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25 Abstract

26 Cancer is a complex disease with usually multiple disease mechanisms. Target combination 

27 is a better strategy than a single target in developing cancer therapies. However, target 

28 combinations are generally more difficult to be predicted. Current CRISPR-cas9 technology 

29 enables genome-wide screening for potential targets, but only a handful of genes have been 

30 screend as target combinations. Thus, an effective computational approach for selecting 

31 candidate target combinations is highly desirable. Selected target combinations also need to 

32 be translational between cell lines and cancer patients.

33 We have therefore developed DSCN (double-target selection guided by CRISPR 

34 screening and network), a method that matches expression levels in patients and gene 

35 essentialities in cell lines through spectral-clustered protein-protein interaction (PPI) network. 

36 In DSCN, a sub-sampling approach is developed to model first-target knockdown and its 

37 impact on the PPI network, and it also facilitates the selection of a second target. Our analysis 

38 first demonstrated high correlation of the DSCN sub-sampling-based gene knockdown model 

39 and its predicted differential gene expressions using observed gene expression in 22 

40 pancreatic cell lines before and after MAP2K1 and MAP2K2 inhibition (𝑅2 = 0.75). In our 

41 DSCN algorithm, various scoring schemes were evaluated. The ‘diffusion-path’ method 

42 showed the most significant statistical power of differentialting known synthetic lethal (SL) 

43 versus non-SL gene pairs (𝑃 = 0.001) in pancreatic cancer. The superior performance of 

44 DSCN over existing network-based algorithms, such as OptiCon[1] and VIPER[2], in the 

45 selection of target combinations is attributable to its ability to calculate combinations for any 
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46 gene pairs, whereas other approaches focus on the combinations among optimized regulators 

47 in the network. DSCN’s computational speed is also at least ten times faster than that of other 

48 methods. Finally, in applying DSCN to predict target combinations and drug combinations for 

49 individual samples (DSCNi), we showed high correlation of DSCNi predicted target 

50 combinations with synergistic drug combinations (P = 1e-5) in pancreatic cell lines. In summary, 

51 DSCN is a highly effective computational method for the selection of target combinations. 

52

53 Author Summary

54 Cancer therapies require targets to function. Compared to single target, target combination is 

55 a better strategy for developing cancer therapies. However, predicting target combination is 

56 much complicated than predicting single target. Current CRISPR technology enables whole 

57 genome screening of potential targets. But most of the experiments have been conducted on 

58 single target (gene) level. To facilitate the prediction of target combinations, we developed 

59 DSCN (double-target selection guided by CRISPR screening and network) that utilize 

60 single target-level CRISPR screening data and expression profiles for predicting target 

61 combinations by connecting cell-line omics-data with tissue omics-data. DSCN showed great 

62 accuracy on different cancer types and superior performance compared to existing network-

63 based prediction tools. We also introduced DSCNi derived from DSCN and designed specific 

64 for predicting target combinations for single-paitent. We showed synergistic target 

65 combinations predicted by DSCNi accurately reflected synergies on drug combination levels. 

66 Thus, DSCN and DSCNi have the potential be further applied in personalized medicine field.
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67

68 Introduction

69 The complexity of cancer is widely recognized, with heterogeneous disease mechanisms 

70 underlying primary, metastatic, and drug-resistant tumors [3, 4]. Therefore, translational 

71 cancer research now focuses on the identification of combinational rather than single targets 

72 and the selection of drug combinations instead of single drugs [5, 6]. Synthetic lethality (SL), 

73 a key concept in the simultaneous targeting of two genes that contribute to tumor vulnerability  

74 [7], requires the loss of both genes in a pair to be lethal to a cancer cell. A CRISPR-based 

75 double knockout (CDKO) system has recently been developed to effectively screen gene pairs 

76 or target combinations [8, 9]. In this paper, we will use the terms gene pair and target 

77 combination interchangeably because they represent equivalent concepts. Screening using 

78 the CDKO system, however, is limited by the number of genes to be screened. For instance, 

79 if we screen target combinations among 100 genes, and each gene has four gRNAs, there 

80 will be (4 × 100)2/2 = 80,000 combinations, a scale that is feasible in a CDKO system. 

81 However, across the genome, if we screen target combinations among 10,000 genes and 

82 select only one gRNA per gene, the resulting 10,0002/2 = 50,000,000 combinations will be 

83 practically infeasible. Therefore, a computational approach is very much needed to rank and 

84 select top candidate gene pairs for CDKO analysis.

85

86 The many computational methods developed to identify potential candidate SL gene pairs fall 

87 into two major categories: machine learning and statistical inference. The machine-learning 
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88 approach has a much longer history, with the generation of large-scale double knockout data 

89 in yeast in 2004 [10]. Several methods, including multiple network decision tree [11], protein 

90 interaction network [12], and multi-network and multi-classifier [13] approaches, have 

91 demonstrated the significant predictive performance of SL gene pairs using features derived 

92 from network topology, gene ontology, and gene function sets. Recently, researchers applied 

93 a systems-biology framework called ‘mashup’ that allows for the acquisition and synthesis of 

94 data from diverse sources [14]. This method performed even better than the other network 

95 analyses in predicting SL gene pairs, further demonstrating the ability of such computational 

96 algorithms as random walk with restart to integrate and characterize the biological network 

97 topology successfully. Group-sparse collective matrix factorization (gCMF), another unique 

98 machine-learning method and recent major contribution to SL prediction [15], performed 

99 matrix factorizations among input data, such as gene expression, mutations, copy number 

