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Abstract 

We describe MaxNovo, a novel spectrum graph-based peptide de-novo sequencing algorithm 

integrated into the MaxQuant software. It identifies complete sequences of peptides as well as 

sequence tags that are incomplete at one or both of the peptide termini. MaxNovo searches for 

the highest-scoring path in a directed acyclic graph representing the MS/MS spectrum with 

peaks as nodes and edges as potential sequence constituents consisting of single amino acids 

or pairs. The raw score is a sum of node and edge weights, plus several reward scores, for 

instance, for complementary ions or protease compatibility. For search-engine identified 

peptides, it correlates well with the Andromeda search engine score. We use a particular score 

normalization and the score difference between the first and second-best solution to define a 

combined score that integrates all available information. To evaluate its performance, we use 

a human cell line dataset and take as ground truth all Andromeda-identified MS/MS spectra 

with an Andromeda score of at least 100. MaxNovo outperforms other software in particular 

in the high-sensitivity range of precision-coverage plots. We also identify incomplete sequence 

tags and study their statistical properties. Next, we apply MaxNovo to ion mobility-coupled 

time of flight data. Here we achieve excellent performance as well, except for potential swaps 

of the two amino acids closest to the C-terminus, which are not well resolved due to the low 

end of the mass range in MS/MS spectra in this dataset. We demonstrate the applicability of 

MaxNovo to palaeoproteomics samples with a Late Pleistocene hominin proteome dataset that 

was generated using three proteases. Interestingly, we did not use any machine learning in the 

construction of MaxNovo, but implemented expert domain knowledge directly in the definition 

of the score. Yet, it performs as good as or better than the leading deep learning-based 

algorithm. 
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Introduction 
De-novo sequencing1,2 has the goal of determining the amino acid sequence of a peptide 

directly from its tandem mass spectrum without making use of a peptide sequence database. 

Potential fields of applications in proteomics are widespread and include the study of ancient 

samples3, identification of HLA peptides4–6, monoclonal antibody sequencing7,8, and detection 

of endogenous, non-ribosomal peptides9. From early on it was found advantageous to represent 

the spectrum as a graph2 in which the fragment peaks correspond to nodes which are connected 

by edges, whenever the mass difference is interpretable as a mass of one or more amino acids, 

and hence the connected peaks are adjacent in an ion series. Optimal paths in these graphs are 

then determined with diverse computational methods including dynamic programming10, 

hidden Markov models11 and probabilistic network modeling12. More recently, deep learning 

was applied to the problem13–17, which has led to the best performing methods to date.  

 

The MaxNovo algorithm described in this manuscript makes use of the spectrum graph 

representation as well. It performs an exhaustive search for the best path using a cost function 

that is designed in a way such that the resulting score is similar to the Andromeda18 search 

engine score, in cases where the database search led to an identification as well. MaxNovo is 

fully integrated in MaxQuant19,20 which allows to make use of results obtained from the search 

engine-based workflow, as for instance the accurate calibrated precursor masses and the three-

dimensional MS1 features and isotope patterns. On an Orbitrap HeLa benchmark dataset, we 

show that MaxNovo performs well in terms of total number of correct de-novo identifications 

with controlled number of wrong identifications. It outperforms other software, as, for instance 

PEAKS21, in the high specificity region. Further studies on tims-TOF Pro data, as well as an 

ancient proteomics application, demonstrate MaxNovo’s applicability to diverse mass 

spectrometry proteomics data sets. 

Experimental Procedures 

HeLa dataset 

Mass spectrometric raw data from a HeLa cell line was obtained from the PRIDE repository 

PXD00693222. What we refer to as ‘single-shot’ dataset are the three biological replicates 

measured on a Q Exactive HF-X using an Orbitrap resolution setting of 15000 (Thermo Fisher 

Scientific, Bremen, Germany). ‘Fractionated data’ are the 46 fractions obtained by Q Exactive 
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HF-X using an Orbitrap resolution setting of 7500. The MaxQuant runs for both the single shot 

and the fractionated data were done against the H. sapiens proteome (UP000005640), including 

isoforms, and downloaded from UniProt on 07/04/2021.  In total six separate MaxQuant runs 

were performed for the single shot data. One run with all five scores (complement score, 

protease score, water-loss score, ammonia-loss score, a2 score) contributing to the calculation 

of the raw score and other five runs with each one of the score contributions omitted. For the 

fractionated data only one MaxQuant run was made with the default calculation of the raw 

score including all five scores. Default values for all parameters were used in the MaxQuant 

analysis. 

