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Abstract Testing adaptive hypotheses about how continuous traits evolve in association with developmentally-

structured discrete traits, while accounting for the confounding influence of other, hidden, evolutionary forces, remains

a challenge in evolutionary biology. In one example of this, geophytes are herbaceous plants capable of retreating un-

derground and use underground storage organs (USOs) to survive extended periods of unfavorable conditions. Such

plants have evolved multiple times independently across all major vascular plant lineages. Even within closely re-

lated lineages, however, geophytes show impressive variation in the morphological modifications and structures (i.e.,

“types” of USOs) that allow them to survive underground. Despite the developmental and structural complexity

of USOs, the prevailing hypothesis is that they represent convergent evolutionary “solutions” to a common ecologi-

cal problem, though some recent research has drawn this into question. We extend existing phylogenetic comparative

methods to test for links between geophytes’ hierarchical discrete morphological traits associated with USOs and adap-

tation to environmental variables, using a phylogeny of 621 species in Liliales. We found that plants with different USO

type do not differ in climatic niche more than expected by chance, with the exception of root morphology, where

modified roots are associated with lower temperature seasonality. These findings suggest that root tubers may reflect

adaptations to different climatic conditions than those represented by other types of USOs. Thus, the tissue type and

developmental origin of the USO structure may influence the way it mediates ecological relationships, which draws

into question the appropriateness of ascribing broad ecological patterns uniformly across geophytic taxa. This work

provides a new framework for testing adaptive hypotheses and for linking ecological patterns across morphologically

varying taxa while accounting for developmental (non-independent) relationships in morphological data. [Macroevo-

lution, geophytes, climatic niche evolution, adaptation]
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Climatic adaptation in underground organs

Introduction

The evolution of major innovations in life history strategies (how organisms gather and store energy and reproduce)1

is one of the primary themes of biodiversity research (Adler et al., 2014; Enquist et al., 1999). However, such studies2

are often limited by methodological challenges in integrating distinct datatypes into a single analytical framework (see3

Theoretical Overview, below). In this work, we build on recent advances in modeling complex, structured discrete traits4

and the adaptive evolution of continuous traits; we develop an analytical pipeline for testing adapative hypotheses5

about the evolution of life history strategies.6

In one remarkable example of a life history innovation, certain herbaceous plants can retreat underground by pro-7

ducing the buds of new growth on structures below the soil surface (Raunkiaer et al., 1934), while also storing nutri-8

ents to fuel this growth in highly modified, specialized underground storage organs (USOs). Such “geophytes” have9

evolved independently many times across the plant tree of life, including in diverse and distantly related lineages10

within the ferns and flowering plants (Tribble et al., 2021). Even within closely related lineages, geophytes show re-11

markable variation in the particular morphological modifications that allow them to survive underground. By differen-12

tially modifying leaves, stems, or roots, geophytes produce complex storage structures through distinct developmental13

and evolutionary means (reviewed in Tribble et al., 2021). For example, plants may produce bulbs by modifying leaves14

for storage; rhizomes, corms, and stem tubers by modifying stem tissue; and root tubers by modifying root tissue.15

Previous work has suggested that the geophytic habit is correlated with distinct abiotic features—specifically, more16

seasonal climatic conditions and higher-disturbance regimes (Patterson and Givnish, 2002; Cuéllar-Martı́nez and Sosa,17

2016; Sosa et al., 2016; Sosa and Loera, 2017; Howard et al., 2019)—and may be an adaptation to these conditions (Rees,18

1989). Supporting this conclusion, geophytes are particularly diverse in seasonally dry climates such as Mediterranean19

ecosystems, where they survive hot, dry summers underground and emerge during cool, wet winters to photosynthe-20

size and reproduce, a pattern particularly prominent in the Cape region of South Africa, where almost 15% of native21

plant species are geophytic (Parsons and Hopper, 2003). Geophytes are also common in deciduous woodland habitats,22

where their USOs fuel quick spring regrowth to maximize photosynthetic opportunities before trees have leafed-out in23

spring (Whigham, 2004). One of the first studies to test for a correlation between niche and USO type (Patterson and24

Givnish, 2002) found that within Liliaceae, plants with bulbs occupy more open and seasonal habitats than plants with25

rhizomes. In a recent study of monocotyledonous geophytes, Howard et al. (2019) found similar patterns: geophytism26

is correlated with areas of lower temperature and precipitation and higher temperature variation. Howard et al. (2019)27

also tested for distinct climate preferences among geophytes with different types of USOs; they found no significant28

correlations with the exception of an association between rhizomatous geophytes and areas of increased temperature29

variation. The authors suggest that more detailed morphological data, as well as data related to the developmental30

origin of USOs (leaf, stem, or root tissue), may be necessary to address variation within geophytes in environmental31

preferences.32
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Climatic adaptation in underground organs