100 variations (CNV), and CDKO, and identified a shared sub-matrix in which SL gene pairs can 

101 be predicted. Its performance was comparable to that of the mashup approach in several 

102 CDKO datasets derived from human cancer cell lines.

103

104 Statistical inference, on the other hand, relies on strong biological assumptions regarding the 

105 mechanisms of synthetic lethality. These methods infer SL gene pairs utilizing multi-omics 

106 data, such as CNV, mutations, gene expression, and single gene essentiality generated from 

107 CRISPR screening. In particular, CDKO data are NOT employed to train SL prediction in the 

108 statistical inference. DAISY is a notable early SL inference method [16], in which one primary 
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109 assumption is that if the cancer cell is viable, the SL pair comprises one gene that is both 

110 active and essential if the other is inactive. MiSL (mining synthetic lethals), another statistical-

111 inference approach [17], assumes that if one gene in an SL gene pair is inactive, the other 

112 must be active, and its activity is demonstrated through concordant changes in CNV and gene 

113 expression. Several other methods, such as ISLE (identification of clinically relevant synthetic 

114 lethality) [18], DiscoverSL [19], and ASTER (analysis of synthetic lethality by comparison 

115 with tissue-specific disease-free genomic and transcriptomic data) [20] were developed 

116 similarly, each making different biological assumptions regarding SL gene pairs.

117

118 Considering network topology, recent systems-biology-based statistical inference methods 

119 differed significantly from the other established SL statistical-inference methods. Here, we 

120 highlight two notable approaches, OptiCon (optimal control nodes) [1] and VIPER (virtual 

121 inference of protein activity by enriched regulon analysis) [2]. Both approaches primarily utilize 

122 gene-expression data to construct a biological network and rank and select target 

123 combinations that demonstrate optimal control of the network. OptiCon relies on a protein-

124 protein interaction (PPI) network and models both signaling transduction and gene regulation 

125 during the selection of target combinations, and VIPER focuses on a gene-regulatory network 

126 model derived from mutual information among genes. Both approaches assume that the more 

127 a combination of two gene targets controls the network, the more likely those targets will be 

128 an SL pair.

129

130 Both statistical inference and machine learning have their advantages and disadvantages. A 
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131 machine-learning approach optimizes prediction based on training data, but the quantity of 

132 training data limits the validity of its prediction of SL gene pairs. Extrapolation of the SL gene 

133 pairs from machine-learning prediction to other pathways will be challenging because most 

134 CDKO data generated from human cancer cells are sparse and biased toward several specific 

135 pathways. However, the prediction of genome-wide SL gene pairs using statistical-learning 

136 approaches relies strongly on biological assumptions and is technically unbiased. This can be 

137 particularly useful in the case of very limited CDKO data. 

138

139 In this paper, we describe a new statistical inference method we have developed called DSCN 

140 (double target selection guided by CRISPR screening and network). It more resembles 

141 OptiCon and VIPER than other methods, such as DAISY or MiSL. Similar to OptiCon and 

142 VIPER, DSCN is built upon a biological network and transcriptome data, and the top 

143 combination targets are ranked and selected based on their control of or impact on the network. 

144

145 DSCN differs from OptiCon and VIPER in its use of single-gene-library-based CRISPR-cas9 

146 screening data, its focus on the overlapped networks between the cancer cell line and the 

147 corresponding primary tumor data, and most important, its consideration of the sequential 

148 selection of two targets, which involves the perturbation of transcriptome data for selection of 

149 the second target after selection of the first. This third model strategy, we believe, will make 

150 the selection of combination targets by DSCN more closely resemble the true biology. DSCN 

151 is also built upon our early research in the selection of single targets, SCNrank (spectral 

152 clustering for network-based ranking) [21], which ranks and selects consensus single-gene 
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153 targets between cancer cell lines and tumor samples.

154

155 Materials and Methods

156 Table 1. Datasets used in this study

157

158 Tables 1 details our data sources, including the types of cancer screened, data platforms and 

159 types, and sample numbers. We retrieved gene-expression and -mutation data for normal 

160 tissue and tumor samples for pancreatic and breast cancers from the Gene Expression 

161 Omnibus (GEO) [22, 23] and The Cancer Genome Atlas (TCGA) [24] and gene-expression 

162 and -essentiality data from the Cancer Cell Line Encyclopedia (CCLE) [13] and Project Achilles 

163 [25-27], downloaded PPI data from STRING [28], extracted drug-target data from DrugBank 

164 [12], and downloaded synthetic lethal gene-pair data from the SynlethDB database [29] and 

165 drug-sensitivity data from the DrugComb database [30].

166

167 Steps of DSCN algorithm 

168 DSCN algorithm consists of six steps (Figure 1):

169

170 Figure 1. Overview of double-target selection guided by CRISPR screening and network 
171 (DSCN)

172

173 Step 1: Network construction

174 In this step, we construct two integrated function networks, a tissue network 𝐺𝑡 and a cell-line 

175 network 𝐺𝑐. 𝐺𝑡 consists of a skeleton from the STRING PPI network and edge weights from 
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176 gene pair-wise Pearson correlations in tumor samples, and node weights are the fold changes 

177 in gene expression between tumors and normal tissue. A high fold change indicates higher 

178 gene expression in the tumor than in normal tissue. Assume that there are a total of n genes 

179 (nodes) in 𝐺𝑡. The affinity matrix 𝑆𝑡 denotes the edge weights, and diagonal matrix 𝐷𝑡 

180 denotes the node weights in Equation (1):

181 𝐺𝑡 = 𝑆𝑡 +  𝐷𝑡,       𝑆𝑡
 = ( 0 ⋯ 𝑤1𝑛

⋮ ⋱ ⋮
𝑤𝑛1 ⋯ 0 ),     𝐷𝑡 = (𝑤1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑤𝑛

),    (1)

182 where 𝑤ab, 𝑎 ≠ 𝑏 ∈ (1,𝑛) in 𝑆𝑡 indicates the edge weight (correlation) between genes a and 

183 b in the tissue network; and 𝑤𝑖 in 𝐷𝑡 is the tumor versus normal fold change in the expression 

184 of gene 𝑖, 𝑖 = 1,…,𝑛.   