 

Tims-TOF pro dataset 

HeLa DDA data acquired on a tims-TOF Pro instrument was downloaded from the PRIDE 

repository PXD02258223 and was searched with MaxQuant against the H. sapiens proteome 

(UP000005640) including isoforms downloaded from UniProt on 07/04/2021. In the 

MaxQuant analysis for all parameters default values were used. To switch on tims-TOF 

analysis the parameter ‘Type’ was set to TIMS-DDA.  

 

Ancient dataset 

Mass spectrometric raw data from a hominin bone specimen was obtained from the PRIDE 

repository PXD01826424. The three biological replicates from the samples digested with the 

proteases trypsin, chymotrypsin, and Glu-C, were grouped per protease and searched in 

MaxQuant in three separate runs using different proteome databases. One MaxQuant run was 

searched against the H. sapiens proteome (UP000005640) downloaded from UniProt on 

05/08/2021. Two subsequent MaxQuant runs were made, one against the Gorilla gorilla gorilla 

proteome (UP000001519) and one against the Pan troglodytes (UP000002277), both 

downloaded from UniProt on 04/08/2021. All three Uniprot databases contain one protein 

sequence per gene. In the MaxQuant analysis the default settings were applied except for the 

following settings: No fixed modification was selected and as variable post-translational 

modification oxidation of Methionine, deamidation of asparagine and glutamine, 

hydroxylation of proline, and carbamidomethylation of cysteine. The minimum peptide length 

was set to eight (default value is seven) and the minimum score for unmodified peptides was 
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set to 40 (default is 0). The Glu-C specificity was configured to also include C-terminal 

cleavage after glutamine (Q), alongside C-terminal cleavage of glutamic acid (E) and aspartic 

acid (D) as it was defined in the original publication. 

 

Pre-processing of MS/MS spectra for MaxNovo search 

All MS/MS spectra are subject to the standard pre-processing that is also applied before 

submitting spectra to the Andromeda search. Isotope patterns are found based on correlation to 

the averagine model25. In case at least two peaks were put together in an isotope pattern, the 

corresponding monoisotopic peak replaces them with the summed intensity of the member 

peaks. In case the charge determined from the isotope pattern is larger than one, the peak is 

added as a singly charged version. If more than one charge state was found for a fragment 

(within a user definable tolerance), these are summed up into a single peak.   

 

NOVOR data preparation and analysis 

The single-shot and fractionated HeLa raw files were converted to the mgf file format with 

ProteoWizard26 version 3.0.11579 for processing with Novor27 (Version v1.06.0634, Java SDK 

16). The protease is trypsin, which is the only supported option. HCD was selected as 

fragmentation method and FT as mass analyzer. The precursor error tolerance was set to 15 

ppm and the error tolerance for fragment ions to 0.02 Da. 

 

PEAKS data analysis 

Both HeLa datasets, single-shot and fractionated, were analyzed by the de-novo algorithm in 

the PEAKS software28 (version PEAKS X Pro, Peaks Studio 10.6 build 20201221). For the de-

novo search, the instrument ‘Orbitrap (Orbi-Orbi)’ was selected which has set by default the 

parent mass error tolerance to 15 ppm and the fragment mass error tolerance to 0.02 Da. Trypsin 

was defined as digestion enzyme and its cleavage specificity was configured that it cleaves 

after arginine and lysine also if a proline follows. As fixed modification carbamidomethylation 

of cysteine was included and as variable modifications oxidation of methionine and acetylation 

of protein N-term. For the maximal number of variable PTMs the default value of three is 

selected. We increased the number of reported candidates per spectrum from five up to ten. 
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The parameter “Feature association for chimera scans” in the data-refinement section was 

deactivated, since co-eluting peptides are not within the scope of our benchmark setup. For the 

top scoring de-novo sequence comparison, the de-novo sequence with the highest de-novo 

score was selected. In case of multiple de-novo sequences having the same top de-novo score, 

all sequences are taken as top sequence.  