If geophytes with independently evolved and developmentally distinct morphologies converge on the same cli-33

matic niche, then the diverse types of USOs may represent different evolutionary paths towards an effectively similar34

ecological strategy: retreating underground. This result would imply that the diversity of underground forms are due35

to developmental or genetic constraints that predisposed plants to modify particular types of tissue in different ways36

when presented with the same types of environmental conditions. Conversely, if plants with different USOs occupy dif-37

ferent climatic niches, variation in underground morphology may underlie important differences in how these plants38

relate to their environment. In this case, geophytism may not be a uniform life-history strategy at all; rather, each39

distinct morphology may represent a specific adaptive response to a particular set of abiotic conditions. To date, no40

study has explicitly tested if geophytes with different USOs are adapted to particular climatic niches within an adaptive41

evolutionary framework that accommodates complex hierarchical relationships between geophyte morphologies.42

Representation of diverse geophytic morphologies is particularly high in the monocot order Liliales, which con-43

tains roughly 1200 species distributed across the globe (Givnish et al., 2016; Patterson and Givnish, 2002), including44

geophytic taxa with a striking diversity of USOs. In this study, we infer a species-level phylogeny of roughly 50% of45

the taxa in Liliales by capitalizing on the growing availability of published genetic data (Benson et al., 2018), advances46

in supermatrix construction (de Queiroz and Gatesy, 2007), and model-based tree-building algorithms (Ronquist et al.,47

2012), which collectively have widened the scope of phylogenetic reconstruction and allow for the inference of increas-48

ingly large trees that can provide the statistical power to test complex adaptive scenarios. We use this phylogeny and a49

newly-developed analysis pipeline to test the relationship between underground morphologies and adaptive evolution50

of climate seasonality.51

Theoretical Background52

While the goal of many phylogenetic comparative methods is to model the evolutionary relationships between (often53

multiple) traits and species, incorporating diverse data types into a cohesive analytical framework is often stymied54

by underlying differences in how distinct types of traits are expected to evolve across a tree. Specifically, including55

continuous and discrete traits in a single analysis is a longstanding challenge. Some previous approaches to correlate56

discrete and continuous traits include the use phylogenetic generalized linear models (Garland Jr et al., 1993) and the57

threshold model (Felsenstein, 2012). However, these methods are purely correlative and do not account for the presence58

of other, hidden, evolutionary forces that could cause morphological change (Beaulieu et al., 2013; Uyeda et al., 2018).59

The Ornstein-Uhlenbeck (OU) process is defined by three parameters: σ2, θ, and α (Hansen, 1997; Butler and King,60

2004). As with Brownian Motion (BM), a trait evolving under the OU process experiences random changes with mean61

zero and a magnitude proportional to the rate parameter, σ2. However, unlike BM, a trait evolving under OU is also62

subject to determinstic changes: it is “pulled” toward the optimal value θ, approximating the evolution of the trait63

toward an adaptive peak. The strength of the pull is proportional to α and the distance from the optimum, such64

that traits that are far away from the optimum are pulled more strongly (the so-called “rubber-band” effect). Further65
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Climatic adaptation in underground organs

elaboration of the OU process may allow the parameters to vary across the branches of a phylogenetic tree (Beaulieu66

et al., 2012; Uyeda and Harmon, 2014). In these models, optima may themselves evolve across the phylogeny (Uyeda67

and Harmon, 2014), unlinked to any observed discrete character. Alternatively, users may specify the location of the68

multiple optima across the tree (Beaulieu et al., 2012), perhaps based on estimated ancestral states. However, this type69

of explicit link between trait(s) and adaptive optima attributes all variation in the optima to the discrete trait and may70

lead to a spurious correlation. It is therefore necessary to incorporate additional sources of adaptive-optima evolution71

or to allow for imperfect correspondence between the discrete trait and continuous regimes.72

Furthermore, some types of USOs may share greater affinities in morphological and developmental space because73

they are modifications of the same type of tissue. For example, in both corms and rhizomes, stem tissue is modified74

for storage, while in bulbs, the primary storage tissue is derived from modified leaves (see Figure 1). A model that75

represents transitions between corms and rhizomes in the same way that it represents transitions between rhizomes76

and bulbs effectively erases the complexity of these morphologies and ignores the role that shared developmental77

mechanisms may play in morphological disparification. Tarasov et al. (2019) presented a novel pipeline—PARAMO—78

to incorporate developmental hierarchies into discrete ancestral-state estimation using hidden states and structured79

Markov models (See also Tarasov, 2019). In PARAMO, character states are expanded or combined and hierarchical80

relationships are expressed by disallowing transitions between certain combinations of character states and requiring81

transitions through intermediate character states (i.e., using structured, hidden Markov models). Often, these hierar-82

chies are based on ontological definitions, though similar information on character state structure can be incorporated83

without formal ontologies. This approach addresses the red tail/blue tail problem (Lee and Bryant, 1999): how does84

one code tail color for a species with no tail? Thus, the PARAMO pipeline is appropriate for modeling the evolution85

of complex morphologies, where some species may have modifications to certain tissues/ body parts while others lack86

those modifications or tissues altogether. As such, PARAMO provides a coherent way to model changes in morpho-87

logically distinct USOs, such that the type of tissue modified to produce the USOs influences what transitions between88

structures are allowed. For example, PARAMO models the evolution of rotund root tubers independently from the89

evolution of rhizomes, as these structures are modifications of different parts of the plants (root and stem, respectively).90