185 Similarly, 𝐺𝑐 consists of an identical skeleton from the same STRING PPI network and edge 

186 weights from pair-wise gene correlations in cell-line samples. Unlike 𝐺𝑡, the node weight of 

187 𝐺𝑐 is from CRISPR-Cas9 screening data, which is indicated as the gene essentiality value. 

188 The gene essentiality value can be generally interpreted as the fold change in cell count before 

189 and after gene knockout. Genes demonstrating smaller fold change are more essential. In this 

190 study, all the essentiality values are log2 transformed. Similarly, 𝐺𝑐 is decomposed into 

191 affinity matrix 𝑆𝑐 for edge weight and diagonal matrix 𝐷𝑐 for node weight in the cell-line 

192 network 𝐺𝑐 = 𝑆𝑐 + 𝐷𝑐.

193 Step 2: Construction of Laplacian matrices for the tissue and cell-line networks

194 A Laplacian matrix measures all properties of a network, including node weight, edge weight, 

195 and connectivity. In this second step, we construct Laplacian matrices for the tissue network 

196 𝐺𝑡 and cell-line network 𝐺𝑐 as:
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197 𝐿 = 𝐷 ― 𝑆, (2)

198 in which D is the diagonal matrix and S, the affinity matrix, defined in Equation (1), and 𝐿𝑡 is 

199 the Laplacian matrix for the tissue network and 𝐿𝑐, that for the cell-line network. 

200

201 Step 3: Spectral clustering for tissue network

202 We perform spectral clustering only on the Laplacian matrix of the tissue network 𝐿𝑡 as:

203 I. Normalize the Laplacian matrix 𝐿𝑡 to 𝐿′𝑡: 

204 𝐿′𝑡 = ( 𝑤1 ⋯ ― 𝑎𝑏𝑠(𝑤1𝑛𝑤1)
∑𝑛

𝑘=1 𝑎𝑏𝑠(𝑤1𝑘)
⋮ ⋱ ⋮

― 𝑎𝑏𝑠(𝑤𝑛1𝑤1)
∑𝑛

𝑘=1 𝑎𝑏𝑠(𝑤𝑛𝑘)
⋯ 𝑤𝑛 ) (3)

205 In the normalized Laplacian matrix 𝐿′𝑡, all diagonal elements are positive, and all other 

206 elements are negative. The row sum of non-diagonal elements is equal to its corresponding 

207 diagonal. 

208 II. Perform eigen decomposition for matrix 𝐿′ to obtain the spectrum 𝐸 = {𝜆1, 𝜆2…𝜆𝑛}, where 

209 0 = 𝜆1 ≤ 𝜆2 ≤ … ≤ 𝜆𝑛, and their corresponding eigenvector. 

210 III. Choose the 𝑘 smallest non-negative eigenvalues {𝜆𝑖,…,𝜆𝑖+𝑘} and their corresponding 

211 eigenvectors, and combine these 𝑘 eigenvectors into an 𝑛 × 𝑘 matrix, 𝐻.

212 IV. In this 𝐻 eigenvector matrix, each row represents a gene node, and 𝑘 columns 

213 represent the coordinate values of a gene node. The row vectors in 𝐻 are used to calculate 

214 the Euclidean distance between a pair of gene nodes. We then perform K-means clustering 

215 for 𝑛 nodes. To select the number of clusters, K’, to produce a good fit, we calculate 
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216 Hartigan’s number, which measures the quality of clustering results. We select the optimal K’ 

217 and constrain it further to less than 10 for practical consideration. This spectral clustering leads 

218 to K’ exclusive clusters (i.e., subnetworks). From the tissue network 𝐺𝑡, subnetworks 𝑔𝑡1,…𝑔𝑡𝐾′ 

219 are classified.

220

221 Step 4: Mapping the tissue/cell-line network and calculating the impact score of Target 1

222 The cell-line network 𝐺𝑐 is then mapped to the spectral clusters, 𝑔𝑡1,…𝑔𝑡𝐾′, generated from 

223 tissue network 𝐺𝑡 in Step 3. Because tissue network 𝐺𝑡 and cell-line network 𝐺𝑐 share the 

224 identical network structure, i.e., nodes and connections, 𝐺𝑡 subnetworks, {𝑔𝑡1,…𝑔𝑡𝐾′} are 

225 mapped to 𝐺𝑐 subnetworks {𝑔𝑐1,…𝑔𝑐𝐾′} using their common node names and connections.

