ABSTRACT
Mycobacterium tuberculosis peptidoglycan (PG) is atypical as its synthesis involves a new enzyme class, L,D-transpeptidases. Prior studies of L,D-transpeptidases have identified only the catalytic site that binds to peptide moiety of the PG substrate or ß-lactam antibiotics. This insight was leveraged to develop mechanism of its activity and inhibition by ß-lactams. Here we report identification of an allosteric site at a distance of 21 Å from the catalytic site that binds the sugar moiety of PG substrates (hereafter referred to as the S-pocket). This site also binds a second ß-lactam molecule and influences binding at the catalytic site. We provide evidence that two ß-lactam molecules bind co-operatively to this enzyme, one non-covalently at the S-site and one covalently at the catalytic site. This dual ß-lactam binding phenomenon is previously unknown and is an observation that may offer novel approaches for the structure-based design of new ß-lactam antibiotics for M. tuberculosis.
Competing Interest Statement
The authors have declared no competing interest.