Below, we describe our approach to testing the effect of a discrete, morphological trait on the adaptive evolution of91

a continuous trait while accounting for the nuances presented above.92

Materials and Methods93

To test if plants with the same type of USO are evolving towards a shared optimal climatic niche, we developed an94

analytical pipeline based on recent advances in trait evolution models. We independently model the evolution of dis-95

crete and continuous traits. For the discrete trait (USOs), we use a model of morphological evolution that accounts96

for complex nested relationships among characters (PARAMO, Tarasov et al., 2019). For the continuous trait (climatic97

niche), we use comparative methods that allow for explicit testing of adaptive hypotheses (bayou; Uyeda and Harmon,98
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2014). Both these methods produced histories (maps) of trait evolution over a phylogeny, so we then combine these99

maps to test for correspondence between the traits’ evolutionary histories. Finally, we compare this combined history100

with one produced under a null model (where there is no relationship between USOs and climate). This procedure101

allows us to test for correlations between USO evolution and climatic niche evolution while accounting for hiercharchi-102

cal structure in morphological data produced by developmental processes, the complex adaptive landscape of climatic103

niche evolution, and the potential effects of hidden evolutionary forces influencing continuous trait evolution.104

Data105

We generated three data sets for downstream analysis: a distribution of species-level phylogenies including 50% of the106

species in Liliales; a modeled climatic niche for each species based on 19 climatic variables (Fick and Hijmans, 2017);107

and a detailed underground morphology database for all species.108

Phylogeny109

We used SUMAC 2.0 (Freyman, 2015) to download gene regions from NCBI GenBank (Benson et al., 2018) for all110

species in the order Liliales. We targeted genes that clustered with specific guide sequences to obtain sequences for111

10 commonly sequenced genes in Liliales (Table S.1). We filtered the resulting sequences using custom Python scripts112

to remove regions that were recovered from fewer than 150 taxa out of the 621 taxa available on GenBank, to remove113

sites with more than 95% missing data, and to align sequences. All regions were aligned using MAFFT v7.271 (Katoh114

and Standley, 2013); some alignments (ITS, psbA, and rpl16, and trnL-trnF spacer) failed to align well under MAFFT115

and were subsequently aligned using PASTA (Mirarab et al., 2015) to improve alignment accuracy. We concatenated116

the filtered and edited alignments using Sequence Matrix (Vaidya et al., 2011). We reconstructed the phylogeny using117

MrBayes v3.2.6 (Ronquist et al., 2012) on CIPRES (Miller et al., 2011) with two independent runs of four chains, par-118

titioned by gene region, each under the GTR + Γ model with default priors (Table SS.2). We constrained tree space to119

enforce family-level monophyly and monophyly of the non-parasitic clade (all Liliales families except Campynemat-120

aceae and Corsiaceae) according to the Angiosperm Phylogeny Website (Stevens et al., 2016), to reduce run times.121

To account for phylogenetic uncertainty, we performed all downstream analyses on a random set of ten trees from122

this posterior distribution (see section Sensitivity of Results to Tree Selection). We dated each of the selected trees in R (R123

Core Team, 2013) using the chronos() function from the ape package (Paradis and Schliep, 2019)—an implementation124

of the penalized-likelihood approach (Sanderson, 2002)—using data from two fossils and a secondary calibration (see125

Table S.3; Iles et al., 2015; Givnish et al., 2016). We set λ = 1 (the smoothing parameter).126

Climate127

We modeled the climatic niche of each sampled species using a newly developed R pipeline, Climate and Niche Dis-128

tribution Inference (CaNDI, available at https://github.com/abbyj-g/candi) that gathers and cleans species occur-129
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Climatic adaptation in underground organs

Figure 1: Hierarchy of morphological states used in PARAMO analysis.

rences, downloads climate data, and estimates niches for hundreds of taxa at a time. CaNDI takes as input a list of130

species, queries the Global Biodiversity Information Facility (GBIF; Flemons et al., 2007) and the Botanical Information131

and Ecology Network (BIEN Maitner et al., 2018) for occurrence records, and cleans those records using a series of132

filters designed to remove latitude and longitude records that fall outside of the species’ native range, are exactly at 0◦,133

90◦, or 180◦, or are in the ocean. CaNDI then passes these occurrence points and their associated climate data to MaxEnt134

(Phillips and Dudı́k, 2008) to estimate the climatic niche. For each species, CaNDI returns the probability of occurrence135

across the landscape.136

For the climate data we used 19 bioclimatic variables from the WorldClim database (Fick and Hijmans, 2017), which137

describe various aspects of temperature and precipitation. Collinearity of predictor variables does not affect model138

performance (except in cases of model transfer; Feng et al., 2019), so we included all 19 variables in niche estimation.139

From the niche reconstructions we calculated a single estimate of the optimal value for each climate variable by selecting140

the value that corresponded to the part of the species’ range with the highest probability of occurrence. Downstream141

analyses focused on the two axes of the multidimensional niche that describe seasonality: seasonality of precipitation142

and seasonality of temperature.143

Morphology144

We used morphological data from Kew’s World Checklist of Selected Plant Families (WCSP; WCSP, 2020) to describe145

the USOs associated with each sampled species. For taxa listed as tuberous, we referred to morphological literature146