226

227 The target impact score will be calculated based on the cell-line subnetworks {𝑔𝑐1,…𝑔𝑐𝐾′}. We 

228 focus on all Food and Drug Administration (FDA)-approved drug targets (see Table 1) to 

229 calculate our target score. The impact score of a target 1 (𝑇1) is calculated as the sum of the 

230 impact score itself and its impact on the rest of the genes in the network. Its general form is 

231 defined in Equation (4):

232 𝐼𝑆(𝑇1 ) = 𝑆(𝑇1 ) + ∑𝑖∈{1,..,𝑛} 𝑆[𝑁𝑖│𝑃𝑎(𝑁𝑖)], (4) 

233   

234 in which, {𝑁𝑖, 𝑖 = 1,…𝑛} are the gene nodes in the network other than 𝑇1, and 𝑃𝑎(𝑁𝑖) is a set 

235 of parent nodes of 𝑁𝑖. In particular, the impact score on 𝑁𝑖 depends on its parent nodes, 𝑃𝑎

236 (𝑁𝑖). Figure 2 illustrates the three different methods of calculating the impact score–the most-

237 probable, random-walk, and diffusion paths.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.06.459081doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459081
http://creativecommons.org/licenses/by/4.0/


12

238 Most-probable path: The immediate children of 𝑇1 are the gene nodes directly connected to 

239 𝑇1, e.g., N4 is the direct child 𝑇1 in Figure 2b. In this method, we will count only the immediate 

240 children of 𝑇1 in calculating the impact score. Without loss of generality, let 𝑐ℎ(𝑇1) be the 

241 set of immediate children of  𝑇1. The most probable path of 𝑇1 is the one that has the smallest 

242 impact score among 𝑐ℎ(𝑇1). Based on the general impact score as calculated in Equation 

243 (4), the most-probable-path impact score is defined in Equation (5): 

244  𝐼𝑆 (𝑇1) = 𝑆(𝑇1) + 𝑚𝑖𝑛𝑁𝑖∈𝑐ℎ(𝑇1) 𝑆[𝑁𝑖│𝑇1]

245 = 𝑤𝑇1 + 𝑚𝑖𝑛𝑁𝑖∈𝑐ℎ(𝑇1)(𝑤𝑁𝑖 × 𝑤𝑇1,𝑁𝑖),   (5)

246 where 𝑤𝑇1 and 𝑤𝑁𝑖 indicate their node weights, and  𝑤𝑇1,𝑁𝑖 indicates their edge weight.

247

248 Figure 2. Network configurations for three methods to calculate impact score

249

250 Random walk path: The random-walk score is calculated in two steps. Step 1 is a random 

251 walk in the network, in which the random walk has a transition probability of traveling from one 

252 node to another.  In Figure 2c, starting from 𝑇1, each node 𝑁𝑖  is randomly visited. Here we 

253 used normalized edge weight for transition probability as defined in Equation (6):

254 𝑃𝑗,𝑖 =
𝑤𝑗,𝑖

∑𝑥∈𝑒 𝑤𝑗,𝑥
  , (6)

255 where 𝑃𝑗,𝑖 is the transition probability from 𝑁𝑗 to 𝑁𝑖, 𝑤𝑗,𝑖 is the edge weight between them, 

256 and ∑𝑥∈𝑒 𝑤𝑗,𝑥 is the sum of all edge weights of 𝑁𝑗. In this Markov process, a node can be 

257 visited multiple times. We set the total number of random-walk steps as 2𝑛, where 𝑛 is the 

258 total number of nodes in the network. 

259

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.06.459081doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459081
http://creativecommons.org/licenses/by/4.0/


13

260 Then, in Step 2, we defined the parent node as the node that visited 𝑁𝑖 first, i.e., 𝑃𝑎(𝑁𝑖). 

261 Hence, the impact score of 𝑇1 becomes:

262 𝐼𝑆(𝑇1 ) = 𝑆(𝑇1 ) +
𝑖∈{1,..,𝑛}

𝑆[𝑁𝑖│𝑃𝑎(𝑁𝑖)]

263  =  𝑆(𝑇1 ) + ∑𝑖∈{1,..,𝑛} 𝑤𝑖 × 𝑤𝑖,𝑃𝑎(𝑁𝑖). (7) 

264

265 Diffusion path: Starting from 𝑇1, each node is visited in a hierarchical order. Therefore, the 

266 parent nodes of a node, 𝑁𝑖, can be from the upper tier, i.e., 𝑈𝑝𝑝𝑒𝑟𝑇𝑖𝑒𝑟 (𝑁𝑖), or the same tier, 

267 i.e., 𝑆𝑎𝑚𝑒𝑇𝑖𝑒𝑟 (𝑁𝑖). For instance, in Figure 2d, there are four tiers in the hierarchical structure 

268 starting from 𝑇1. The impact of 𝑇1 transmits from Tier 1 to Tier 4 in the network. Therefore, 

269 the impact score is defined in Equation (8):

270 𝐼𝑆(𝑇1 ) = 𝑆(𝑇1 ) +
𝑖∈{1,..,𝑛}

𝑆[𝑁𝑖│𝑃𝑎(𝑁𝑖)]

271 = 𝑆(𝑇1 ) + ∑𝑖∈{1,..,𝑛} {∑𝑗∈𝑈𝑝𝑝𝑒𝑟𝑇𝑖𝑒𝑟 𝑊𝑖𝑗𝑊𝑖 + ∑𝑤∈𝑆𝑎𝑚𝑒𝑇𝑖𝑒𝑟 𝑊𝑖𝑤𝑊𝑖} (8)

272

273 Step 5: Subsampling and Target 2 (T2) score and selection

274 Once T1 is selected, we remove cancer cell lines with higher expression of the T1 than its 

275 sample mean and only keep cell lines with its expression lower than mean.This subsampling 

276 method characterizes the knockdown of the T1 . Similarly, we also remove cancer cell lines 

277 with higher T1 essentiality scores than the sample in our subsampling. After the resampling, 

