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ABSTRACT2

Retinitis pigmentosa (RP) is the most common inherited retinal dystrophy with a prevalence3
of about 1 in 4000, affecting approximately 1.5 million people worldwide. Patients with RP4
experience progressive visual field loss as the retina degenerates, destroying light-sensitive5
photoreceptor cells (rods and cones), with rods affected earlier and more severely than cones.6
Spatio-temporal patterns of retinal degeneration in human RP have been well characterised;7
however, the mechanism(s) giving rise to these patterns have not been conclusively determined.8
One such mechanism, which has received a wealth of experimental support, is described by the9
trophic factor hypothesis. This hypothesis suggests that rods produce a trophic factor necessary10
for cone survival; the loss of rods depletes this factor, leading to cone degeneration. In this paper11
we formulate a partial differential equation mathematical model of RP in one spatial dimension,12
spanning the region between the retinal centre (fovea) and the retinal edge (ora serrata). Using13
this model we derive and solve an inverse problem, revealing for the first time experimentally14
testable conditions under which the trophic factor mechanism will qualitatively recapitulate the15
spatio-temporal patterns of retinal regeneration observed in human RP.16
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1 INTRODUCTION
The group of inherited retinal diseases known as retinitis pigmentosa (RP) causes the progressive loss18
of visual function (Hamel, 2006; Hartong et al., 2006). The patterns of visual field loss associated with19
the human version of this condition have been well characterised (Grover et al., 1998); however, the20
mechanisms underpinning these patterns have yet to be conclusively determined (Newton and Megaw,21
2020). In this paper, we use mathematical models to predict the conditions under which a trophic factor22
mechanism could explain these patterns.23

The retina is a tissue layer lining the back of the eye containing light-sensitive cells known as photo-24
receptors, which come in two varieties: rods and cones (Fig. 1A). Rods confer monochromatic vision25
under low-light (scotopic) conditions, while cones confer colour vision under well-lit (photopic) conditions26
(Oyster, 1999). In RP, rod function and health are typically affected earlier and more severely than those27
of cones, with cone loss following rod loss. Rods are lost since either they or the neighbouring retinal28

1

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2022. ; https://doi.org/10.1101/2021.09.04.458968doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.04.458968
http://creativecommons.org/licenses/by-nc-nd/4.0/


Paul A. Roberts Mathematical Models of Retinitis Pigmentosa

pigment epithelium express a mutant version of one or both alleles (depending on inheritance mode) of29
a gene associated with RP (over 80 genes have been identified to date, see Gene Vision and Birtel et al.,30
2018; Coussa et al., 2019; Ge et al., 2015; Haer-Wigman et al., 2017). It is hypothesised that cones are lost31
following rods since they depend upon rods either directly or indirectly for their survival (Daiger et al.,32
2007; Hamel, 2006; Hartong et al., 2006).33

A number of mechanisms have been hypothesised to explain secondary cone loss, including trophic factor34
(TF) depletion (Aı̈t-Ali et al., 2015; Léveillard et al., 2004; Mei et al., 2016), oxygen toxicity (Stone et al.,35
1999; Travis et al., 1991; Valter et al., 1998), metabolic dysregulation (Punzo et al., 2009, 2012), toxic36
substances (Ripps, 2002) and microglia (Gupta et al., 2003). While not typically related to spatio-temporal37
patterns of retinal degeneration in the literature, it is reasonable to infer that these mechanisms play an38
important role in determining spatio-temporal patterns of retinal degeneration.39

Grover et al. (1998) have classified the spatio-temporal patterns of visual field loss in RP patients into40
three patterns and six sub-patterns (see Fig. 2). Pattern 1A consists in a restriction of the peripheral visual41
field, while Pattern 1B also includes a para-/peri-foveal ring scotoma (blind spot); Pattern 2 (A, B and42
C) involves an initial loss of the superior visual field, winding nasally or temporally into the inferior43
visual field; lastly, Pattern 3 starts with loss of the mid-peripheral visual field, before spreading into the44
superior or inferior visual field and winding around the far-periphery. In all cases central vision is the best45
preserved, though it too is eventually lost (Hamel, 2006; Hartong et al., 2006). Patterns of visual field loss46
and photoreceptor degeneration (cell loss) are directly related (Escher et al., 2012), loss of the superior47
visual field corresponding to degeneration of photoreceptors in the inferior retina and vice versa, and loss48
of the temporal visual field corresponding to degeneration of photoreceptors in the nasal retina and vice49
versa.50

In this paper we explore the conditions under which the TF mechanism, in isolation, can replicate51
the patterns of cone degeneration observed in vivo. Isolating a mechanism in this way enables us to52
identify the effects for which it is sufficient to account, avoiding confusion with other mechanistic causes.53
Understanding the mechanisms of secondary cone degeneration is important since it is the cones that54
provide high-acuity colour vision, and hence their loss, rather than the preceding rod loss, which is the55
most debilitating. Therefore, by elucidating these mechanisms, we can develop targeted therapies to56
prevent or delay cone loss, preserving visual function. The TF mechanism has been studied in detail. Rod57
photoreceptors have been shown to produce a TF called rod-derived cone viability factor (RdCVF), which58
is necessary for cone survival (Fintz et al., 2003; Léveillard et al., 2004; Mohand-Saı̈d et al., 1998, 2000,59
1997; Yang et al., 2009). RdCVF increases cone glucose uptake, and hence aerobic glycolysis, by binding60
to the cone transmembrane protein Basigin-1, which consequently binds to the glucose transporter GLUT161
(Aı̈t-Ali et al., 2015). Cones do not produce RdCVF, thus, when rods are lost, RdCVF concentration drops62
and cone degeneration follows (though it has been suggested that it may ultimately be oxygen toxicity63
which kills cones; Léveillard and Sahel, 2017).64

Thus far, two groups have developed mathematical models operating under the TF hypothesis. Camacho65
et al. have developed a series of (non-spatial) dynamical systems ordinary differential equation models to66
describe the role of RdCVF in health and RP (Colón Vélez et al., 2003; Camacho et al., 2010; Camacho and67
Wirkus, 2013; Camacho et al., 2014, 2016a,b,c, 2019, 2020, 2021; Wifvat et al., 2021). In Roberts (2022),68
we developed the first partial differential equation (PDE) models of the TF mechanism in RP, predicting69
the spatial spread of retinal degeneration. It was found that, assuming all cones are equally susceptible70
to RdCVF deprivation and that rods degenerate exponentially with a fixed decay rate, the mechanism is71
unable to replicate in vivo patterns of retinal degeneration. Previous modelling studies have also considered72
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the oxygen toxicity (Roberts et al., 2017, 2018 and related Roberts et al., 2016b) and toxic substance73
(Burns et al., 2002) mechanisms, predicting the spatio-temporal patterns of retinal degeneration they would74
generate. For a review of these and other mathematical models of the retina in health, development and75
disease see Roberts et al. (2016a).76

In this study, we extend our work in Roberts (2022) by formulating and solving an inverse problem to77
determine the spatially heterogeneous cone susceptibility to RdCVF deprivation and rod exponential decay78
rate profiles that are required to qualitatively recapitulate observed patterns of spatio-temporal degeneration79
in human RP.80

2 MATERIAL AND METHODS
2.1 Model Formulation81

We begin by formulating a reaction-diffusion PDE mathematical model (a simplified version of the82
model presented in Roberts, 2022). Reaction-diffusion PDE models describe the way in which the spatial83
distribution of cells and chemicals change over time as a result of processes such as movement (diffusion),84
production, consumption, death and decay. We pose the model on a spherical geometry to replicate85
that of the human retina. This geometry is most naturally represented using a spherical polar coordinate86
system, (r,θ,φ), centred in the middle of the vitreous body, where r ≥ 0 (m) is the distance from the87
origin, 0 ≤ θ ≤ π (rad) is the polar angle and 0 ≤ φ < 2π (rad) is the azimuthal angle. To create a more88
mathematically tractable model, we simplify the geometry by assuming symmetry about the z-axis (directed89
outward from the origin through the foveal centre), eliminating variation in the azimuthal direction, and90
effectively depth-average through the retina, assuming that it lies at a single fixed distance, R > 0 (m),91
from the origin at all eccentricities, θ, leveraging the fact that the retinal width is two orders of magnitude92
smaller than the eye’s radius (Oyster, 1999). Thus, we have reduced the coordinate system to (R,θ), where93
R is a positive constant parameter and 0 ≤ θ ≤ Θ is an independent variable, which we bound to range94
between the fovea (at θ = 0 rad) and the ora serrata (at θ = Θ = 1.33 rad; see Fig. 1A). We further simplify95
the model by non-dimensionalising; scaling the dependent and independent variables so that they and the96
resultant model parameters are dimensionless and hence unitless. This reduces the number of parameters97
(including eliminating R) and allows us to identify the dominant terms of the governing equations in the98
ensuing asymptotic analysis. For this reason, there are no units to be stated in Figs. 3–10. For the full99
dimensional model and non-dimensionalisation see Roberts (2022).100