(Kubitzki and Huber, 1998; Sanso and Xifreda, 2001; Pate and Dixon, 1982) for more detailed descriptions, as the WCSP147

uses tuber as a catch-all category, encompassing corms, root tubers, and other organs. The final coding scheme consisted148

of the presence and absence of eight characters, grouped into three hierarchical clusters based on tissue type (leaf, stem,149

and root; see Figure 1).150
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Analysis151

We integrated the climate data, morphology data, and phylogeny in a novel analysis pipeline that integrates newly-152

developed methods for modeling continuous characters (such as climate) and discrete characters (such as morphologi-153

cal categories). This pipeline models the continuous and discrete variables independently, and then asks if variation in154

adaptive optima for continuous characters are explained by the state of the discrete trait, allowing for complex models155

of the discrete trait and for an imperfect correspondence between adaptive optima and the discrete trait.156

Climatic Niche Evolution157

We used the R package bayou (Uyeda and Harmon, 2014) to describe the modes of evolution of climatic niche in Liliales158

across each of ten phylogenies sampled from the posterior of our phylogenetic analysis; bayou models the evolution of159

a continuous character under an OU process(Butler and King, 2004), allowing for the optimum of the OU process to160

vary across the branches of the phylogeny (Uyeda and Harmon, 2014). Specifically, this approach models the number161

and placement of adaptive regimes across the branches of the phylogeny, where each adaptive regime is characterized162

by a unique optimal continuous-trait value, θ, rate of evolution, σ2, and strength of selection, α. These regimes and their163

associated parameter values are sampled in proportion to their posterior probabilities using reversible-jump MCMC164

(Green, 1995).165

For both temperature and precipitation seasonality we log-transformed the variable and ran bayou for 3.5 million166

generations using the priors specified in Table S.4. Priors were selected as recommended in the bayou tutorial (Uyeda,167

2019) except for the prior on k (number of θs), which we modified to reflect our uncertainty in k. The recommended168

prior on k is a Poisson distribution with λ = 10. However, we opted for a geometric distribution with p=1/30, which169

is equivalent to setting an exponential hyperprior on λ and increasing the expected value of λ from 10 to 30. We170

assessed convergence using the R package coda (Plummer et al., 2006) and based on those results discarded the first171

1% of samples as burnin. We drew 1000 samples (maps) from the posterior distribution of adaptive regimes for each172

climatic niche variable to use in subsequent calculations. Each of these samples contains a history of adaptive-optima173

evolution, which maps the adaptive optima along branches of the phylogeny.174

Morphological Evolution175

We used the PARAMO pipeline (Tarasov et al., 2019) to reconstruct the evolution of underground morphologies using176

hidden, structured Markov models and stochastic mapping across the ten trees used in our bayou analyses. Under-177

ground morphologies are not adequately represented in published ontologies (Tribble et al., 2021; Howard et al., 2021),178

so instead of using ontologies to determine the hierarchical relationships between states, we built a dependency matrix179

of USOs based on the type of tissue modified for storage (Figure 1). PARAMO uses hidden states that represent the180

“predisposition” to evolve USOs of different tissue types (Beaulieu et al., 2013), incorporating the hierarchy of states181

illustrated in Figure 1. Each cluster (leaf, stem, and root) corresponds to a distinct evolutionary model such that the182
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Climatic adaptation in underground organs

Figure 2: Schematic representation of methods used in this study. For each of ten phylogenies sampled from the posterior distribution,
we: A) used PARAMO and bayou to generate 1000 stochastic maps of the morphology and estimated climatic niche optima, individ-
ually, and to simulate 1000 null histories (see Methods: Hypothesis testing) using the estimated evolutionary models from PARAMO.
B) We combined each of the niche optima maps with a morphological character map, and separately with a null history map, to create
two sets of state-specific-optimum maps that show the state-specific θ̂j parameters per character state. C) We plot the densities of all
estimated state-specific θ̂j parameters (i, ii) and the distribution of a test statistic (iii, iv; see Methods: Hypothesis testing). Plots i and
iii represent a case where we would reject the null model, while in plots ii and iv we would fail to reject the null.
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clusters evolve independently. First, for each of the three clusters, we estimated evolutionary transition rates between183

character states using the R package corHMM (Beaulieu et al., 2013). We then reconstructed their evolutionary histories184

by simulating the evolution of each cluster under the inferred model of evolution and conditioning on the observed185

data at the tips (i.e., stochastic mapping, Nielsen, 2002; Huelsenbeck et al., 2003) using the make.simmap() function186

in phytools (Revell, 2012). Each morphological stochastic map represents one possible scenario of character evolution187

under the inferred model. We then made a single “combined phenotype” morphological map by overlaying the maps188

of each cluster. The combined phenotype map illustrates the history of the entire underground phenotype with many189

character states. We repeated this process 1000 times to produce 1000 combined phenotype maps to capture uncertainty190

in the history of each cluster.191

Calculating State-Specific Climatic Optima192

The previous steps have produced N bayou maps and N morphological maps (where N = 1000 in this study). Each193

morphological map defines a set of breakpoints where the state changes; likewise, each bayou map defines a set of194

breakpoints where the climatic optimum changes. We use the ith bayou map and the ith morphological map to produce195

a state-specific-optimum map, such that each branch on the tree can be represented as a set of segments and where each196

segment corresponds to a particular combination of morphological state and climatic optimum (Figure 2B). For a given197

state-specific-optimum map, we compute the average climatic optimum for a given morphological state j as:198