 

Benchmark based on the HeLa datasets 

For both HeLa datasets, single-shot and fractionated, as ground truth the identified MS/MS 

spectra based on the Andromeda database search engine at 1% PSM and 1% Protein FDR 

(default settings) were taken which were further filtered by an Andromeda score greater than 

or equal to 100. All isoleucine in the database sequence as well as de-novo sequence were 

replaced by leucine. The de-novo identified MS/MS spectra of each of the tools MaxNovo, 

PEAKS and Novor are joined based on the raw file name and scan number information. 

BLAST search 

The de-novo sequence identifications, which were not identified by the Andromeda database 

search engine, were validated by an iterative local BLAST (version 2.11) search. Only 

completely de-novo sequenced MS/MS spectra were considered and filtered to have a 

combined score of at least 91.715. Next, for each de-novo sequence all combinations, up to a 

maximal number of 300, were generated and submitted to four separate BLAST searches each 

using a different database. For the first three searches blastp was performed by setting the 

following parameters: window_size = 40, word_size = 2, evalue 1000, max_hsps = 1, -

threshold 11 and against one of the following databases: 1) Swiss-Prot filtered by only human, 

2) Swiss-Prot filtered by only Bos Taurus and 3) Swiss-Prot. The fourth search was a tblastn 

search against a manually generated HeLa nucleotide database based on RNA-seq data 29,30 

(ERR127306_1.fastq, ERR127306_2.fastq, ERR127307_1.fastq, ERR127307_2.fastq). All 

BLAST results were filtered to have for each submitted de-novo sequence identification the 

best BLAST hit. In case a de-novo sequence identification was validated by multiple database 

hits the following database priority was applied: 1) Swiss-Prot human, 2) HeLa RNA-seq, 3) 

Swiss-Prot Bos taurus and 4) Swiss-Prot. 
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Software and data availability 

MaxNovo is integrated into the MaxQuant software from version 2.0.3.0 onward and can be 

downloaded from https://www.maxquant.org/maxquant/. A user guide on how to run 

MaxNovo in MaxQuant is provided as part of the Supporting Information, Supplementary 

Table 1 contains a list of MaxQuant parameters relating to MaxNovo with their explanations. 

Supplementary Table 2 describes all new MaxNovo associated columns in the ‘msmsScans.txt’ 

output file. 

Results and Discussion 

MaxNovo spectrum graph  

Input for the MaxNovo algorithm are individual MS/MS spectra in which the fragment peaks 

are de-isotoped and transformed to charge state one (Fig. 1a), in the same way as MS/MS 

spectra are prepared in MaxQuant for the peptide database search with Andromeda 18 (see 

Experimental Procedures). Hence, the MaxNovo algorithm assumes that fragment ions are 

singly charged. The precursor masses are derived from three-dimensional features, spanned by 

m/z, retention time and signal intensity, after the standard nonlinear mass calibration in 

MaxQuant has been applied, leading to high accuracy mass estimates for the precursor ions. 

For each MS/MS spectrum, we construct a graph with the peaks in the spectrum as nodes (Fig. 

1b). The nodes that correspond to peaks in the MS/MS spectrum we call ‘internal nodes’. Four 

additional nodes are added to the graph, which represent the N-terminus and the C-terminus 

each twice, once for being reached at low masses, corresponding to the beginning of an ion 

series, and once for being reached at high masses, corresponding to the end of an ion series.  