We proceed directly to the dimensionless model, which consists of a system of PDEs in terms of the101
dependent variables: TF concentration, f(θ, t), rod photoreceptor density, pr(θ, t), and cone photoreceptor102
density, pc(θ, t); as functions of the independent variables: polar angle, scaled to lie in the range 0 ≤ θ ≤ 1,103
and time, t > 0 (see Table 1).104

The TF equation is as follows105

∂f

∂t
=

Df

sin(Θθ)

∂

∂θ

(
sin(Θθ)

∂f

∂θ

)
︸ ︷︷ ︸

diffusion

+ αpr︸︷︷︸
production

− βfpc︸︷︷︸
consumption

− ηf︸︷︷︸
decay

, (1)

where ∂f/∂t is the rate of change in TF concentration over time and the parameters, Df , the TF diffusivity,106
α, the rate of TF production by rods, β, the rate of TF consumption by cones, and η, the rate of TF decay,107
are positive constants. Trophic factor is free to diffuse across the retina through the interphotoreceptor108
matrix (Aı̈t-Ali et al., 2015). We assume, in the absence of experimental evidence to the contrary, that all109
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rods produce TF at an equal and constant rate, independent of the local TF concentration, such that the110
rate of TF production is directly proportional to the local rod density. Similarly, in the absence of further111
experimental evidence, we assume that all cones consume TF at an equal and constant rate for a given local112
TF concentration. Applying the physiological version of the Law of Mass Action, which states that the rate113
of a reaction is directly proportional to the product of the concentrations/densities of the reactants (Murray,114
2002, in this case TF and cones), we assume that TF is consumed by cones at a rate directly proportional to115
the product of the local TF concentration and the local cone density. Lastly, we assume that TF decays116
exponentially, decreasing at a rate directly proportional to its local concentration, as has been shown to117
occur for a range of other proteins in living human cells (Eden et al., 2011).118

The rod equation takes the following form119

∂pr
∂t

= − φr(θ)pr︸ ︷︷ ︸
cell degeneration

(mutation-induced)

, (2)

where ∂pr/∂t is the rate of change in rod density over time and we allow the variable φr(θ), the rate of120
mutation-induced rod degeneration, to vary spatially (functional forms defined in the Results section), or121
take a constant positive value, φr. Rods degenerate due to their expression of a mutant gene (Hamel, 2006;122
Hartong et al., 2006) and are assumed to do so exponentially, at a rate directly proportional to their local123
density, consistent with measurements of photoreceptor degeneration kinetics in mouse, rat and canine124
models of RP (Clarke et al., 2000). Unlike with cones, RdCVF does not serve a protective function for rods125
(Aı̈t-Ali et al., 2015); therefore, their rate of degeneration is independent of the TF concentration. We note126
that Eqn. (2) can be solved to yield pr(θ, t) = prinit(θ)e

−φr(θ)t (where prinit(θ), the initial value of pr(θ, t),127
is defined below), provided there is no delay in onset or interruption of degeneration.128

The cone equation is as follows129
∂pc
∂t

= − pcλ2(f)︸ ︷︷ ︸
cell degeneration
(TF starvation)

, (3)

where ∂pc/∂t is the rate of change in cone density over time. We define the Heaviside step function, H(·),
such that

H(x) :=

{
0 if x < 0,
1 if x ≥ 0,

the function λ2(f) is given by
λ2(f) = 1 −H(f − fcrit(θ)),

where we allow the variable fcrit(θ), the TF threshold concentration, to vary spatially (functional forms130
defined in the Results section), or take a constant positive value, fcrit. Cone density is assumed to remain131
constant provided the local TF concentration, f(θ, t), remains in the healthy range at or above the critical132
threshold, fcrit, while cones are assumed to decay exponentially (due to TF starvation) at a rate directly133
proportional to their local density if f(θ, t) drops below this threshold, again consistent with Clarke et al.134
(2000)’s measurements of photoreceptor degeneration kinetics.135
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Having defined the governing equations (Eqs. (1)–(3)), we close the system by imposing boundary and136
initial conditions. We apply zero-flux boundary conditions at both ends of the domain,137

∂f

∂θ
(0, t) = 0 =

∂f

∂θ
(1, t), (4)

where ∂f/∂θ is the TF concentration gradient in the polar direction, such that there is no net flow of TF
into or out of the domain. This is justified by symmetry at θ = 0, while we assume that TF cannot escape
from the retina where it terminates at the ora serrata (θ = 1). The healthy rod and cone distributions are
given by the following functions

p̃r(θ) = B3θe
−b3θ,

p̃c(θ) = B1e
−b1θ +B2e

−b2θ,

where the values of the positive constants B1, B2, B3, b1, b2 and b3 are found by fitting to the mean138
of Curcio et al. (1990)’s measurements of healthy human rod and cone distributions along the temporal139
horizontal meridian using the Trust-Region Reflective algorithm in Matlab’s curve fitting toolbox (see Fig.140
1B). Lastly, we impose the initial conditions141

f(θ, 0) = finit(θ), pr(θ, 0) = prinit(θ) = p̃r(θ), pc(θ, 0) = pcinit(θ) = p̃c(θ), (5)

where finit(θ) is the steady-state solution to Eqs. (1) and (4) with pr = prinit(θ) and pc = pcinit(θ) (see142
Fig. 3A). Thus, the retina starts in the healthy state in all simulations. See Table 2 for the dimensionless143
parameter values (see Roberts, 2022, for dimensional values and justification of parameter values). The144
model presented here simplifies that in Roberts (2022) in the following ways: it does not include treatment,145
cone outer segment regeneration, or initial patches of rod or cone loss, while mutation-induced rod loss146
is active for all simulations in this study. The present model also adds two new features to the previous147
model: allowing the rate of mutation-induced rod degeneration, φr(θ), and the TF threshold concentration,148
fcrit(θ), to vary spatially, where before they were constant (or piecewise constant in the high fcrit subcase).149

150

2.2 Numerical Solutions151

Numerical (computational) solutions to Eqs. (1)–(5) were obtained using the method of lines (as in152
Roberts, 2022), discretising in space and then integrating in time. The time integration was performed153
using the Matlab routine ode15s, a variable-step, variable-order solver, designed to solve problems154
involving multiple timescales such as this (Matlab version R2020a was used here and throughout the paper).155
We used a relative error tolerance of 10−6 and an absolute error tolerance of 10−10, with the remaining156
settings at their default values. The number of spatial mesh points employed varies between simulations,157
taking values of 26, 51, 101, 401 or 4001. The upper bound of 4001 mesh points was chosen such that158
the distance between mesh points corresponds to the average width of a photoreceptor. In each case the159
maximum computationally feasible mesh density was employed, all mesh densities being sufficient to160
achieve accurate results. The initial TF profile, f(θ, 0) = finit(θ), was calculated by discretising Eqs. (1)161
and (4) at steady-state, using a finite difference scheme, and solving the consequent system of nonlinear162
algebraic equations using the Matlab routine fsolve (which employs a Trust–Region–Dogleg algorithm)163
with pr = prinit(θ) and pc = pcinit(θ).164

165
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2.3 Inverse Problem166

Our previous modelling study of the TF hypothesis predicted patterns of cone degeneration which failed to167
match any known patterns in human RP (Roberts, 2022). In that study we made the simplifying assumption168
that model parameters are spatially uniform, such that they do not vary with retinal eccentricity. While169
this is a reasonable assumption in most cases, we have reason to believe that two of the parameters — the170
rate of mutation-induced rod loss, φr, and the TF threshold concentration, fcrit — may vary spatially (see171
below), which could help account for in vivo patterns of retinal degeneration.172