θ̂j =
1
τj

∑
k∈Tj

θk,

where Tj is the set of all segments in morphological state j, τj is the sum of lengths of segments in Tj, and θk is the199

climatic optimum associated with segment k. We repeat this procedure for each of the N state-specific-optimum maps,200

producing a posterior distribution of state-specific average climatic optima, θ̂j.201

As the observed morphology rather than the hidden states are expected to affect an organism’s relationship to its202

environment, we collapsed the full set of character states (observed and hidden) into the observed states by combining203

the state-dependent optima of states with the same observed state but different hidden states. Some states were visited204

infrequently during stochastic mapping and thus had high percentages of missing data (i.e., were rarely inferred as an-205

cestral states across the 1000 maps), which made estimates of their state-specific optima more uncertain. To avoid these206

uncertain estimates, we dropped from analysis those states represented in less than 50% of the maps. We performed207

these comparisons for both precipitation and temperature seasonality and for the three morphological clusters (leaf,208

stem, and root) and the combined morphological phenotype, for a total of eight comparisons.209

Hypothesis Testing: Climate and Morphological Trait Correlation210

Our null hypothesis is that plants with different USOs are not evolving towards different climatic niche optima; in other211

words, that state-specific climatic niche optima (θ̂j) are equal. Correspondingly, under the alternative hypothesis, state-212
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specific θ̂j are different. However, for any finite dataset, inferred state-specific θ̂j values will be different, even under213

the null hypothesis, and this issue is exacerbated by the phylogenetic structure of the inferred θ̂j values. To account for214

this structure, and the finite sample, we calculated a test statistic (defined below) that summarizes the overall difference215

between any particular set of state-specific θ̂j. We simulated the distribution of that test statistic under the null model216

and checked whether the differences generated under the null model were significantly less than the differences of the217

empirical estimates.218

We simulated 1000 null histories of the three characters (leaf, stem and root) using the sim.history() function in219

the Rpackage phytools (Revell, 2012) and the estimated Q-matrices from the empirical analyses. This procedure differs220

from stochastic mapping in the empirical analysis in that the simulations are not conditioned on the observed character221

data. As in the empirical analysis, we also combined the three characters to produce 1000 null histories of the combined222

phenotype. This null model represents the case where a discrete trait evolves under the same evolutionary model as223

the observed discrete trait, but without the observed pattern at the tips. Any correspondence between the simulated224

traits and climate is due to chance, the distribution of the climate data on the tree, and/or the rates of evolution and225

stationary frequencies of the model, rather than the distribution of morphological states across the tree.226

To calculate the test statistic, for a given vector of state-specific θ̂j values, we calculated the pairwise distance be-227

tween all state-specific θ̂j. These distances represent the extent to which character states are linked to different estimated228

θ̂j; in other words, the optimal climatic values differ between discrete states. These distances result in a distance matrix,229

D (for a simple two-state example):230

D =

d(θ̂1, θ̂1) d(θ̂1, θ̂2)

d(θ̂2, θ̂1) d(θ̂2, θ̂2)


where d(θ̂l , θ̂m) is the distance between θ̂l and θ̂m:231

d(θ̂l , θ̂m) =

√
(θ̂l − θ̂m)2.

We then measure the overall amount of difference using the Frobenius norm, F(D), which summarizes the magnitude232

of the distance matrix. For a given bayou map i, we calculate Si, the difference between F(Di) given the stochastic map233

and F(Di) given the null history. We then compute Si for each bayou sample; if 0 is in the 95% probability interval of S,234

we do not reject the null model.235

Sensitivity of Results to Phylogenetic Uncertainty236

We performed all the above analyses on ten trees randomly sampled from the posterior distribution of our phyloge-237

netic analysis. To determine if our results were sensitive to particularities of the sampled trees, we analyzed each tree238

individually and two sets of five trees each. While the results vary by individual tree (Figure S1), sampling at least239

five trees is sufficient to produce consistent results (Figure S2); the results do not change meaningfully between either240

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2022. ; https://doi.org/10.1101/2021.09.03.458928doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458928
http://creativecommons.org/licenses/by-nc-nd/4.0/


Climatic adaptation in underground organs

analysis of five trees or the full analysis of ten trees (Figures 5 and S2), so we present results based on the combined ten241

trees.242

Data and Code Availability243

All code is freely available on GitHub: https://github.com/cmt2/underground_evo and all data will be made avail-244

able on Dryad prior to publication.245

Results246

Across all ten trees, the ancestor of Liliales is estimated to have had a rhizome with no leaf or root modifications247

(Figure 3 A–D shows the reconstructions for one tree), in agreement with previous work (Patterson and Givnish, 2002;248

Howard et al., 2019). For both temperature and precipitation seasonality, the estimated optima at basal branches in the249

phylogeny are highly seasonal, with subsequent shifts into less seasonal optima along more recent branches (Figure 3250