 

We then build a directed acyclic graph (DAG) by placing edges between vertices from lower 

to higher mass. This is based on the 20 common amino acids, and modified versions of some 

amino acids, which can be specified by the user as fixed and variable modifications. An edge 

is placed between two internal nodes if their mass difference fits a single amino acid mass or 

the sum of two amino acid masses (Fig. 1c). Mass steps that have equal mass or are so close in 

mass that they are not discernible based on the data are grouped together and treated as the 

same amino acid (as, for instance leucine and isoleucine). Similarly, as for internal nodes, for 

the termini we connect the beginning node with internal nodes that can be reached with a single 

or a double amino acid step, considering the appropriate terminal masses for the y or b ion 
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series. It is only known to which ion series (e.g. y or b) a path through the network belongs by 

arriving at one of the terminal nodes. By default, we require a mass difference between two 

edges to match with a maximal error of 25 ppm. Then weights are assigned to edges and nodes 

as defined in the next subsection. In this graph, we perform an exhaustive search for the path 

with the highest raw score (Fig. 1d) based on a recursive algorithm. Either the best path 

represents the y or the b series, depending on which of the two achieves a better score. In case 

the path with the highest raw score does not reach the termini at one end, a second search for a 

best path is performed, with the constraint to fill the missing mass. This is necessary for the 

case that y and b series are not overlapping. 

 

MaxNovo raw score  

Each path through the spectrum DAG gets a raw score assigned. The path in this graph with 

the highest raw score is defined to be the result of the de-novo search for this MS/MS spectrum 

and this highest score is the MaxNovo raw score for this spectrum. Either the best path can 

connect both termini, in which case the complete peptide has been sequenced, or it can be 

incomplete at one or both of the termini. Hence, the MaxNovo algorithm is a combination of 

complete de-novo sequencing algorithm and sequence tag finding algorithm within one unified 

scoring scheme. The raw score assigned to each path consists of six contributions 

 

raw score = direct path score + complement score + protease score + a2 score +  

water loss score + ammonia loss score 
 

which correspond to specific rewards or penalties. The direct path score is the sum of scores 

defined on the edges and nodes that constitute the path and is scoring one main ion series, 

which is supposedly the one that contributes most to the identification. Therefore, the path 

represents either part of, or the complete b-series or part of, or the complete y-series. It is not 

supposed to mix contributions from N-terminal or C-terminal series, since it receives 

contributions from a path consisting of steps that correspond to single amino acid or amino 

acid pair mass differences within one ion series. Two-amino-acid steps are allowed in order to 

be able to have complete solutions connecting the termini also when one or several peaks in a 

series are missing. By default, we allow up to two two-steps in a path. Each node visited by the 

path contributes -log10 ((g + 1) / 100) to the score, where g is the number of peaks in a 100 Da 

interval centered on the current peak which have a higher intensity than the current peak.  This 
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contribution assigns a higher reward to peaks with a high intensity relative to other peaks in 

the surrounding 100 Da interval. A traversed edge contributes -log10 (s), where s is the number 

of potential steps of the type that was actually taken that could have been taken from the current 

node. This can have two values: if a single step was taken, then it is the total number of single 

steps available, and if a two-step was taken, this is the total number of two-steps. Essentially, 

this is a penalty on how many mass differences were tried in order to reach the next node. For 

instance, there are more potential two-steps than there are single-steps, which get down-

weighted accordingly. Overall, a path length dependent score contribution of -log10 (n) is added 

to the total direct path score, where n is the total number of steps in the path. 

 

The complement score looks for the presence of nodes corresponding to complementary ions 

to the ions found in the direct path. For instance, if the path describes b-ions, these 

complementary ions correspond to y-ions that each match with one of the b-ions as a 

complementary pair. The roles of y and b ions could also be the opposite. For each 

complementary peak found, a contribution -log10 ((g + 1) / 100) / 4 is added, similarly as the 

node weight in the direct path score. Additionally, if a complementary ion is found that resolves 

the order of the amino acids in a two-step of the direct path a corresponding score contribution 

is added that equals to the situation as if the resolving peak was found in the direct path. The 