Rates of rod degeneration in human RP have not been studied in great detail. Thus far, histopathological173
examination of human RP retinas has revealed that rod degeneration is most severe in the mid-peripheral174
retina, with relative sparing of rods in the macula and far-periphery until later in the disease (Milam et al.,175
1998). It may be that this pattern varies depending upon the mutation involved and between individuals176
(cf. Huang et al., 2012, for which different spatial patterns of rod function loss occur in patients, all of177
whom have a mutation in the RPGR gene). The rate of decay of rod photoreceptors has also been shown to178
vary with retinal eccentricity in mouse and pig models of RP (Carter-Dawson et al., 1978; Li et al., 1998).179
Further, under healthy conditions, the RdCVF concentration at the centre of the retina (near θ = 0) is much180
lower (f(θ, t) ∼ O(10−5)) than in the remainder of the retina (where f(θ, t) ∼ O(0.1) to O(1), see Fig.181
3A). Therefore, it is reasonable to assume that central retinal cones are able to cope with lower RdCVF182
concentrations than those toward the periphery, and hence that fcrit is also heterogeneous. To determine183
whether these heterogeneities could account for cone degeneration patterns in human RP, we formulate and184
solve something known as an inverse problem.185

In an inverse problem we seek to determine the model input required to attain a known/desired output.186
In this case the known output is the target cone degeneration profile, tdegen(θ), while the input is either187
the rate of mutation-induced rod loss profile, φr(θ), or the TF threshold concentration profile, fcrit(θ),188
with corresponding inverses denoted as φr(θ) = φrinv(θ) and fcrit(θ) = fcritinv(θ) respectively. When189
searching for φrinv(θ), we hold the TF threshold concentration constant at fcrit(θ) = fcrit = 3 × 10−5,190
while, when searching for fcritinv(θ), we hold the rate of mutation-induced rod loss constant at φr(θ) =191
φr = 7.33× 10−2. The constant value of fcrit is chosen to lie just below the minimum steady-state value of192
f(θ), such that, in the absence of rod loss, cones remain healthy, while the constant value of φr is chosen to193
be one hundred times higher than the value that can be inferred from measurements in the healthy human194
retina (Curcio et al., 1993), placing the timescale of the resultant cone loss on the order of decades, in195
agreement with in vivo RP progression rates (Hamel, 2006; Hartong et al., 2006).196

We consider a range of target cone degeneration profiles, summarised in Table 3 and Fig. 5, which197
qualitatively replicate visual field loss Patterns 1A, 1B and 3 seen in vivo (and hence the corresponding in198
vivo cone degeneration patterns; taking the degeneration of the far-peripheral retina to occur in a radially199
symmetric manner in Pattern 3 — see Fig. 2 and Grover et al., 1998). We do not consider patterns of type200
2 (to be explored in a future study) as these cannot be replicated by a 1D model (since the radial symmetry,201
assumed by the 1D model, is broken by variation in the azimuthal/circumferential direction). For each202
degeneration pattern we consider a set of sub-patterns to examine how this affects the shape of the inverses,203
allowing us to confirm that a modest change in the degeneration pattern results in a modest change in the204
inverses, while exploring both linear/piecewise linear profiles and more biologically realistic nonlinear205
(quadratic/cubic/exponential) patterns. We also consider a uniform target cone degeneration profile for206
comparison.207

For each pattern, we consider the effect of two (biologically realistic) scalings for the rate of TF production208
by rods, α, and the rate of TF consumption by cones, β, upon the inverse profiles: (i) Scaling 1 — for which209
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α = 7.01 × 104 and β = 1.79 × 106 as in Roberts (2022); and (ii) Scaling 2 — for which α = 7.01 × 102210
and β = 1.79 × 104. Under Scaling 1, production and consumption of TF dominate over decay (with rate211
constant η), such that decay has a negligible effect upon the TF profile and model behaviour. Under Scaling212
2, TF production and consumption occur at a similar rate to decay, such that they balance each other,213
resulting in a different TF profile and model behaviour (see Fig. 3A and C). As discussed in Roberts (2022),214
none of α, β or η have been measured. The decay rate, η, was chosen to match the measured decay rate of215
proteins in living human cells (Eden et al., 2011). Under Scaling 1, the consumption rate, β, is chosen such216
that it dominates over the decay rate (being a factor ε−1 = O(102) larger), while the production rate, α, is217
chosen to balance consumption (see the Analytical Inverse section). This is a sensible scaling as it is likely218
that cones consume RdCVF at a much faster rate than that at which it decays. It is possible, however, that219
cones consume RdCVF at a similar rate to its decay rate, which is the scenario we consider in Scaling 2;220
reducing α and β by a factor of 100 (∼ ε−1) to bring consumption and production into balance with decay221
(see the Analytical Inverse section).222

We solve the inverse problem both analytically and numerically (computationally), as described in the223
Analytical Inverse and Numerical Inverse sections below. Analytical approximations are computationally224
inexpensive and provide deeper insight into model behaviour, while numerical solutions, though computati-225
onally intensive, are more accurate.226

227
2.3.1 Analytical Inverse228

Less mathematically inclined readers may wish to skip over the following derivation and proceed to the229
resulting Eqs. (6)–(11) and surrounding explanatory text. To derive analytical (algebraic) approximations230
for the inverses, φrinv(θ) and fcritinv(θ), we perform an asymptotic analysis, seeking the leading order231
behaviour of Eqs. (1)–(5). In other words, we are simplifying our equations, making it possible to solve232
them algebraically (by hand), by only including those terms (corresponding to specific biological processes,233
e.g. TF production) which dominate the behaviour of the solution, where the method known as ‘asymptotic234
analysis’ enables us to rationally identify these dominant terms. Proceeding as in Roberts (2022) (where235
we considered a steady-state problem), we choose ε = O(10−2) and scale the parameters η = ε−1η′236
and b1 = ε−1b′1, introducing the new scaling φr(θ) = εφ′r(θ), as we study the time-dependent problem237
here (where dashes ′ denote scaled variables and parameters). We consider two possible (biologically238
realistic) scalings on α and β: (i) Scaling 1 — for which α = ε−2α′ and β = ε−3β′ as in Roberts (2022)239
(corresponding to α = 7.01 × 104 and β = 1.79 × 106); and (ii) Scaling 2 — for which α = ε−1α′ and240
β = ε−2β′ (corresponding to α = 7.01 × 102 and β = 1.79 × 104). All remaining parameters are assumed241
to be O(1). We also scale the dependent variable pc(θ, t) = εp′c(θ, t), and assume f(θ, t) = O(1) and242
pr(θ, t) = O(1).243

Applying the above scalings and dropping the dashes (working with the scaled versions of the variables
and parameters, but omitting the dashes ′ for notational convenience), Eqn. (2) becomes

∂pr
∂t

= −εφr(θ)pr.

Thus, on this (fast) timescale, the rod density is constant. Since we are interested in the timescale upon
which rods degenerate, we scale time as t′ = εt such that the decay term enters the dominant balance. Thus,
on this slow timescale, after dropping the dashes, we have that

∂pr
∂t

= −φr(θ)pr,
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such that, at leading order, pr0(θ, t) = prinit0 (θ)e−φr(θ)t = B3θe
−b3θeφr(θ)t.244

We are interested here in the regime in which cones have not yet degenerated, thus we assume the leading245
order cone density remains constant at pc0(θ) = pcinit0 (θ) = B2e

−b2θ.246

Applying Scaling 1 and the slow timescale to Eqn. (1) we obtain

ε
∂f

∂t
= Df

∂2f

∂θ2
+DfΘ cot(Θθ)

∂f

∂θ
+ ε−2αpr − ε−2βpcf − ε−1ηf .

Since the TF dynamics occur on a faster timescale than mutation-induced rod loss, we make a quasi-steady-
state approximation (QSSA), assuming that the TF concentration instantaneously takes its steady-state
profile, for any given rod density profile, as the rods degenerate (ε∂tf ∼ 0). Thus, at leading order, we
obtain

f0QSSA(θ) =
αpr0(θ, t)

βpc0(θ)
.