E and F).251

Figure 4 illustrates the distribution of estimated state-specific optima. Overall, the distributions of state-specific252

optima are more dispersed across the temperature seasonality axis than the precipitation seasonality axis. For the253

leaf cluster, the estimated averaged optima for bulb-bearing plants are more seasonal than those for no bulb. For the254

stem cluster, plants with either rhizomes or corms are estimated to be associated with reduced seasonality than plants255

without stem modification, though for precipitation only rhizomes are estimated to be less seasonal than the other256

states. In the root cluster, plants with root tubers (especially rotund root tubers) have lower temperature seasonality257

than those without root tubers, but for precipitation, plants with rotund root tubers and without root tubers overlap in258

their distributions while plants with elongate root tubers are estimated to be more seasonal. In the combined phenotype259

for temperature, the most seasonal state for precipitation is plants with both bulbs and rhizomes and the least seasonal260

state is plants with rhizomes and rotund root tubers. For precipitation seasonality in the combined phenotype, most261

state-specific optima have highly overlapping distributions, though it appears that plants with rhizomes are slightly less262

seasonal and plants with rhizomes and elongate root tubers are slightly more seasonal than other distributions. For both263

temperature and precipitation, the distribution corresponding to no modified underground organs (non-geophytes)264

falls out intermediate along both climatic niche axes and overlaps with many other states, signifying that non-geophytes265

are not more or less seasonal than geophytes.266

While the state-specific optima curves in Figure 4 appear distinct for many of the morphology-climate comparisons,267

across both climate variables, no distributions are more different than expected by chance (P-values 0.216–0.626), with268

the exception of the root cluster for temperature seasonality, which is significant (P-value 0.044; Figure 5).269
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Figure 3: Stochastic maps of estimated ancestral states for one of five trees used in the analysis: A) leaf character map showing
inferred evolutionary history of having or not having a bulb, B) map of estimated history of stem modifications, C) map of estimated
evolutionary history of root modifications, D) combined phenotype character produced by amalgamating maps A-C, E) posterior
mean branch-specific θ for temperature seasonality, F) posterior mean branch-specific θ for precipitation seasonality. In A, B, and C,
the “none” category applies to absence of modifications of the relevant tissue type; those taxa may have modifications of the other
tissues.
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Climatic adaptation in underground organs

Figure 4: Posterior distributions of state-specific θ̂ parameters. Panels A, C, E, and G depict θ̂ distributions for temperature seasonality,
while panels B, D, F, and H show θ̂ distributions for precipitation seasonality. A — B refer to the leaf cluster, C — D to the stem cluster,
E — F to the root cluster, and G — H to the combined phenotype. For these combined phenotype densities (G — H), digits in the state
labels refer to states for each cluster. The first digit corresponds to the leaf state, the second digit corresponds to the stem state, and
the third digit corresponds to the root state. For example, the 000 state refers to the absence of any USO, and 012 refers to a geophyte
with rhizomes and rotund root tubers.
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Climatic adaptation in underground organs

Figure 5: Test statistic (S) distributions. Panels A, C, E, and G depict S distributions for temperature seasonality, while panels B, D,
F, and H show S distributions for precipitation seasonality. A — B refer to the leaf cluster, C — D to the stem cluster, E — F to the
root cluster, and G — H to the combined phenotype. Distributions with 95% > 0 are considered evidence for a statistically significant
difference in state-specific θ̂. P-Values correspond to the percent of values equal to or less than zero. Of all comparisons, only root and
temperature seasonality are statistically significant (panel E).
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Discussion270

Applicability of analysis pipeline for future comparative studies271

This work demonstrates the utility of applying complex evolutionary models to address a long-standing challenge in272

statistical comparative biology: modeling relationships among discrete and continuous traits. Some implementations273

of OU models allow for continuous traits to evolve under regimes dictated by the evolutionary history of discrete traits274

(such as implemented in OUwie, Beaulieu et al., 2012); an important advancement in these methods allows for modeling275

a hidden character with a fixed number of states, thus including hidden variation in the evolution of the continuous276

trait (Vasconcelos et al., 2021). However, these approaches impose potentially restrictive assumptions on the number277

of adaptive regimes associated with either hidden or observed traits.278

Our analytical pipeline unites three main components. First, we use PARAMO (Tarasov et al., 2019) to estimate the279

evolutionary history of a discrete trait while taking into account hierarchical relationships between character states. Sec-280

ond, we use bayou (Uyeda and Harmon, 2014) to estimate the number and location of adaptive regimes of continuous-281

trait evolution that best fit the data. Third, our pipeline combines these estimates by calculating the average optimal282

values for each discrete trait and asks if these averaged optima are more different from each other than expected under283

a null model.284

This pipeline has several advantages over existing methods. First, the model parameters have clear biological in-285

terpretations. Densities from Figure 4 show the distributions of probable optimal phenotypes (θ̂j) of the continuous286

trait by discrete category. These θ̂j correspond to peaks in the adaptive landscape of the continuous trait, so the esti-287

mated parameter values have a clear and direct link to evolutionary theory, unlike the estimated effect sizes from linear288

models. Second, the method directly models the evolutionary process of the discrete traits and thus is appropriate289

for addressing evolutionary dependence between continuous and discrete traits. This contrasts with methods such as290

phylogenetic ANOVA, which treat discrete tip states as purely a source of nonrandom structure at the present, rather291

than actually modeling the evolution of the trait across the tree. Third, the pipeline can accommodate a wide variety of292

models for the evolution of the discrete traits. We use PARAMO (Tarasov et al., 2019) to model the nested relationships293

among USOs derived from the same tissue. In some empirical cases, not including the present study, traits are explicitly294

defined in ontologies (e.g., phenoscape.org), and PARAMO uses these definitions directly to establish the hierarchy295

between character states. As the use of ontologies in comparative biology becomes more common, incorporating hi-296

erarchies codified in ontologies will greatly expand the ability of researchers to test increasingly complex hypotheses,297

including how developmental processes impact trait evolution and the relationships among traits (Howard et al., 2021).298

