (10)  576 

AtD Sequential expected diffusion constant relationship:  577 

Under the AtD hypothesis, for Sequential conditions, the time-dependent noise has variance that 578 

increases as ((N-1)/N)2*T/2* σ1
2 + T/2* σ1

2) (eq. 7). Factoring out T gives the diffusion constant for the 579 

Computed mean, σMN
2= [(N-1)2+N2]/(2N2)* 𝜎1

2. Thus:  580 

      [(N-1)2+N2]/(2N2)* 𝜎1
2 - σMN

2=0    (11) 581 

DtA Sequential expected diffusion constant relationship:  582 

Under the DtA hypothesis, for Sequential conditions, the time-dependent noise has variance that 583 

increases as T/2*σ1
2*NA + (N-1) [ T/2* σ1

2*(N-1)A + T/2* σ1
2*NA] )/N2 (eq. 8). By eq. 6a, the diffusion 584 

constant for an Early Perceived point, σNE
2, is [0 .5* σ1

2*(N-1)A + 0.5* σ1
2*NA] and by eq. 6b, the diffusion 585 

constant for a Late Perceived point, σNL
2, is σ1

2*NA. Factoring out T and substituting gives the diffusion 586 

constant for the Computed mean, σMN
2= (0.5σNL

2+(N-1)* σNE
2)/N2. Thus:  587 

      (0.5*σNL
2+(N-1)* σNE

2)/N2 - σMN
2=0    (12) 588 

To assess how well the relationships between participant empirical estimates of the diffusion 589 

constants matched these assumptions, for each participant we simulated 1000 iterations of a participant 590 
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performing the task using the best-fit model for the given true participant and the maximum likelihood 591 

estimate parameters for that participant. We then estimated the empirical diffusion constants for each of 592 

these iterations as we did for our participants, namely fitting a line to the measured variance of the 593 

simulated errors across delays, for each condition and iteration. Our 1000 simulations gave us an expected 594 

range around the expected diffusion constant relationships detailed in eq. 9–12 to compare to our 595 

participants’ empirical diffusion constant relationships. Participants whose empirical diffusion constant 596 

relationships fell within the central 95% of the simulated expected range were considered well fit by their 597 

model.  598 
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Supplemental Figures  

  

Supplemental Figure S1: Full error distributions in Simultaneous conditions.  Each 

panel shows a histogram of mean error for different delays (colors, as indicated) for 

Perceived trials (left column: a) set size=1; b) set size=2; c) set size=5) and for 

Computed trials (right column; d) set size=2; e) set size=5). In each panel, points and 

error bars are mean±SEM across all participants. Note that in all cases, 95% of the 

distributions fall between -30 and 30, justifying our exclusion of larger errors as off-

target responses.  
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Supplemental Figure S2: Full error distributions in Sequential conditions.  a) 

Histogram of mean Early Perceptual error for different delays for set size 2. b) 

Histogram of mean Late Perceptual error for different delays for set size 2. c) Histogram 

of mean Computed error for different delays for set size 2. d-f) As in a-c but for set size 

5. In each panel, points and error bars are mean±SEM across participants. Note that in all 

cases, 95% of the distributions fall between -30 and 30, justifying our exclusion of 

larger errors as off-target responses.  
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Supplemental Figure S3: Subject-wise mean response error in the Simultaneous 

Perceived condition. a) Delay=0 s, set size=1. b) Delay=0, set size=2. c) Delay=0 s, set 

size =5. d–f) as in a–c but for delay of 1 s. g–i) as in a–c  but for delay of 6 s. In all 

panels, errorbars are ±95% confidence intervals. Filled points indicate that 0 is not 

included in the confidence interval; i.e., there is bias in subject errors.  

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.03.458917doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458917
http://creativecommons.org/licenses/by-nc/4.0/


44 

 

 

 

 

 

 

  

Supplemental Figure S4: Subject-wise mean error in the Simultaneous Computed 

condition.  a) Delay=0 s, set size=2. b) Delay of 0, set size=5. c–d) as in a–b but for 

delay of 1 s. e-–f) as in a–b  but for delay of 6 s. In all panels, errorbars are ±95% 

confidence intervals.  Filled points indicate that 0 is not included in the confidence 

interval; i.e., there is bias in subject errors.  
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Supplemental Figure S5: Subject-wise mean error in the Sequential Perceived 

condition. a) Delay=1 s, set size=2 for Early samples. b) Delay=1, set size=5 for Early 

samples. c–d) as in a–b but for delay of 6 s. e) Delay=0.5 s, set size=2 for Late samples. 

f) Delay=0.5 s, set size=5 for Late samples. g–h)  as in e–f  but for delay of 3 s. In all 

panels, errorbars are ±95% confidence intervals. Filled points indicate that 0 is not 

included in the confidence interval; i.e., there is bias in subject errors.  
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Supplemental Figure S6: Subject-wise mean error in the Sequential Computed 

condition.  a) Delay=1 s, set size=2. b) Delay=1, set size=5. c–d) as in a–b but for delay 

of 6 s. In all panels, errorbars are ±95% confidence intervals. Filled points indicate that 0 

is not included in the confidence interval; i.e., there is bias in subject errors (which in 

this case tended to be towards the mean computed from the early points). 
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Supplemental Figure S7: Subject-based estimates of A. a,b) Simultaneous condition. a) 

Model-fits for A for AtD (square) and DtA (diamond) participants at set size 2. b). 

Model-fits for A for all participants at set size 5. c,d) Same as a,b but for the Sequential 

condition. In all panels, errorbars are ±95% confidence intervals based on the Hessian 

computed during model fitting. Note that A=0 implies no difference between the 

diffusion constant for a single and N points, whereas A=1 implies that the variance and 

diffusion constant relationship predictions of the AtD and DtA models are equal and thus 

the models cannot be distinguished from each other.   
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Supplemental Figure S8: Relationship between log likelihood difference for the two 

strategies and age. a) Log likelihood comparison for AtD and DtA (negative favors AtD) 

for set sizes 2 and 5 under Simultaneous conditions is not dependent upon age 

(correlation, ps>0.20 computed separately for each set size ). b) Same as in A, but for the 

Sequential Conditions (ps>0.20). 
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