Rearranging this expression and assuming that cone degeneration initiates when f0QSSA(θ) = fcrit(θ), we247
obtain the cone degeneration time profile,248

tdegen(θ) =
1

φr(θ)

(
log

(
αB3

βB2fcrit(θ)
θ

)
− (b3 − b2)θ

)
, (6)

the inverse mutation-induced rod degeneration rate profile,249

φrinv(θ) =
1

tdegen(θ)

(
log

(
αB3

βB2fcrit
θ

)
− (b3 − b2)θ

)
, (7)

and the inverse TF threshold concentration profile,250

fcritinv(θ) =
αB3

βB2
θe−((b3−b2)θ+φrtdegen(θ)). (8)

Alternatively, if we apply Scaling 2 and the slow timescale to Eqn. (1) we obtain

ε
∂f

∂t
= Df

∂2f

∂θ2
+DfΘ cot(Θθ)

∂f

∂θ
+ ε−1αpr − ε−1βpcf − ε−1ηf ,

with the TF decay term, ηf , now entering the dominant balance. Applying the QSSA and proceeding as
above we find

f0QSSA(θ) =
αpr0(θ, t)

βpc0(θ) + η
,

with cone degeneration time profile,251

tdegen(θ) =
1

φr(θ)

(
log

(
αB3

(βB2 + ηeb2θ)fcrit(θ)
θ

)
− (b3 − b2)θ

)
, (9)

inverse mutation-induced rod degeneration rate profile,252

φrinv(θ) =
1

tdegen(θ)

(
log

(
αB3

(βB2 + ηeb2θ)fcrit
θ

)
− (b3 − b2)θ

)
, (10)
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and inverse TF threshold concentration profile,253

fcritinv(θ) =
αB3

(βB2 + ηeb2θ)
θe−((b3−b2)θ+φrtdegen(θ)). (11)

These equations reveal how the inverses, φrinv(θ) and fcritinv(θ), are influenced by our choices for fixed254
values of fcrit and φr, respectively. As can be seen from Eqs. (7) and (10), φrinv(θ) is inversely and255
monotonically related to fcrit, such that as fcrit increases, φrinv(θ) decreases. Similarly, fcritinv(θ) and φr256
are inversely and monotonically related in Eqs. (8) and (11), such that as φr increases, fcritinv(θ) decreases.257
Lastly, as would be expected intuitively, tdegen(θ), φrinv(θ) and fcritinv(θ) all increase monotonically with258
increasing TF production, α, and decrease monotonically with increasing TF consumption, β, and TF259
decay η (Eqs. (6)–(8) and (9)–(11)).260

261
2.3.2 Numerical Inverse262

The numerical inverse is calculated by repeatedly solving the forward problem (Eqs. (1)–(5)) for different263
values of the input (φr(θ) or fcrit(θ)), with the aim of converging upon the inverse (φrinv(θ) or fcritinv(θ)).264
To find φrinv(θ) we use the Matlab routine fminsearch (which uses a simplex search method), while to265
obtain fcritinv(θ) the Matlab routine patternsearch (which uses an adaptive mesh technique) was found to266
be more effective. In both cases the objective function (the quantity we are seeking to minimise) was taken267
as the sum of squares of the difference between the target cone degeneration profile, tdegen(θ), and the268
contour described by pc(θ, t)/p̃c(θ) = 0.99 (along which cone degeneration is deemed to have initiated).269
Eqs. (1)–(5) were solved at each iteration as described in the Numerical Solutions section. Numerical270
inverses were calculated only at those locations (eccentricities) where the analytical inverse failed to271
generate a tdegen(θ) profile matching the target profile, the analytical inverse being assumed to hold at all272
other eccentricities.273

3 RESULTS
We begin by calculating the cone degeneration profiles, tdegen(θ), in the case where both the rate of274
mutation induced rod degeneration, φr, and the TF threshold concentration, fcrit, are spatially uniform275
(or piecewise constant). We set the standard value for φr = 7.33 × 10−2 and consider the subcases (i)276
fcrit = 3 × 10−5 for 0 ≤ θ ≤ 1 (Fig. 4A), and (ii) fcrit = 0.3 for θ > 0.13 while fcrit = 3 × 10−5 for277
θ ≤ 0.13 (Fig. 4B), as were explored in Roberts (2022). These subcases correspond to the situation in278
which the TF threshold concentration lies beneath the minimum healthy TF value at all retinal locations279
(i), and the situation in which foveal cones are afforded special protection compared to the rest of the280
retina, such that they can withstand lower TF concentrations (ii). For notational simplicity, we shall refer281
to subcase (ii) simply as fcrit = 0.3 in what follows. As with Figs. 6–9, we consider both Scaling 1 and282
Scaling 2 (see Inverse Problem) on the rate of TF production by rods, α, and the rate of TF consumption by283
cones, β, calculating both analytical and numerical solutions.284

Cone degeneration initiates at the fovea (θ = 0) in Fig. 4A and at θ = 0.13 in Fig. 4B, spreading285
peripherally (rightwards) in both cases, while degeneration also initiates at the ora serrata (θ = 1) under286
Scaling 2 in both Fig. 4A and Fig. 4B, spreading centrally. Degeneration occurs earlier in Fig. 4B than287
in Fig. 4A and earlier for Scaling 2 than for Scaling 1 (except near the fovea in Fig. 4A). Numerical and288
analytical solutions agree well, only diverging close to the fovea in Fig. 4A, where the analytical solution289
breaks down. None of these patterns of degeneration match those seen in vivo (see Fig. 2).290
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In Figs. 6–9 we calculate the φr(θ) = φrinv(θ) and fcrit(θ) = fcritinv(θ) profiles required to qualitatively291
replicate the cone degeneration profiles, tdegen(θ), observed in vivo (Fig. 5), by solving the associated292
inverse problems (see Inverse Problem). As noted in the Inverse Problem section, when searching for293
φrinv(θ), we hold the TF threshold concentration constant at fcrit(θ) = fcrit = 3 × 10−5, while, when294
searching for fcritinv(θ), we hold the rate of mutation-induced rod loss constant at φr(θ) = φr = 7.33 ×295
10−2. Analytical inverses are plotted across the domain (0 ≤ θ ≤ 1), while numerical inverses are296
calculated and plotted only at those locations (eccentricities) where the analytical inverse fails to generate a297
tdegen(θ) profile matching the target profile (as determined by visual inspection, the tdegen(θ) and target298
profiles being visually indistinguishable outside of these regions).299

In Fig. 6 we calculate inverses for a Uniform degeneration profile. While this pattern is not typically300
observed in humans, we consider this case as a point of comparison with the non-uniform patterns explored301
in Figs. 7–9. Both inverses, φrinv(θ) and fcritinv(θ), are monotone increasing for Scaling 1, and increase302
initially for Scaling 2 before reaching a maximum and decreasing toward the ora serrata (at θ = 1).303
Consequently, Scaling 1 and 2 inverses, while close near the fovea (θ = 0), diverge toward the ora serrata,304
this effect being more prominent for fcritinv(θ). The inverse profiles have a similar shape to the tdegen(θ)305
profiles in Fig. 4 (see Discussion). Numerical solutions reveal lower values of the inverses near the fovea,306
where the analytical approximations break down.307

Inverses for linear (Fig. 7A and B), concave up (quadratic) (Fig. 7C and D) and concave down (quadratic)308
(Fig. 7E and F) Pattern 1A degeneration profiles are shown in Fig. 7. Inverses are monotone increasing309
functions for both Scalings 1 and 2 in Fig. 7A,B,E and F, and for Scaling 1 in Fig. 7C and D, while the310
inverses increase initially for Scaling 2 before reaching a maximum and decreasing toward the ora serrata in311
Fig. 7C and D. Numerical solutions reveal lower values of the inverses near the fovea, where the analytical312
approximations break down.313

Fig. 8 shows inverses for linear (Fig. 8A and B), quadratic (Fig. 8C and D) and exponential (Fig. 8E and314
F) Pattern 1B degeneration profiles. Inverses resemble vertically flipped versions of the tdegen(θ) profiles315
in Fig. 5C (see Discussion). Numerical solutions reveal lower values of the inverses near the fovea, where316
the analytical approximations break down, and higher values in some regions away from the fovea in Fig.317
8A–D. The discontinuities in the linear and quadratic cases are biologically unrealistic, though consistent318
with the idealised qualitative target cone degeneration patterns in Fig. 5C.319

In Fig. 9 we calculate inverses for linear 1 (Fig. 9A and B), linear 2 (Fig. 9C and D), quadratic (Fig.320
9E and F) and cubic (Fig. 9G and H) Pattern 3 degeneration profiles. Inverses resemble vertically flipped321
versions of the tdegen(θ) profiles in Fig. 5D (see Discussion). Numerical solutions reveal lower values of322
the inverses near the fovea, where the analytical approximations break down, and higher values in some323
regions away from the fovea in Fig. 9C–F and H. Similarly to Fig. 8, the discontinuities in the linear 2324
and quadratic cases are biologically unrealistic, though consistent with the idealised qualitative target cone325
degeneration patterns in Fig. 5D.326