278 we construct the cell-line network 𝐺𝑐 as Equation (2) using the subsampled cell-line 

279 subsamples. We follow the same Step 3 in mapping 𝐺𝑐 to {𝑔𝑡1,…𝑔𝑡𝐾′} and calculate the T2 

280 impact score following the same algorithms defined in Step 4. The T2 impact score is then 

281 denoted as 𝐼𝑆 (𝑇2|𝑇1), because the subsampling and network depend on 𝑇1.
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282

283 Step 6: Calculation of impact score for target combinations

284 Because 𝑇1 and 𝑇2 and their impact scores are computed sequentially, the combinational 

285 impact score will consider both sequential orders in Equation (9), in which 𝑇1 ≠ 𝑇2:

286 𝐼𝑆 (𝑇1, 𝑇2) = 𝐼𝑆(𝑇1) + 𝐼𝑆(𝑇2│𝑇1) (9)

287 Tissue cell-line subnetwork similarity measure

288 We measure the similarity of each subnetwork pair <𝑔𝑡i,𝑔𝑐i>, 𝑖 ∈ (1,…,𝐾′) between tissue and 

289 cell-line using the following scheme:

290 I. Normalization of node weight (diagonal)

291 To make two subnetworks, 𝑔𝑡i and 𝑔𝑐i, comparable, we normalize the cell-line diagonal matrix 

292 𝐷𝑐i according to the tissue diagonal matrix 𝐷𝑡i using the following formula:

293 𝐷′𝑐i = (𝑤𝑐,𝑖,1 ∑𝐽
𝑗=1 𝑤𝑡,𝑖,𝑗

∑𝐽
𝑗=1 𝑤𝑐,𝑖,𝑗

⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑤𝑐,𝑖,𝑗 ∑𝐽

𝑗=1 𝑤𝑡,𝑖,𝑗

∑𝐽
𝑗=1 𝑤𝑐,𝑖,𝑗

), (10)

294 in which 𝑤𝑐,𝑖,𝑗 denotes the node weight 𝑗 ∈ (1,𝐽) in the cell-line subnetwork, and 𝑤𝑡,𝑖,𝑗, that in 

295 the tissue subnetwork. 𝐽 is the total number of nodes in 𝑔𝑐i and 𝑔𝑡i.

296

297 II. Normalization of edge weight

298 The Laplacian matrices for each subnetwork pair, <𝑔𝑡i,𝑔𝑐i> , 𝑖 ∈ (1,𝐾′), are defined similarly as 

299 Equation (3):  𝐿𝑡i
 = 𝐷𝑡i ― 𝑆𝑡i and 𝐿𝑐i

 = 𝐷′𝑐i ― 𝑆𝑐i. After node-weight normalization, trace (𝐿𝑐i) 

300 = trace (𝐿𝑡i). Then, their edge weights (non-diagonal elements) are normalized accordingly 

301 using the formula:
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302 𝐿′′ = ( 𝑤1 ⋯ 𝑤1𝐽𝑎𝑏𝑠(𝑤1)
∑𝐽

𝑗=1 𝑎𝑏𝑠(𝑤1𝑗)
⋮ ⋱ ⋮

𝑤𝐽1𝑎𝑏𝑠(𝑤1)
∑𝐽

𝑗=1 𝑎𝑏𝑠(𝑤𝐽𝑗)
⋯ 𝑤𝐽 ) .   (11)

303 Until this step, all edges (non-diagonal elements) in both Laplacian matrices, 𝐿′′𝑡i
 and 𝐿′′𝑐i, 

304 acquired node features during normalization. We keep the original directions (positive or 

305 negative) of node weights and edge weights for the following distance calculation.

306

307 III. Distance calculation

308 For two corresponding subnetworks 𝑔𝑡i 𝑎𝑛𝑑 𝑔𝑐i in tissue and cell-line, we calculate the 

309 distance using their normalized Laplacian matrices 𝐿′′𝑡i
 and 𝐿′′𝑐i:

310 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑔𝑡i, 𝑔𝑐i)=∑𝐽
𝑗=1 ∑𝐽

𝑙=1 (𝐿′′𝑡i
 (𝑗,𝑙) ― 𝐿′′𝑐i(𝑗,𝑙)) 2, 𝑙 ≠ 𝑗, (12)

311 where L′′ (𝑖,𝑗) 𝑖 ≠ 𝑗 indicates the edge weight between nodes l and j in a given Laplacian 

312 matrix, and (𝐿′′𝑡i
 (𝑖,𝑗) ― 𝐿′′𝑐i

 (𝑖,𝑗)) 2 indicate the Euclidean distance between the same edges 

313 in two Laplacian matrices. 

314

315 Construction of a DSCN algorithm for an individual cancer cell-line sample (DSCNi)

316 We apply DSCNi algorithm for scoring target combinations in a single cancer cellline for a 

317 single patient. Very similar to DSCN, in building up 𝐺𝑐, DSCNi relies on a set of expression 

318 profiles for a cancer cell line to calculate the edge weights (i.e., correlations) between gene 

319 nodes. However, unlike DSCN, DSCNi uses a cell-line-specific essentiality score for node 

320 weights. Its impact score calculation for T1, 𝐼𝑆(𝑇1), follows exactly from Steps 1, 2, 3, and 

321 4. In modeling the knockdown of T1 in the subsampling in Step 5, we maintain the same T1 

322 subsampling as DSCN, i.e., we remove samples with higher expression of T1 than its sample 
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323 mean. However, we will keep the same essentiality score for this individual cancer cell-line 

324 sample to calculate the Target 2 impact score. We calculate the final combination target impact 

325 score similarly as in DSCN, such that it has a comparable meaning to that calculated from 

326 DSCN. 

327

328 Analysis of association between drug- and target-combination synergy

329 The Bliss score [32] measures the synergistic effect of a drug combination, i.e., the effect of 

330 the drug combination on cell viability rather than the additive effects of its two component 

331 drugs. A two-drug combination is considered synergistic if its Bliss score exceeds 0.12 [33]. 