protease score adds a reward in case the path reaches a terminus at which an expectation is met 

regarding the protease used for digesting proteins to peptides in the sample preparation. For 

instance, in the case of trypsin, a path reaching the C-terminus would be rewarded if the last 

step were either an arginine or a lysine, in case it is a single amino acid step, or it contains these 

amino acids, in case it is a two amino acid step. The a2 score adds a contribution in case the a2 

ion is found. This is only possible in case the sequence path is continued to the N-terminus in 

order to know that it follows the b-series. The water loss score checks for the presence of one 

of the amino acids D, E, S or T in the path traversed so far. In case any of these is present, it is 

checked if peaks are present at the expected position(s) for water losses. The ammonia loss 

score similarly checks for peaks at the characteristic masses for ammonia losses based on the 

presence of K, N, Q or R in the so far identified sequence.  

 

For convenience, we provide brief definitions of these scores and scores defined in subsequent 

subsections in Table 1. In Fig. 2 we show a scatter plot of the raw score and the Andromeda 

score for identified spectra in the single-shot HeLa dataset, which have a Pearson correlation 
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of 0.71, which reduces to 0.60 when no Andromeda score filter is applied. In the construction 

of the raw score, the main purpose was that it reflects well the total evidence that is present in 

a spectrum for the peptide sequence that it claims to have found. This is confirmed by the good 

correlation with the Andromeda score.  

 

Normalized score, gap score and combined score 

The raw score introduced in the previous section is optimized for finding the best solution, 

either a sequence tag or a full-length sequence, for a given MS/MS spectrum. However, it is 

not made for comparing two optimal solutions in two different MS/MS spectra. The ability to 

compare scores across different spectra is, however, crucial for obtaining confidence in an 

identification and for estimating the percentage of false positives. To see this in a better way, 

we define as a dataset with essentially known ground truth all MS/MS spectra in the HeLa 

dataset that were identified in the MaxQuant analysis with default protein and PSM level false 

discovery rates (FDRs) of 1% each, and additionally filter the spectra to have an Andromeda 

score of at least 100. We consider these spectra as our ground truth and the aim of the de-novo 

sequencing algorithm is to identify as many peptide sequences of these correctly, if possible 

the complete sequence for each, and otherwise as many amino acids as possible in a sequence 

tag. For now, we restrict ourselves to identifying complete peptide sequences.  

 

We will frequently use precision-coverage plots, which are created by ranking the spectra 

according to a given score. A de-novo identification is counted as correct only if it completely 

agrees with the Andromeda sequence. If there is only one deviation, the whole peptide counts 

as incorrect. For a given score threshold we define precision as the number of correctly 

identified sequences divided by all spectra with a score above the threshold. With coverage, 

we mean the number of correctly identified spectra above the threshold divided by the total 

number of spectra in the ground truth. Our definition of coverage measures how many spectra 

from the whole ground truth have been correctly identified with a complete sequence.  

 

If we calculate such a precision-coverage plot for the raw score defined in the previous 

subsection (green curve in Fig. 3a) we see that the performance is not ideal. In particular, in 

the high specificity range on the left side, no good precision values are achieved. In order to 

fix this problem, we define the normalized score, which is the raw score divided by the 

precursor mass. It is a measure for sequence evidence per length. In particular, in a situation 
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where there is good sequence evidence only in parts of the sequence and lack of it otherwise, 

the normalized score will not be particularly high. Indeed, the normalized score has better 

precision-coverage characteristics (purple curve in Fig. 3a). As ‘complete score’, we define it 

to be equal to the normalized score in case it suggests a full-length peptide sequence and zero 

otherwise (blue curve in Fig. 3a). Another aspect of potential relevance for judging the 

correctness of a de-novo sequence is how well the second-best solution scores compared to the 

best. If the score difference between the two highest solutions is small, there is a certain 

likelihood that the second-best solution is the correct one, while if this gap is large, this 

strengthens the plausibility of the top-scoring solution. The precision-coverage curve based on 

this gap score (red curve in Fig. 3a) results in a similar area under the curve as the complete 

score. Since the gap score and the complete score measure different aspects of the 

identification, it should be beneficial to combine the two scores. Indeed, we define the 

combined score as the sum of the two ranks of the complete score and the gap score and it 

achieves the best precision-coverage characteristics of all scores (orange curve in Fig. 3a). The 

combined score is hence the method of choice for finding complete sequences, and it is 

implicitly meant when referring to the MaxNovo score without further specification.  