Lastly, in Fig. 10, we show simulation results of proportional cone loss for analytical and numerical327
φrinv(θ) and fcritinv(θ), for Uniform (Scaling 1, Fig. 10A–D), concave up Pattern 1A (Scaling 1, Fig.328
10E–H), linear Pattern 1B (Scaling 2, Fig. 10I–L) and quadratic Pattern 3 (Scaling 2, Fig. 10M–P)329
target degeneration profiles. Cone degeneration profiles generally show good agreement with the target330
tdegen(θ) profiles. There is some divergence from tdegen(θ) for the analytical inverses near the fovea and at331
discontinuous or nonsmooth portions of tdegen(θ); this is mostly corrected by the numerical inverses. This332
correction is not perfect near the centre of the fovea, where cones still degenerate earlier than the target333
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profiles. This occurs because it is necessary to replace the Heaviside step function in λ2(f) (see Eqn. (3))334
with a hyperbolic tanh function to satisfy the smoothness requirements for the numerical solver, with the335
result that the initiation of cone degeneration is sensitive to the low TF concentrations (f(θ, t) < 10−4) in336
that region.337

4 DISCUSSION
The spatio-temporal patterns of retinal degeneration observed in human retinitis pigmentosa (RP) are338
well characterised; however, the mechanistic explanation for these patterns has yet to be conclusively339
determined. In this paper, we have formulated a one-dimensional (1D) reaction-diffusion partial differential340
equation (PDE) model (modified from Roberts, 2022) to predict RP progression under the trophic factor341
(TF) hypothesis. Using this model, we solved inverse problems to determine the rate of mutation-induced342
rod loss profiles, φr(θ) = φrinv(θ), and TF threshold concentration profiles, fcrit(θ) = fcritinv(θ), that343
would be required to generate spatio-temporal patterns of cone degeneration qualitatively resembling344
those observed in vivo, were the TF mechanism solely responsible for RP progression. In reality, multiple345
mechanisms (including oxidative damage and metabolic dysregulation, Punzo et al., 2009, 2012; Stone346
et al., 1999; Travis et al., 1991; Valter et al., 1998) likely operate in tandem to drive the initiation and347
propagation of retinal degeneration in RP. By using mathematics to isolate the TF mechanism, in a way348
that would be impossible to achieve experimentally, we are able to determine the conditions under which349
the TF mechanism alone would recapitulate known phenotypes. Having identified these conditions, this350
paves the way for future biomedical and experimental studies to test our predictions.351

Other mechanisms may give rise to spatio-temporal patterns of retinal degeneration different from those352
predicted for the TF mechanism and may do so using fewer assumptions. For example, our previous353
work on oxygen toxicity in RP demonstrated that this mechanism can replicate visual field loss Pattern 1354
(especially 1B) and the late far-peripheral degeneration stage of Pattern 3, without imposing heterogeneities355
on the rod decay rate or photoreceptor susceptibility to oxygen toxicity (Roberts et al., 2017, 2018). Further,356
we hypothesise that the toxic substance hypothesis (in which dying rods release a chemical which kills357
neighbouring photoreceptors) is best able to explain the early mid-peripheral loss of photoreceptors in358
Patterns 2 and 3, given the high density of rods in this region. In future work, we will explore the toxic359
substance and other hypotheses, ultimately combining them together in a more comprehensive modelling360
framework, aimed at explaining and predicting all patterns of retinal degeneration in RP.361

Spatially uniform φr(θ) and fcrit(θ) profiles fail to replicate any of the in vivo patterns of degeneration362
(Fig. 4), showing that heterogenous profiles are required, all else being equal. Throughout this paper we363
have considered two scalings on the rate of TF production by rods, α, and the rate of TF consumption by364
cones, β (denoted as Scalings 1 and 2, see the Inverse Problem section for details). Under Scaling 1, the365
rod:cone ratio (Fig. 3B) dominates the model behaviour (see Eqn. (6)), leading to a monotone, central to366
peripheral pattern of degeneration, while under Scaling 2, the trophic factor decay term, ηf , enters the367
dominant balance (see Eqn. (9)), such that degeneration initiates at both the fovea and (later) at the ora368
serrata, the degenerative fronts meeting in the mid-/far-periphery (Fig. 4).369

As discussed in the Inverse Problem section, the rate of mutation-induced rod loss, φr(θ), is known to be370
spatially heterogeneous in humans with RP (Milam et al., 1998). The φr(θ) profile predicted for Pattern 3371
is consistent with the preferential loss of rods in the mid-peripheral retina noted by Milam et al. (1998) for372
human RP. A more extensive biomedical investigation is required to characterise quantitatively the diversity373
of φr(θ) profiles across individuals and for different mutations. This would make it possible to determine if374
the φr(θ) profiles predicted by our model for cone degeneration Patterns 1A and 1B are realised in human375
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RP patients with those cone degeneration patterns. To the best of our knowledge, we are the first to suggest376
that the intrinsic susceptibility of cones to RdCVF deprivation, characterised in our models by the TF377
threshold concentration, fcrit(θ), may vary across the retina. Assuming it does vary, what might account for378
this phenomenon? There is a precedent for special protection being provided to localised parts of the retina.379
For example, experiments in mice have found that production of basic fibroblast growth factor (bFGF) and380
glial fibrillary acidic protein (GFAP) is permanently upregulated along the retinal edges, at the ora serrata381
and optic disc, to protect against elevated stress in these regions (Mervin and Stone, 2002; Stone et al.,382
2005). Similarly, in the human retina, rods (though not cones) contain bFGF, with a concentration gradient383
increasing towards the periphery (Li et al., 1997, potentially explaining the relative sparing of rods often384
observed at the far-periphery). By analogy, we speculate that, in the human retina, cone protective factors385
may be upregulated at the fovea to compensate for the low RdCVF concentrations in that region, lowering386
the local value of fcrit(θ). This hypothesis awaits experimental confirmation.387

We solved the inverse functions, φrinv(θ) and fcritinv(θ), both analytically (algebraically) and numeri-388
cally (computationally). Analytical solutions are approximations; however, they have the advantage of389
being easier to compute (increasing their utility for biomedical researchers) and provide a more intuitive390
understanding of model behaviour, while numerical solutions are more accurate, though computationally391
expensive. We calculated the inverses for a range of target cone degeneration profiles, consisting of a392
Uniform profile and profiles which qualitatively replicate those found in vivo: Pattern 1A, Pattern 1B and393
Pattern 3 (Pattern 2 being inaccessible to a 1D model; see Table 3 and Fig. 5).394

The shapes of the inverse functions are determined partly by the rod and cone distributions, p̃r(θ) and395
p̃c(θ), and partly by the target cone degeneration profile, tdegen(θ) (see Eqs. (7), (8), (10) and (11)). As396
such, in the Uniform case (Fig. 6), the Scaling 1 inverse profiles take a similar shape to the rod:cone ratio397
(Fig. 3B), the inverses being lower towards the fovea to compensate for the smaller rod:cone ratio and hence398
lower supply of TF to each cone. The Scaling 2 inverse profiles follow a similar trend but decrease toward399
the ora serrata after peaking in the mid-/far-periphery due to the greater influence of the trophic factor400
decay term under this scaling. Interestingly, the shapes of these inverse profiles bear a striking resemblance401
to the cone degeneration profiles for spatially uniform φr(θ) and fcrit(θ) (Fig. 4). This is because lower402
values of the inverses are required to delay degeneration, in those regions where cones would otherwise403
degenerate earlier, to achieve a uniform degeneration profile. The inverse functions resemble vertically404
flipped versions of the target cone degeneration profiles for Patterns 1A, 1B and 3 (Figs. 7–9), this being405
more apparent for Patterns 1B and 3 due to their more distinctive shapes. This makes sense since lower406
inverse values are required for later degeneration times. Scaling 2 inverses typically lie below Scaling 1407
inverses, compensating for the fact that degeneration generally occurs earlier under Scaling 2 than under408
Scaling 1 for any given φr(θ) and fcrit(θ).409

Analytical inverses give rise to cone degeneration profiles that accurately match the target cone degenera-410
tion profiles, except near the fovea (centred at θ = 0, where the validity of the analytical approximation411
breaks down) and where the target tdegen(θ) profile is nonsmooth or discontinuous (i.e. linear and quadratic412
Pattern 1B, and linear 1, linear 2 and quadratic Pattern 3; see Fig. 10 for examples). Numerical inverses413
improve accuracy in these regions, consistently taking lower values near the fovea, delaying degeneration414
where it occurs prematurely under the analytical approximation.415