However, any model of discrete trait evolution that can produce simulated character histories can also generate stochas-299

tic map histories, and thus could be used instead of PARAMO. For example, one could produce stochastic maps from300

a state-dependent speciation and extinction (SSE) analysis (BiSSE, for example, Maddison et al., 2007), and thus link301

discrete ancestral states, informed by variable speciation and extinction rates, to a continuous character of interest.302
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Finally, this method allows for imperfect correspondence between the estimated optimal continuous trait and the303

discrete states. The evolution of continuous traits in general, and climatic niches in particular, is complex and almost304

certainly explained by many other variables beyond those that are targeted for analysis. It is thus inappropriate to force305

our model to test between either no correspondence or full correspondence between the continuous-trait evolution306

and the state of a focal discrete trait. SSE methods may provide a useful analogy; the addition of hidden states allow307

these models to apportion the variation in speciation and extinction rates between the observed trait of interest and an308

unobserved hidden trait (Rabosky and Goldberg, 2015; Beaulieu and O’Meara, 2016). Similarly, our method examines309

the distributions of state-dependent optima without requiring that the continuous trait regimes and the discrete trait310

vary perfectly together over the tree. We test for significance by comparing these observed distributions to distributions311

that are built from our null expectation of random evolution of the discrete trait. We thus avoid the “straw-man effect”312

described in May and Moore (2020), in which any variation in the process of continuous-trait evolution is spuriously313

attributed to the discrete trait, because the null hypothesis is that there is no variation at all.314

All code and scripts used in this pipeline are publicly available at https://github.com/cmt2/underground_evo.315

Getting at the root of the problem: are USOs adaptations to particular climatic niches?316

We used this pipeline to test for correlated evolution between climatic seasonality and geophytic USOs. These analyses317

demonstrate that plants in Liliales with the same underground storage organ do not occupy different climatic niches318

more than expected by chance, with the exception of root morphology, where the presence of modified roots, especially319

rotund root tubers, is associated with lower temperature seasonality. Furthermore, non-geophytes in Liliales are not320

associated with more or less seasonal climates than their geophytic counterparts. While many of the state-specific321

optima curves appear distinct (Figure 4), the null model suggests that these differences could be observed even with322

no correspondence between the trait and climate (Figure 5), due to the phylogenetic structure of environmental niche323

preference in the underlying data.324

These findings suggest that root tubers may be an adaptation to distinct ecological conditions or that root-tuber-325

bearing taxa experience physiological constraints that restrict them to particular climatic niches, unlike the other geo-326

phytes included in this study. Root tubers are also unique morphologically among the USOs included in this study;327

unlike corms, rhizomes, and bulbs, root tubers—especially in Liliales—are rarely the source of perennating under-328

ground buds. Most geophytes in Liliales with root tubers also have rhizomes (e.g., Bomarea, Alstroemeria), which may329

serve as the source of underground buds while the root tubers store nutrients and water (Tribble et al., 2021). Many330

geophytes regenerate their USOs annually (especially bulbs and corms; Pate and Dixon, 1982; Kamenetsky and Okubo,331

2012), and thus the processes of nutrient flow between the USO and the above-ground plant are necessarily linked to332

the same seasonal cycles. Partitioning growth and storage between organs (as in the case of the species with tubers333

and rhizomes) may be particularly advantageous in climates with less temperature seasonality, as it allows for the con-334

tinuous production of aerial shoots and the periodic replacement of stored nutrients as needed. Alternatively, places335
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with less seasonal temperatures may be less likely to reach the freezing point, and root tubers may be particularly336

maladapted to frost compared to USOs derived from stem or leaf tissue.337

The results of our study differ from previous work in three primary ways. First, while we found no significant338

difference in the environmental niche of geophytes and non-geophytes, prior work suggested that geophytes are as-339

sociated with lower temperatures and precipitation and higher temperature variation compared with non-geophytes340

(Howard et al., 2019). Because of the sparse representation of non-geophytes in Liliales, our dataset may lack sufficient341

power to detect generalizable patterns of climatic niche occupancy between geophytes and non-geophytes. Secondly,342

previous work found that rhizomes are correlated with increased temperature variation and found no evidence for343

different niches between tuberous and non-tuberous taxa (Howard et al., 2019), while our analysis found no significant344

association between rhizomatous or non-rhizomatous taxa but instead suggests that taxa with root tubers evolve to-345

wards lower optimal values of temperature seasonality. These differences may be due to the scale of the study; Howard346

et al. (2019) aimed to identify monocot-wide patterns, but our study focuses a smaller taxonomic scale, and is able to347

investigate patterns of morphological evolution in greater detail. Of particular note, the Howard et al. (2019) study348

does not distinguish between root tubers and stem tubers, and thus would not have been able to recover the associa-349

tion between roots and lower temperature seasonality that we find here. Thus, our results illustrate the importance of350

detailed “development-aware” character coding in comparative studies.351

Thirdly, Patterson and Givnish (2002) found evidence that in the core Liliales, convergence on bulbs correlated with352

independent transitions into seasonal and high-light habitats, but while we also find evidence for several independent353

transitions to bulbs, the association between bulbs and increased seasonality is not statistically significant in our results354