332 On the other hand, the target combination is predicted to be synergistic if the impact score of 

333 the drugs in combination is larger than the additive score of the constituent drugs, as in 

334 Equation (13), in which the impact scores of 𝐼𝑆(𝑇1 ,𝑇2), 𝐼𝑆(𝑇1 ) and 𝐼𝑆(𝑇2 ) are calculated by 

335 (9) and (8):

336 𝐼𝑆(𝑇1 ,𝑇2) > 𝐼𝑆(𝑇1) +𝐼𝑆(𝑇2) (13)

337

338 In this section, we will define an association analysis between drug-combination scores and 

339 target-combination synergy scores. Consider a cancer cell line screened by a set of drug 

340 combinations, and these drug combinations can be categorized as either synergistic or non-

341 synergistic based on their Bliss scores. Then, for each drug combination, we identify all its 

342 two-target combinations, calculate their synergy scores, and classify the drug combinations 

343 as either synergistic or not as in Equation (13). In a 2 by 2 contingency table, the rows are 

344 drug synergy (Y/N), and columns are target synergy (Y/N). For each drug combination, all 
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345 counts of target-combination synergy and non-synergy are added to the corresponding row 

346 with respect to drug-combination synergy or non-synergy. The association between drug- and 

347 target-combination synergy is tested using a Chi-square test. 

348

349

350 Results

351 Validation of the subsampling scheme for determining the impact of target-gene 

352 knockdown in the DSCN algorithm

353 In the DSCN algorithm, we designed our subsampling method (Step 5) to model the impact 

354 of Target 1 knockdown in the cancer cell line. To demonstrate the validity of this sampling 

355 scheme, we identified a GEO dataset, GSE45757, that provided transcriptome profiles across 

356 22 pancreatic cell lines before and after MAP2K1 and MAP2K2 inhibition. Our analysis 

357 focused on 1,301 neighbor genes of MAP2K1 and MAP2K2 in the PPI network. Using the 

358 subsampling approach, we calculated the log-fold changes in these 1,301 genes between 

359 groups with either high or low expression of MAP2K1 and MAP2K2 group, which represent 

360 the predicted impact of Target 1 knockdown in the subsampling scheme. On the other hand, 

361 the observed log-fold changes in these 1,301 gene expressions were calculated during 

362 MAP2K1 and MAP2K2 inhibition. Figure 3 shows a strong correlation, 𝑅2 = 0.75, between the 

363 predicted and observed fold changes among these 1,301 neighbor genes of MAP2K1 and 

364 MAP2K2. Findings of this analysis strongly support subsampling as a valid model for 

365 determining the impact of target-gene knockdown. 
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366

367 Figure 3. Correlation between the predicted and observed log-fold changes in gene 
368 expression among MAP2K1 and MAP2K2 neighbor genes in the protein-protein interaction 
369 (PPI) network
370

371

372 Comparison of impact scores of target combinations using known synthetic lethal gene 

373 pairs in pancreatic cancers

374 We proposed three different scoring schemes to model the impact of target-gene knockdown 

375 on the network–those of the most-probable, random-walk, and diffusion paths. In addition, the 

376 impact score can be calculated based on either the global or local PPI network. The local PPI 

377 network is the product from spectral clustering of the whole genome PPI network (global 

378 network). To compare the performance of these impact scores, we used the 23 reported 

379 synthetic lethal pancreatic gene pairs in SynlethDB [29] as benchmarks. We compared impact 

380 scores between them and the other 164 gene pairs, which were derived from 21 unique genes 

381 among the 23 SL gene pairs. We constructed a tissue-function network using 153 tumor and 

382 58 normal expression profiles of the pancreas from the GEO database (Table 1) and a cell-

383 line function network using CRISPR screening data of 26 pancreatic cell lines from Project 

384 Achilles and 92 pancreatic tumor cell-line expression profiles from the GEO database (Table 

385 1). All expression profiles are generated by Affymetrix U1332.0 microarray.

386

387 Smaller impact scores indicated the stronger impact of the gene knockdown on the network. 

388 Calculation of the impact scores using the local network generated from spectral clustering 

389 revealed significant difference in diffusion-path-based impact scores (IS) between synthetic 

390 and non-synthetic lethal gene pairs (P-values) as well as lower impact scores of synthetic than 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.06.459081doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459081
http://creativecommons.org/licenses/by/4.0/


19

391 non-synthetic lethal gene pairs. We observed the same trends with the other two impact 

392 scoring schemes, the most-probable and random-walk paths, i.e., lower IS score in the 

393 synthetic than non-synthetic lethal gene pairs that were not statistically significant.

394

395 Calculation of the impact scores using the global network and diffusion-path scoring scheme 

396 also yielded lower diffusion impact scores in the synthetic than non-synthetic gene pairs, 

397 though the differences were not statistically significant. The scores of the most-probable and 

398 random-walk paths, on the other hand, showed the reverse direction between synthetic and 

399 non-synthetic gene pairs. We therefore believe that using the diffusion-path and local networks, 

400 evaluation of the target-combination impact score is an ideal approach in selecting synthetic 

401 lethal gene pairs.