We have assumed throughout this study that at least one of φr(θ) and fcrit(θ) is spatially uniform. It is416
possible, however, that both vary spatially. In this case there are no unique inverses; however, if the profile417
for one of these functions could be measured experimentally, then the inverse problem for the remaining418
function could be solved as in this paper.419
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This work could be extended both experimentally and theoretically. Experimental and biomedical studies420
could measure how the rate of mutation-induced rod loss and TF threshold concentration vary with location421
in the retina, noting the spatio-temporal pattern of cone degeneration and comparing with the inverse422
φrinv(θ) and fcritinv(θ) profiles predicted by our models. Curcio et al. (1993) have previously measured423
variation in the rate of rod loss in normal (non-RP) human retinas (where rods degenerated most rapidly in424
the central retina); a similar approach could be taken to quantify the rate of rod loss in human RP retinas.425
The parameter fcrit is less straightforward to measure. Léveillard et al. (2004) incubated cone-enriched426
primary cultures from chicken embryos with glutathione S-transferase-RdCVF (GST-RdCVF) fusion427
proteins, doubling the number of living cells per plate compared with GST alone. If experiments of this428
type could be repeated for a range of controlled RdCVF concentrations, then the value of fcrit could be429
identified. Determining the spatial variation of fcrit(θ) in a foveated human-like retina may not be possible430
presently; however, the recent development of retinal organoids provides promising steps in this direction431
(Fathi et al., 2021; O’Hara-Wright and Gonzalez-Cordero, 2020). If organoids could be developed with a432
specialised macular region, mirroring that found in vivo, then the minimum RdCVF concentration required433
to maintain cones in health could theoretically be tested at a variety of locations. Further, the distribution434
of RdCVF, predicted in our models, could theoretically be measured in post-mortem human eyes using435
fluorescent immunohistochemistry, as was done for the protein neuroglobin by Ostojić et al. (2008) and436
Rajendram and Rao (2007), and perhaps also fluorescent immunocytochemistry as was done for bFGF437
by Li et al. (1997). In particular, it would be interesting to see if RdCVF concentration varies with retinal438
eccentricity as starkly as our model predicts, with extremely low levels in the fovea.439

In future work, we will extend our mathematical model to two spatial dimensions, accounting for variation440
in the azimuthal/circumferential dimension (allowing us to capture radially asymmetric aspects of visual441
field loss Patterns 2 and 3, and to account for azimuthal variation in the rod and cone distributions), and442
use quantitative target cone degeneration patterns derived from SD-OCT imaging of RP patients (e.g. as in443
Escher et al., 2012). We will also adapt the model to consider animal retinas for which the photoreceptor444
distribution has been well characterised (e.g. rats, mice and pigs, Chandler et al., 1999; Gaillard et al.,445
2009; Ortı́n-Martı́nez et al., 2014).446

In conclusion, we have formulated and solved a mathematical inverse problem to determine the rate of447
mutation-induced rod loss and TF threshold concentration profiles required to explain the spatio-temporal448
patterns of retinal degeneration observed in human RP. Inverse profiles were calculated for a set of449
qualitatively distinct degeneration patterns, achieving a close match with the target cone degeneration450
profiles. Predicted inverse profiles await future experimental verification.451
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Ostojić, J., Grozdanić, S. D., Syed, N. A., Hargrove, M. S., Trent, J. T., Kuehn, M. H., et al. (2008).583
Patterns of distribution of oxygen-binding globins, neuroglobin and cytoglobin in human retina. Arch.584
Ophthalmol. 126, 1530–1536. doi:10.1001/archopht.126.11.1530585

Oyster, C. W. (1999). The Human Eye: Structure and Function (Sinauer Associates Inc.)586

This is a provisional file, not the final typeset article 16

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2022. ; https://doi.org/10.1101/2021.09.04.458968doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.04.458968
http://creativecommons.org/licenses/by-nc-nd/4.0/


Paul A. Roberts Mathematical Models of Retinitis Pigmentosa

Punzo, C., Kornacker, K., and Cepko, C. L. (2009). Stimulation of the insulin/mTOR pathway delays cone587
death in a mouse model of retinitis pigmentosa. Nat. Neurosci. 12, 44–52. doi:https://doi.org/10.1038/588
nn.2234589

Punzo, C., Xiong, W., and Cepko, C. L. (2012). Loss of daylight vision in retinal degeneration: Are590
oxidative stress and metabolic dysregulation to blame? J. Biol. Chem. 287, 1642–1648. doi:https:591
//doi.org/10.1074/jbc.R111.304428592

Rajendram, R. and Rao, N. A. (2007). Neuroglobin in normal retina and retina from eyes with advanced593
glaucoma. Br. J. Ophthalmol. 91, 663–666. doi:http://dx.doi.org/10.1136/bjo.2006.093930594

Ripps, H. (2002). Cell death in retinitis pigmentosa: Gap junctions and the ‘bystander’ effect. Exp. Eye595
Res. 74, 327–336. doi:https://doi.org/10.1006/exer.2002.1155596

Roberts, P. A. (2022). Mathematical models of retinitis pigmentosa: The trophic factor hypothesis. J. Theor.597
Biol. 534, 110938. doi:https://doi.org/10.1016/j.jtbi.2021.110938598

Roberts, P. A., Gaffney, E. A., Luthert, P. J., Foss, A. J. E., and Byrne, H. M. (2016a). Mathematical and599
computational models of the retina in health, development and disease. Prog. Retin. Eye. Res. 53, 48–69.600
doi:https://doi.org/10.1016/j.preteyeres.2016.04.001601

Roberts, P. A., Gaffney, E. A., Luthert, P. J., Foss, A. J. E., and Byrne, H. M. (2016b). Retinal oxy-602
gen distribution and the role of neuroglobin. J. Math. Biol. 73, 1–38. doi:https://doi.org/10.1007/603
s00285-015-0931-y604

Roberts, P. A., Gaffney, E. A., Luthert, P. J., Foss, A. J. E., and Byrne, H. M. (2017). Mathematical605
models of retinitis pigmentosa: The oxygen toxicity hypothesis. J. Theor. Biol. 425, 53–71. doi:https:606
//doi.org/10.1016/j.jtbi.2017.05.006607

Roberts, P. A., Gaffney, E. A., Whiteley, J. P., Luthert, P. J., Foss, A. J. E., and Byrne, H. M. (2018).608
Predictive mathematical models for the spread and treatment of hyperoxia-induced photoreceptor609
degeneration in retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 59, 1238–1249. doi:https://doi.org/10.610
1167/iovs.17-23177611

Stone, J., Maslim, J., Valter-Kocsi, K., Mervin, K., Bowers, F., Chu, Y., et al. (1999). Mechanisms612
of photoreceptor death and survival in mammalian retina. Prog. Retin. Eye Res. 18(6), 689–735.613
doi:https://doi.org/10.1016/S1350-9462(98)00032-9614

Stone, J., Mervin, K., Walsh, N., Valter, K., Provis, J. M., and Penfold, P. L. (2005). Photoreceptor stability615
and degeneration in mammalian retina: Lessons from the edge. In Macular Degeneration, eds. P. Penfold616
and J. Provis (Springer Berlin Heidelberg). 149–165. doi:http://dx.doi.org/10.1007/3-540-26977-0 9617

Travis, G. H., Sutcliffe, J. G., and Bok, D. (1991). The retinal degeneration slow (rds) gene product is a618
photoreceptor disc membrane-associated glycoprotein. Neuron 6, 61–70. doi:https://doi.org/10.1016/619
0896-6273(91)90122-G620

Valter, K., Maslim, J., Bowers, F., and Stone, J. (1998). Photoreceptor dystrophy in the RCS rat: roles of621
oxygen, debris, and bFGF. Invest. Ophthalmol. Vis. Sci. 39, 2427–2442622
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Figure 1. Diagrams of the human eye and retinal photoreceptor distribution (reproduced, with permission, from
Roberts et al., 2017). (A) Diagram of the (right) human eye, viewed in the transverse plane, illustrating the
mathematical model geometry. The model is posed on a domain spanning the region between the foveal centre, at
θ = 0, and the ora serrata, at θ = Θ, along the temporal horizontal meridian, where θ measures the eccentricity.
Figure originally reproduced, with modifications, from http://www.nei.nih.gov/health/coloboma/
coloboma.asp, courtesy: National Eye Institute, National Institutes of Health (NEI/NIH). (B) Measured and
fitted photoreceptor profiles, along the temporal horizontal meridian, in the human retina. Cone profile: p̃c(θ) =
B1e

−b1θ + B2e
−b2θ, and rod profile: p̃r(θ) = B3θe

−b3θ (see Table 2 for dimensionless parameter values). The
photoreceptor profile is the sum of the rod and cone profiles (p̃r(θ) + p̃c(θ)). Experimental data provided by Curcio
and published in Curcio et al. (1990).
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Figure 2. Characteristic patterns of visual field loss in human RP (reproduced, with permission, from Roberts et al.,
2018). Visual field loss patterns can be classified into three cases and six subcases (classification system described in
Grover et al., 1998). Large grey arrows indicate transitions between stages of visual field loss and small red arrows
indicate the direction of scotoma (blind spot) propagation. See text for details.