(P-values 0.216 and 0.525 for temperature seasonality and precipitation seasonality respectively). The Patterson and355

Givnish (2002) study was one of the first to address geophyte evolution in a phylogenetic framework and correlated356

storage organs with discrete habitat types, but recent advances in statistical phylogenetics have made more nuanced357

approaches possible, such as our new pipeline. Specifically, our study uses continuous climatic data directly in the358

analysis, rather than discrete habitat categories, and employs a coherent model of adaptive continuous trait evolution. It359

is possible that discrete habitat categories obscured important variation in seasonality, leading to a spurious correlation360

between seasonality and the presence of bulbs.361

In Liliales, root tubers are mostly restricted to a few clades (namely Bomarea, Alstroemeria, Burchardia, and a few ad-362

ditional taxa), so it is possible that the strong association between decreased temperature seasonality and the presence363

of root tubers is driven by an unmeasured trait that happens to co-occur in those clades. For this reason, extrapo-364

lating our results to non-liliid geophytes may not be appropriate, and follow-up studies should address variation in365

root morphology and climate in other clades, particularly in groups with many independent transitions between the366

absence and presence of root tubers and between different root tuber morphologies. Asparagus would be a particu-367

lar appropriate system in which to further test these associations, as root morphology is highly variable in the genus368

(Leebens-Mack, pers. comms.). However, there are few other clades known for well-characterized variation in the369

presence and absence of root tubers or for variation in root tuber morphology. Underground morphology is vastly370
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under-characterized in many plant clades (Tribble et al., 2021; Janzen et al., 1975), so this work also motivates increased371

morphological characterization of USOs and root morphology in particular, and demonstrates the importance of con-372

tinued emphasis on classic botanical techniques for understanding biodiversity. In addition, studies that characterize373

the functional ecology and physiology of root tubers will likely yield important insights into how and why they differ374

from other USOs.375

Conclusions376

This study introduces an analysis pipeline that infers the relationship between adaptive optima for a continuous trait377

and the hierarchical, nested evolution of a discrete trait, controlling for other factors driving changes in adaptive optima.378

While previous methods have attempted to address this issue, ours it the first that allows the number of adaptive379

regimes to vary in a way that best fits the data. This pipeline is applicable across many areas of evolutionary biology380

and may serve as a model for future hypothesis-driven comparative research. Our pipeline can accommodate an381

array of complex models of discrete morphological trait evolution (such as models that account for the developmental382

history of morphological traits) into tests of correlated trait evolution, and implements a novel approach to account383

for imperfect correspondence between adaptive regimes and discrete traits. These advances are key steps forward as384

ecological and evolutionary studies increasingly seek to incorporate the nuance and complexity of natural variation385

into quantitative models that permit formal hypothesis testing.386
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Tribble, C. M., Martı́nez-Gómez, J., Howard, C. C., Males, J., Sosa, V., Sessa, E. B., Cellinese, N., and Specht, C. D. (2021). Get the shovel:495

morphological and evolutionary complexities of belowground organs in geophytes. American Journal of Botany, 108(3):372–387.496

Uyeda, J. C. (2019). bayou Tutorial. https://github.com/uyedaj/bayou/blob/master/tutorial.md. Accessed: 2021-06-30.497

Uyeda, J. C. and Harmon, L. J. (2014). A novel Bayesian method for inferring and interpreting the dynamics of adaptive landscapes498

from phylogenetic comparative data. Systematic biology, 63(6):902–918.499

Uyeda, J. C., Zenil-Ferguson, R., and Pennell, M. W. (2018). Rethinking phylogenetic comparative methods. Systematic Biology,500

67(6):1091–1109.501

Vaidya, G., Lohman, D. J., and Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets502

with character set and codon information. Cladistics, 27(2):171–180.503

Vasconcelos, T., Boyko, J. D., and Beaulieu, J. M. (2021). Linking mode of seed dispersal and climatic niche evolution in flowering504

plants. Journal of Biogeography.505

WCSP (2020). World checklist of selected plant families, facilitated by the Royal Botanic Gardens, Kew. http://wcsp.science.kew.506

org. Accessed: 2017-09-04.507

Whigham, D. F. (2004). Ecology of woodland herbs in temperate deciduous forests. Annu. Rev. Ecol. Evol. Syst., 35:583–621.508

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2022. ; https://doi.org/10.1101/2021.09.03.458928doi: bioRxiv preprint 

https://github.com/uyedaj/bayou/blob/master/tutorial.md
http://wcsp.science.kew.org
http://wcsp.science.kew.org
http://wcsp.science.kew.org
https://doi.org/10.1101/2021.09.03.458928
http://creativecommons.org/licenses/by-nc-nd/4.0/