 

Next, we investigated what the benefits are of the individual additive contributions to the raw 

score is to the overall performance. As the baseline, we take the precision-coverage curve based 

on the combined score (yellow curve in Fig. 3b). Then we remove each of the contributions to 

the raw score except the direct path score one at a time and record precision-coverage curves 

for these as well. In the high-specificity region, the strongest effect came from the scoring of 

the a2 ion. Conversely, the inclusion of the complementary ion series (the b-series ions in case 

the main series scored by the direct-path score is the y series) made a big difference in the low 

specificity region. Water loss, ammonia loss and protease score all contribute in less significant 

and similar amounts. 

 

Benchmark and comparison to other software 

In order to compare the performance of MaxNovo to other software we analyzed the same data 

with the PEAKS and Novor algorithms (see Experimental Procedures). Fig. 4 shows precision-

coverage plots for all three programs. While Novor is less performant, the other two are close 

in performance. Up to coverage 0.35, the curve for MaxNovo is on top. The PEAKS curve 

reaches farther to the right end, meaning it finds slightly more sequences with low certainty 
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and the respective areas under the curves are very similar for PEAKS and MaxNovo. We 

conclude that these two software platforms are showing comparable performances with 

MaxNovo performance being better in the higher specificity region.  

 

Incomplete sequences  

To measure the performance on incomplete sequences, we recorded precision-coverage plots 

using the normalized score and we counted as correct, when the predicted sequence agrees 

completely with the Andromeda sequence or a sub-sequence of it (Fig. 5a). This we do for the 

single shot and the fractionated HeLa datasets separately. We find that we obtain curves that 

are similar to each other above a precision of 0.8 and are deviating below that. Next, we 

determine what the expected precision of the results is at a given normalized score threshold 

(Fig. 5b). The curves for fractionated and single-shot data agree well in particular at larger 

score values, which indicates that the dependency of the precision on the score could be 

generalizable. For instance, a precision of 0.8 corresponds to a normalized score threshold of 

approximately ten.  

 

Fig. 5c shows histograms of N- and C-terminal missing masses, having medians of 692.3 and 

258.1 Da, respectively in the fractionated dataset. The y-axis of the histogram is in logarithmic 

scale and one can see that higher masses are much less frequent. A density scatter plot of 

peptide sequence length vs. tag length (Fig. 5d) is dominated by the values on the diagonal 

corresponding to full-length sequences. The distribution of partial sequences has a median 

length of twelve. 

 

New identifications 

Next, we focus on the sequences in the fractionated HeLa dataset that have not been identified 

by the Andromeda search engine. 15.2%, or 135,908 in total, of the complete sequences or 

sequence tags that are at least seven amino acids long are from MS/MS spectra that have not 

been identified by Andromeda. We perform a multi-tier BLAST search against protein 

databases containing all human proteins, proteins derived from the HeLa genome, the Bos 

taurus proteome and finally against a Swiss-Prot database containing all species. We further 

filtered the non-identified MS/MS spectra by a combined score of 91.715 to allow an error rate 

of 10%, which results in 28,126 sequences that are submitted to BLAST. 28,123 sequences 
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find a match with the same length in at least one of the four tiers. Out of these, 18,492 (65.8%) 

are matching exactly, while the remaining ones have at least one substitution (Fig. 6a). We 

further classify the sequences without mismatch in Fig. 6b. 