Table 1. Variables employed in the non-dimensional mathematical model (Eqs. (1)–(5)).

Variable Description
θ Eccentricity
t Time
f(θ, t) Trophic factor concentration
pr(θ, t) Rod density
pc(θ, t) Cone density
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Figure 3. Initial conditions, ratio of rods to cones and RdCVF reaction rates. (A) initial conditions used in all
simulations, consisting of healthy rod and cone profiles and the corresponding RdCVF profiles under Scalings 1
and 2 (the legend applies to (A) only). (B) variation in the healthy rod:cone ratio, p̃r(θ)/p̃c(θ), with eccentricity.
(C) RdCVF production, consumption and decay rates under Scalings 1 and 2 (Eqn. (1), the legend applies to (C)
only). To obtain finit(θ) in (A) and (C), Eqs. (1) and (4) were solved at steady-state using the finite difference
method, with 4001 mesh points, where pr(θ) = prinit(θ) and pc(θ) = pcinit(θ). Under Scaling 1, α = 7.01 × 104

and β = 1.79 × 106, while under Scaling 2, α = 7.01 × 102 and β = 1.79 × 104. Remaining parameter values as in
Table 2.
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Figure 4. Cone degeneration profiles. Graphs show the time, tdegen(θ), at which cones degenerate due to RdCVF
deprivation, with constant rate of mutation-induced rod degeneration, φr = 7.33 × 10−2, and constant TF threshold
concentrations: fcrit = 3 × 10−5 (A) and fcrit = 0.3 (B). The solid black and dashed green curves correspond to
Scaling 1 (α = 7.01 × 104 and β = 1.79 × 106), while the solid blue and dashed red curves correspond to Scaling
2 (α = 7.01 × 102 and β = 1.79 × 104). The black and blue solid curves are analytical approximations, obtained
by plotting Eqs. (6) and (9) respectively, while the green and red dashed curves are pc(θ, t)/p̃c(θ) = 0.99 contours,
obtained by solving Eqs. (1)–(5) using the method of lines with 401 mesh points. (A) simulation spans ∼17.7 years
in dimensional variables; (B) simulation spans ∼2.8 years in dimensional variables. Insets show magnified portions
of each graph. Cone degeneration initiates at the fovea (θ = 0) in (A) and at θ = 0.13 in (B), spreading peripherally
(rightwards) in both cases. Degeneration occurs earlier in (B) than in (A) and for Scaling 2 than for Scaling 1 (except
near the fovea in (A)). Remaining parameter values as in Table 2.

Table 2. Parameters employed in the non-dimensional mathematical model (Eqs. (1)–(5)). Values are given to three
significant figures (radians are dimensionless).

Parameter Description Value
Θ Eccentricity of the ora serrata 1.33 rad
Df Trophic factor diffusivity 0.237
α Rate of trophic factor production by rods 7.01 × 102 or 7.01 × 104

β Rate of trophic factor consumption by cones 1.79 × 104 or 1.79 × 106

η Rate of trophic factor decay 1.79 × 102

φr Rate of mutation-induced rod degeneration 7.33 × 10−2

fcrit Trophic factor threshold concentration 3 × 10−5 or 0.3
B1 Cone profile parameter 1.56
B2 Cone profile parameter 0.158
B3 Rod profile parameter 10.6
b1 Cone profile parameter 71.8
b2 Cone profile parameter 2.67
b3 Rod profile parameter 3.06

Frontiers 21

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2022. ; https://doi.org/10.1101/2021.09.04.458968doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.04.458968
http://creativecommons.org/licenses/by-nc-nd/4.0/


Paul A. Roberts Mathematical Models of Retinitis Pigmentosa

Figure 5. Target cone degeneration profiles. Panels (left) show cone degeneration profiles, tdegen(θ), qualitatively
replicating typical spatio-temporal patterns of visual field loss in RP: (A) Uniform, (B) Pattern 1A, (C) Pattern
1B and (D) Pattern 3. Visual field loss patterns directly correspond to cone degeneration patterns in these radially
symmetric cases. We seek to replicate these patterns by finding appropriate φrinv(θ) and fcritinv(θ) profiles in Figs.
6–9. Diagrams on the right show the corresponding 2D patterns of visual field loss — white regions: preserved vision,
black regions: scotomas (blind spots), and red arrows: direction of scotoma propagation. Parameters: t0 = 100
(∼ 11.0 years), t1 = 150 (∼ 16.6 years), t2 = 200 (∼ 22.1 years, θd1 = 0.1 (∼ 7.6 degrees), θd2 = 0.55
(∼ 41.9 degrees), θd3 = 0.3 (∼ 22.9 degrees), θd4 = 0.4 (∼ 30.5 degrees) and θd5 = 0.6 (∼ 45.7 degrees). Cone
degeneration profile formulas and parameters are given in Table 3. Remaining parameter values as in Table 2.
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Figure 6. Inverse mutation-induced rod degeneration rate and TF threshold concentration — Uniform target cone
degeneration profile. (A) inverse mutation-induced rod degeneration rate, φrinv(θ) (fcrit = 3 × 10−5); (B) inverse
TF threshold concentration, fcritinv(θ) (φr = 7.33 × 10−2). The solid black and dashed green curves correspond
to Scaling 1 (α = 7.01 × 104 and β = 1.79 × 106), while the solid blue and dashed red curves correspond to
Scaling 2 (α = 7.01 × 102 and β = 1.79 × 104). The black and blue solid curves are analytical approximations to
the inverses, obtained by plotting Eqs. (7) and (10) respectively (A), and Eqs. (8) and (11) respectively (B). The
green and red dashed curves are numerical inverses, obtained by using the Matlab routines fminsearch (A) and
patternsearch (B) to calculate the φr and fcrit profiles for which the contour described by pc(θ, t)/p̃c(θ) = 0.99
matches the target cone degeneration profile, tdegen(θ). Eqs. (1)–(5) were solved at each iteration using the method
of lines, with 101 mesh points. Insets show magnified portions of each graph. Numerical inverses are calculated
and plotted only at those locations (eccentricities) where the analytical inverse fails to generate a tdegen(θ) profile
matching the target profile. Inverses are monotone increasing for Scaling 1, and increase initially for Scaling 2 before
reaching a maximum and decreasing toward the ora serrata (θ = 1). Numerical solutions reveal lower values of the
inverses near the fovea (θ = 0) than the analytical approximations suggest. Cone degeneration profile formulas and
parameters are given in Table 3. Remaining parameter values as in Table 2.
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Figure 7. Inverse mutation-induced rod degeneration rate and TF threshold concentration — Pattern 1A target cone
degeneration profiles. (A), (C) and (E) inverse mutation-induced rod degeneration rate, φrinv(θ) (fcrit = 3 × 10−5);
(B), (D) and (F) inverse TF threshold concentration, fcritinv(θ) (φr = 7.33 × 10−2). (A) and (B) linear target cone
degeneration profile, tdegen(θ); (C) and (D) concave up quadratic tdegen(θ) profile; (E) and (F) concave down
quadratic tdegen(θ) profile. The solid black and dashed green curves correspond to Scaling 1 (α = 7.01 × 104