402

403

404 Figure 4. Comparison of target-combination impact scores using synthetic versus non-
405 synthetic lethal gene pairs in pancreatic cancer.
406

407

408 Compare the selection of target combinations among DSCN, OptiCon, and VIPER

409 We compared the performance of DSCN with that of two existing algorithms for the selection 

410 of target combinations–OptiCon and VIPER. Both of these use transcriptome profiles to select 

411 combination targets, and their top target combinations are master regulators of synergy that 

412 have optimal control of their corresponding networks. OptiCon requires tumor transcriptome 

413 profiles and corresponding mutation data as input to infer master regulators and predict 

414 synergies among them, whereas VIPER uses transcriptome profiles from both tumor and 

415 normal samples to select regulons and infers synergies among the regulons. Because the 
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416 pancreas microarray expression profile used in the previous section has no corresponding 

417 mutation information, we utilized pancreatic expression profiles in TCGA to construct a tissue 

418 function network. We used 179 pancreatic tumor expression profiles along with their mutation 

419 data and 41 adjacent normal expression profiles (Table 1). We also used expression profiles 

420 of 92 pancreatic tumor cell lines from GEO and CRISPR-screening data of 26 pancreatic cell 

421 lines from Project Achilles (Table 1). Together, these data served for benchmark comparison 

422 of the performance of the three algorithms.

423

424 In total, DSCN predicted 37,275 synergistic target combinations, OptiCon, 2,778 , and VIPER, 

425 191. After mapping them onto all 12,821 synthetic lethal gene pairs within SynlethDB, neither 

426 OptiCon nor VIPER showed any overlap. However, DSCN demonstrated overlap of 936 target 

427 combinations. Among the 936 overlapped SL pairs, 79 were annotated as SL pairs specific to 

428 pancreatic ductal adenocarcinoma (PDAC). Of these 79, their predicted IS scores showed a 

429 0.34 Spearman correlation with their SynlethDB score (P < 0.01), and the predicted IS scores 

430 were significantly lower than that of 6,162 random combinations on t-test (P = 0.05). These 

431 6,162 random combinations were derived from genes in the 79 SL pairs, but 79 were removed.

432

433 These benchmark comparison analyses were performed on Indiana University’s 

434 supercomputer, ‘Carbonate’. DSCN completed its search of target combinations on the single 

435 central processing unit core in 12 hours, a significantly faster speed than those using OptiCon 

436 (320 hours) and VIPER (141 hours). OptiCon mainly performs two computational tasks, 

437 calculating subnetworks and null distributions, each of which uses about 160 hours. Most of 
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438 the computational time of VIPER, on the other hand, involves the generation of the 

439 transcriptome mutual information network using ARACNe [34], a classical tool of 

440 reconstructing regulatory network by calculating pair-wise mutual information between genes.

441

442 Top-ranked target combinations and their associations with overall survival in patients 

443 with pancreatic cancer

444

445 We used expression profiles of tissues and cell lines from the GEO database (Table 1) to 

446 construct function networks and predict impact scores. Our dataset consisted of expression 

447 profiles of 153 tumors and 58 normal pancreas samples from GEO, CRISPR-screening data 

448 of 26 pancreatic cell lines from Project Achilles, and 92 pancreatic tumor cell-line expression 

449 profiles from the GEO database. This yielded 14,066 overlapped genes.

450

451 In this analysis, we focused on 1,437 drug targets of all FDA approved drugs in DrugBank and 

452 calculated their possible target combinations. Most interestingly, all genes in the top 230 target 

453 combinations are within the same subnetwork–the PDAC tissue subnetwork (Supplementary 

454 Figure 1 A) and cell-line subnetwork (Supplementary Figure 1 B). Supplementary File 1 

455 includes the full list of genes in this subnetwork.

456

457 Figure 5. Kaplan-Meier curves for the nine top-ranked target combinations.

458

459 Table 2 displays the nine top-ranked target combinations and their annotations. Their Kaplan-
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460 Meier curves (Figure 5) are generated using TCGA PDAC clinical annotations from the Gene 

461 Expression Profiling Interactive Analysis (GEPIA) database [35]. Patient samples are 

462 categorized into two groups based on a target combination in which both genes are expressed 

463 either above (i.e., high-2) or below their means (i.e., low-2). Using log-rank test and Cox 

464 proportional hazard model to analyze the association between the expression of a target 

465 combination (high-2 versus low-2) and overall survival of patients with PDAC, we observed 

466 significant survival difference (P < 0.05, Table 2) of three of the nine top-ranked target 

467 combination comparisons, (EGLN1, TRFC), (FRK, TRFC), and (XDH, TRFC), their overall 

468 survival was worse for patients with high expression of these two genes than those with low 

469 expression. 

470

471 Interestingly, seven of the top nine target combinations include transferrin receptor (TFRC), 

472 which encodes a surface receptor responsible for cellular iron intake. High expression of TFRC 

473 in PDAC and its strong association with PDAC growth and survival have been reported [36]. 