 

Tims TOF data 

We next applied MaxNovo to a HeLa dataset acquired on a tims-TOF Pro instrument. The 

precision-coverage plot based on the combined score (Fig. 7) shows at first less performance 

than in Fig. 3. However, most of the wrong de-novo sequences have only a swap of the two C-

terminal amino acids and are otherwise correct. This is due to the lower mass range limit in the 

MS/MS spectra of 200 Da in this particular dataset. If we ignore the order of the two C-terminal 

amino acids, we obtain a much better precision-coverage curve (Fig. 7). Hence, it is 

recommended to use a lower mass range limit for MS/MS spectra or to ignore the order of the 

last two amino acids in each peptide. 

 

Application to ancient sequences 

Ancient proteomes present a challenging application of de-novo and error-tolerant search 

approaches, both because comparative genomes of closely-related species are frequently not 

available and because the determination of sequence variation is essential when phylogenetic 

analysis is the main purpose of the proteomic study. Ancient proteomes contain a large number 

of variable PTMs31, many of which might only be present at low frequencies, and have 

increasing rates of peptide bond hydrolysis for older samples, making the occurrence of semi-

specific and non-specific peptides in resulting datasets much more likely32. Finally, dentine 

and bone proteomes are dominated by collagen type I, which is heavily hydroxylated, 

increasing search complexity as well as the presence of incomplete fragmentation series, 

particularly around proline positions. We therefore tested MaxNovo performance against a 

Late Pleistocene hominin proteome dataset that was previously generated using three proteases 

in parallel24. We observe that, as for modern data (Fig. 5d), de-novo sequence tag lengths are 

on average shorter when compared to the Andromeda-derived sequence solution (Fig. 8a). 

Likewise, as with PEAKS33, the probability that a top-ranking full-length MaxNovo solution 

exists and is correct for a given spectrum is highly dependent on peptide amino acid length, 

although the MaxNovo scores provide the possibility to apply stringent selection criteria and 

partly remove this dependency (Fig. 8b). Despite this, MaxNovo correctly resolved the true 
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peptide sequence when presented with protein sequence databases of chimpanzee (Pan, Fig. 

8c) and gorilla (Gorilla, Fig. 8d), including PSMs containing diagenetic modifications 

(deamidation) and proline hydroxylation. 

Conclusions 
We introduced MaxNovo, a novel de-novo sequencing algorithm that is integrated into the 

MaxQaunt software. It shows a performance, in terms of sequence identifications, which is as 

good as or better than software that is currently in use. It is interesting to observe, that no 

machine learning was used in its construction, but that we rationalized a scoring function based 

on expert knowledge on peptide fragmentation spectra. Based on its integration into the 

MaxQuant environment, we can expect MaxNovo to make significant introductions to the 

recovery of peptide sequences of relevance in clinical, biological, and evolutionary settings. 
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raw score This is the score assigned to each path, which is the sum of the six 
following score. The optimal path is found maximizing this score 
in an exhaustive search over all paths. 

direct path score Score summing up weights that are collected along the path with 
contributions from traversed nodes and edges. 

complement score Score contribution of ions that are complementary to the ions in the 
direct path. 

protease score Reward for terminal parts of the sequence that are in agreement 
with the specified protease that was used for generating peptides 
from proteins. 

a2 score Reward for the presence of an a2 ion. 
water loss score Reward for the presence of ions resulting from the loss of a water 

molecule in case the main path contains any of the amino acids D, 
E, S or T. 

ammonia loss score Reward for the presence of ions resulting from the loss of an 
ammonia molecule in case the main path contains any of the amino 
acids K, N, Q or R. 

normalized score This is the raw score divided by the precursor mass. While the raw 
score adds up the total spectral evidence for a peptide, the 
normalized score rather corresponds to the spectral evidence per 
peptide length.  

complete score The complete score equals the normalized score, in case the 
sequence goes from terminus to terminus, i.e. is completely 
sequencing the peptide. Otherwise the complete score equals zero. 

gap score The gap score is the difference in raw scores between the best and 
the second-best scoring solution. If there is no second-best 
solution, the gap score equals the raw score. 

combined score The combined score is a combination of the complete score and the 
gap score. Both of these scores are ranked, Then the sum of the two 
ranks is taken and normalized to lie between 0 and 100. 