and β = 1.79 × 106), while the solid blue and dashed red curves correspond to Scaling 2 (α = 7.01 × 102 and
β = 1.79 × 104). The black and blue solid curves are analytical approximations to the inverses, obtained by plotting
Eqs. (7) and (10) respectively (A), (C) and (E), and Eqs. (8) and (11) respectively (B), (D) and (F). The green
and red dashed curves are numerical inverses, obtained by using the Matlab routines fminsearch (A), (C) and
(E), and patternsearch (B), (D) and (F) to calculate the φr and fcrit profiles for which the contour described by
pc(θ, t)/p̃c(θ) = 0.99 matches the target cone degeneration profile, tdegen(θ). Eqs. (1)–(5) were solved at each
iteration using the method of lines, with 26, 51 or 101 mesh points. Insets show magnified portions of each graph.
Numerical inverses are calculated and plotted only at those locations (eccentricities) where the analytical inverse
fails to generate a tdegen(θ) profile matching the target profile. Inverses are monotone increasing functions for both
scalings in (A), (B), (E) and (F), and for Scaling 1 in (C) and (D), while the inverses increase initially for Scaling 2
before reaching a maximum and decreasing toward the ora serrata (θ = 1) in (C) and (D). Numerical solutions reveal
lower values of the inverses near the fovea (θ = 0) than the analytical approximations suggest. Cone degeneration
profile formulas and parameters are given in Table 3. Remaining parameter values as in Table 2.
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Figure 8. Inverse mutation-induced rod degeneration rate and TF threshold concentration — Pattern 1B target cone
degeneration profiles. (A), (C) and (E) inverse mutation-induced rod degeneration rate, φrinv(θ) (fcrit = 3 × 10−5);
(B), (D) and (F) inverse TF threshold concentration, fcritinv(θ) (φr = 7.33 × 10−2). (A) and (B) linear target cone
degeneration profile, tdegen(θ); (C) and (D) quadratic tdegen(θ) profile; (E) and (F) exponential tdegen(θ) profile.
The solid black and dashed green curves correspond to Scaling 1 (α = 7.01 × 104 and β = 1.79 × 106), while the
solid blue and dashed red curves correspond to Scaling 2 (α = 7.01 × 102 and β = 1.79 × 104). The black and blue
solid curves are analytical approximations to the inverses, obtained by plotting Eqs. (7) and (10) respectively (A),
(C) and (E), and Eqs. (8) and (11) respectively (B), (D) and (F). The green and red dashed curves are numerical
inverses, obtained by using the Matlab routines fminsearch (A), (C) and (E), and patternsearch (B), (D) and (F)
to calculate the φr and fcrit profiles for which the contour described by pc(θ, t)/p̃c(θ) = 0.99 matches the target
cone degeneration profile, tdegen(θ). Eqs. (1)–(5) were solved at each iteration using the method of lines, with 51
or 101 mesh points. Insets show magnified portions of each graph. Numerical inverses are calculated and plotted
only at those locations (eccentricities) where the analytical inverse fails to generate a tdegen(θ) profile matching the
target profile. Inverses resemble vertically flipped versions of the tdegen(θ) profiles. Numerical solutions reveal lower
values of the inverses near the fovea (θ = 0) than the analytical approximations suggest and higher values in some
regions away from the fovea in (A)–(D). Cone degeneration profile formulas and parameters are given in Table 3.
Remaining parameter values as in Table 2.
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Figure 9. Inverse mutation-induced rod degeneration rate and TF threshold concentration — Pattern 3 target
cone degeneration profiles. (A), (C), (E) and (G) inverse mutation-induced rod degeneration rate, φrinv(θ) (fcrit =
3 × 10−5); (B), (D), (F) and (H) inverse TF threshold concentration, fcritinv(θ) (φr = 7.33 × 10−2). (A) and (B)
linear 1 target cone degeneration profile, tdegen(θ); (C) and (D) linear 2 tdegen(θ) profile; (E) and (F) quadratic
tdegen(θ) profile; (G) and (H) cubic tdegen(θ) profile. The solid black and dashed green curves correspond to Scaling
1 (α = 7.01 × 104 and β = 1.79 × 106), while the solid blue and dashed red curves correspond to Scaling 2
(α = 7.01× 102 and β = 1.79× 104). The black and blue solid curves are analytical approximations to the inverses,
obtained by plotting Eqs. (7) and (10) respectively (A), (C), (E) and (G), and Eqs. (8) and (11) respectively (B),
(D), (F) and (H). The green and red dashed curves are numerical inverses, obtained by using the Matlab routines
fminsearch (A), (C), (E) and (G), and patternsearch (B), (D), (F) and (H) to calculate the φr and fcrit profiles for
which the contour described by pc(θ, t)/p̃c(θ) = 0.99 matches the target cone degeneration profile, tdegen(θ). Eqs.
(1)–(5) were solved at each iteration using the method of lines, with 26, 51 or 101 mesh points. Insets show magnified
portions of each graph. Numerical inverses are calculated and plotted only at those locations (eccentricities) where
the analytical inverse fails to generate a tdegen(θ) profile matching the target profile. Inverses resemble vertically
flipped versions of the tdegen(θ) profiles. Numerical solutions reveal lower values of the inverses near the fovea
(θ = 0) than the analytical approximations suggest and higher values in some regions away from the fovea in (C)–(F)
and (H). Cone degeneration profile formulas and parameters are given in Table 3. Remaining parameter values as in
Table 2.
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Figure 10. Simulations of proportional cone loss for a range of inverse mutation-induced rod degeneration
rates and TF threshold concentrations. Plots show the proportion of cones remaining compared to local healthy
values, pc(θ, t)/p̃c(θ), across space and over time. (A), (E), (I) and (M) analytical inverse mutation-induced rod
degeneration rate, φrinv(θ) (fcrit = 3 × 10−5); (B), (F), (J) and (N) numerical φrinv(θ) (fcrit = 3 × 10−5); (C), (G),
(K) and (O) analytical inverse TF threshold concentration, fcritinv(θ) (φr = 7.33 × 10−2); (D), (H), (L) and (P)
numerical fcritinv(θ) (φr = 7.33 × 10−2). (A)–(D) Uniform target cone degeneration profile, tdegen(θ), with Scaling
1 (α = 7.01 × 104 and β = 1.79 × 106); (E)–(H) Pattern 1A quadratic concave up tdegen(θ) profile with Scaling 1;
(I)–(L) Pattern 1B linear tdegen(θ) profile with Scaling 2 (α = 7.01 × 102 and β = 1.79 × 104); (M)–(P) Pattern 3
quadratic tdegen(θ) profile with Scaling 2. Eqs. (1)–(5) were solved using the method of lines, with 26, 51 or 101
mesh points. Analytical and numerical φrinv(θ) and fcritinv(θ) are as plotted in Figs. 6–9. Solid red curves denote
the contours along which pc(θ, t)/p̃c(θ) = 0.99, while dashed green curves show the target tdegen(θ) profiles. Cone
degeneration profiles generally show good agreement with the target tdegen(θ) profiles. There is some divergence
from tdegen(θ) for the analytical inverses near the fovea (θ = 0) and at discontinuous or nonsmooth portions of
tdegen(θ); this is mostly corrected by the numerical inverses. Cone degeneration profile formulas and parameters are
given in Table 3. Remaining parameter values as in Table 2.
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Table 3. Target cone degeneration profiles, tdegen(θ).
Degeneration Pattern Sub-pattern Cone Degeneration Time (tdegen(θ))
Uniform — t1

Pattern 1A
linear t2 − (t2 − t0)θ
quadratic (concave up) (t2 − t0)(θ − 1)2 + t0
quadratic (concave down) t2 − (t2 − t0)θ2

Pattern 1B

linear

t2 − (t2−t1)
θd1

θ if θ ≤ θd1

t0 +
(t1−t0)

(θd2−θd1 )
(θ − θd1 ) if θd1 < θ ≤ θd2

t1 +
(t1−t0)
(1−θd2 )

(θd2 − θ) if θ ≥ θd2

quadratic

(t2−t1)
θ2
d1

(θ − θd1 )2 + t1 if θ ≤ θd1

t1 − (t1−t0)
(θd2−1)2

(θ − θd2 )2 if θ > θd1

exponential A1e−a1θ +A2θe−a2θ +A3

Pattern 3

linear 1
t2 − (t2−t0)

θd4
θ if θ ≤ θd4

t0 +
(t1−t0)
(1−θd4 )

(θ − θd4 ) if θ ≥ θd4

linear 2

t2 − (t2−t1)
θd3

θ if θ ≤ θd3

t0 if θd3 < θ ≤ θd5
t0 +

(t1−t0)
(1−θd5 )

(θ − θd5 ) if θ ≥ θd5

quadratic

(t2−t1)
θ2
d3

(θ − θd3 )2 + t1 if θ ≤ θd3
(t1−t0)
(1−θd4 )2

(θ − θd4 )2 + t0 if θ > θd3

cubic C3θ3 + C2θ2 + C1θ + C0

Parameter Values*

t0 = 100 t1 = 150 t2 = 200 θd1 = 0.1 θd2 = 0.55

θd3 = 0.3 θd4 = 0.4 θd5 = 0.6 A1 = 125 A2 = 600

A3 = 75 a1 = 71.8 a2 = 3.06
C0 = t2 = 200

C1 =
−2(t2−t0)+3(t2−t0)θd4−(t2−t1)θ3d4

θd4 (1−θd4 )2
= −5.78 × 102

C2 =
(t2−t0)−3(t2−t0)θ2d4+2(t2−t1)θ3d4

θ2
d4

(1−θd4 )2
= 1.01 × 103

C3 =
−(t2−t0)+2(t2−t0)θd4−(t2−t1)θ2d4

θ2
d4

(1−θd4 )2
= −4.86 × 102

* We choose θd1 and θd2 such that θd2 = (θd1 + 1)/2, so that θd2 lies halfway between θ = θd1 and θ = 1.
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