 

Table 1: Definition of scores used in this publication. The scores with their names in italic 

are additive contributions to the raw score. The combined score is the score of choice for 

ranking full-length sequences. Incomplete sequence tags are best ranked using the normalized 

score.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.04.458985doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.04.458985
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

20 

 

 
Fig. 1: Schematics of the MaxNovo spectrum graph. a. Starting point for the algorithm is 

the processed MS/MS spectrum with de-isotoped fragments transferred to charge equals one, 

and the accurate precursor mass obtained from three-dimensional MS1 features after their 

nonlinear recalibration. b. Each peak in the processed spectrum becomes a potential ‘internal 

node’ of the spectrum graph. Four ‘terminal nodes’ are added, corresponding to N- or C- 

terminus reached at low or high masses. c. A directed edge from low to high mass is put 

between two nodes, whenever their mass difference fits single or paired amino acids. d. The 

path with the highest raw score is found in an exhaustive search. It may start and end with 

terminal or external nodes. The raw score is the sum of weights of traversed nodes and edges 

plus several reward scores as described in the main text.  
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Fig. 2: Scatter plot of the raw score against the Andromeda score. Data is filtered for 

Andromeda score > 100. Data points are colored by their density. The Pearson correlation is 

0.71. 
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Fig. 3: Precision-coverage plots of several MaxNovo scores. a. Data was obtained from the 

single-shot HeLa dataset with all identified MS/MS spectra with an Andromeda score of at 

least 100. Only full peptide sequences without any amino acid mistake are counted as correct. 

The curves correspond to raw score (green), normalized score (purple), complete score (blue), 

gap score (red) and combined score (yellow). b. The combined score is shown again as baseline 

(color). For the other curves, each time one score contribution has been omitted. 
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Fig. 4: Performance comparison of the combined score. Precision-coverage curve 

comparing the combined score of MaxNovo with PEAKS and Novor.  
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Fig. 5: Incomplete sequences. a. Precision-coverage curve based on the MaxNovo normalized 

score including complete and incomplete sequences calculated for the single-shot and the 

fractionated dataset. A minimum tag length of seven was applied. b. The precision values from 

panel a are plotted against the normalized score. c. Histograms of N- and C-terminal missing 

masses for the fractionated HeLa dataset (all MS/MS spectra with missing terminal mass > 0). 

d. Density plot of tag length vs. peptide sequence length of all MS/MS spectra that have also 

been identified by Andromeda. 
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Fig. 6: New identifications. a. Number of MS/MS spectra in the fractionated HeLa dataset 

whose full-length de-novo prediction was matched by BLAST with the specified number of 

substitutions. b. The de-novo sequences from panel a that were matched without substitutions 

are classified according to the sequence database that they were matching to. 

 

 
Fig. 7: timsTOF Pro data. Precision-coverage curve for the timsTOF Pro data based on the 

combined score once checking complete correctness of the sequence and once ignoring the two 

C-terminal amino acids. 
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Fig. 8: Validation on ancient samples. a. Density plot of tag length (MaxNovo) vs. peptide 

sequence length (Andromeda) for PSMs where the de-novo solution contains the database 

search sequence solution (n=1,726). b. Correctness of MaxNovo top-ranking sequence 

solutions are highly dependent on peptide sequence length (black, n=14,249). Filtering for 

combined scores over 75 increases average correctness moderately for longer peptides (red, 

n=5,703), but significantly when only taking into account normalized scores > 10 (blue, 

n=1,427). c. Example of a successfully resolved MaxNovo PSM containing asparagine 

deamidation (combined score = 98.9451, GluC digest). d. Example of a successfully resolved 

MaxNovo PSM containing proline hydroxylation (combined score = 98.907, GluC digest). For 

both c and d, a protein sequence alignment across COL1A2 is given, indicating relevant 

positions with SAP in Gorilla (c, A279S) and Pan (d, A564T). Coordinates in reference to 

UniProt accession number P08123. 
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