474 Recent studies suggest several key pathways of ferroptosis induction, including mitogen-

475 activated protein kinases (MAPK) and reactive oxygen species (Ros) pathways [37]. Hence, 

476 targeting upstream genes (e.g., MAP2K2, EGLN2) along with downstream genes (e.g., TFRC, 

477 FTL) might lead to a synergistic effect.

478

479 Table 2. Analysis of overall survival among the nine top-ranked target combinations in 
480 pancreatic ductal adenocarcinoma (PDAC)

481
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482 Performance of DSCNi in predicting drug synergy in cancer cell lines

483 DSCNi predicts target combinations for individual patients using gene-expression and -

484 essentiality profiles. In this study, we assessed whether DSCNi predicted any association 

485 between target- and drug-combination synergy at each individual cell-line level. DrugComb 

486 [30] is a comprehensive database that incorporates information regarding the synergy of drug 

487 combinations from numerous well-known projects, such as the National Cancer Institute 

488 (NCI)-60 [38] for Human Tumor Cell Lines Screen. Because DrugComb includes only one 

489 PDAC cell line with five associated combinational drug treatments, we decided to use the cell-

490 line data of triple-negative breast cancer (TNBC). We used 115 TNBC expression profiles from 

491 TCGA to generate edge weights in the tissue-function network, 12 TNBC cell lines from the 

492 Cancer Cell Line Encyclopedia (CCLE) database [39] to generate edge weights for the cell-

493 line function network, and CRISPR screening data of the TNBC cell line “HS578T” from Project 

494 Achilles to generate node weights in the cell-line function network. Among all TNBC cell-lines, 

495 HS578T has the largest number (N = 5,226) of drug-combination screening data in the 

496 DrugComb database, and our focus on drugs with known targets in DrugBank led to screening 

497 data for1,031 drug combinations in the HS578T cell line.) In turn, these drug combinations 

498 correspond with 14,066 target combinations in our network model (Supplementary File 2).

499

500 To measure the association between predicted synthetic lethal pairs and synergistic drug 

501 combinations, we constructed a 2 by 2 contingency table (Table 3), in which rows correspond 

502 with drug-combination synergy (Y/N), and columns, with target-combination synergy (Y/N). 

503 Among synergistic drug combinations, synergy is predicted in 2,594 of their corresponding 
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504 target combinations with DSCNi, but not in the other 7,097. Neither is synergy predicted in 

505 any of the other non-synergistic drug combinations in iDSCN. The P-value of the chi-squared 

506 test is 0.00001, and the odds ratio is 1,599. This is strong evidence of the greater likelihood 

507 that synergistic drug combinations have synergistic target combinations.

508

509 Table 3. Contingency table between drug- and and target-combination synergy

510

511 Discussion

512 Our new DSCN method, double target selection guided by CRISPR screening and network, 

513 uses both cancer tissue and cell-line models to discover and rank target combinations, and it 

514 has several unique features and advantages in comparison with existing methods of selecting 

515 combination targets. 

516

517 For the first time, DSCN uses a subsampling approach that characterizes the knockdown of 

518 the first target and models its impact on all the other genes. To demonstrate the validity of this 

519 assumption, we studied a set of transcriptome profiles across 22 pancreatic cell lines before 

520 and after MAP2K1 and MAP2K2 inhibition. Among 1,301 neighbor genes of MAP2K1 and 

521 MAP2K2 in the PPI network, our analysis revealed high correlation of observed log-fold 

522 changes in these genes before and after MAP2K1 and MAP2K2 inhibition with log-fold 

523 changes calculated from the sub-sampling approach, 𝑅2 = 0.75.

524

525 DSCN also differs from all other methods by focusing on the overlapped functional network 
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526 between cancer tissues and cell lines and further matching the differential gene expression in 

527 the tissue to gene essentialities in the cell line. This framework for the selection of target 

528 combinations is highly translational and practical. We investigated a number of scoring 

529 schemes for calculating impact score, including the most-probable paths, random-walk paths, 

530 and diffusion paths, and we studied whether the global network and spectrum clustering-based 

531 local network lead to different calculations of impact score. Using tumor samples of pancreatic 

532 cancer and cell-line samples and known synthetic lethal data in SynlethDB, we showed 

533 statistically significant lower impact scores of target combinations in synthetic lethal gene pairs 

534 than other target pairs utilizing a diffusion-path approach on the local network. This analysis 

535 clearly demonstrates the validity of our proposed algorithm for calculating the impact scores 

536 of target combinations that reflect synthetic lethalilty.

537

538 Furthermore, DSCN is broadly defined for every target and target combination, unlike existing 

539 network-based target selection algorithms, such as OptiCon[1] or VIPER [2], that are limited 

540 by their initial step in the selection of single targets (i.e., master regulators). This advantage of 

541 DSCN is demonstrated in the analysis of overlap among the the top-ranked target pairs 

542 between DSCN, Opticon, and VIPER and synthetic lethal target pairs reported in the analysis 

543 of pancreatic cancer data in SynlethDB. DSCN identified 79 overlapped synthetic lethal target 

544 combinations, whereas OptiCon and VIPER showed zero overlap. In addition, three of these 

545 top nine predicted synergistic target combinations in pancreatic cancer show statistically 

546 significant association with overall survival in patients with pancreatic cancer, and all three 

547 contain the TRFC gene, which encodes a surface receptor for cellular iron intake. Hence, the 
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548 targeting of upstream genes (e.g., MAP2K2, EGLN2) along with downstream genes (e.g., FTL) 

549 might lead to a synergistic effect. 

550

551 Finally, we investigate two relevant but different concepts, drug- and target-combination 

552 synergy, hypothesizing the greater likelihood of synergistic than non-synergistic drug 

553 combinations to target more synergistic target combinations. Using DSCNi, a model derived 

554 from DSCN for the prediction of target combinations for individual patients, we showed the 

555 truth of our hypothesis using triple-negative breast-cancer tissue and cell-line data. Based on 

556 1,031 drug combination screening data in HS578T, a TNBC cell line, and its corresponding 

557 14,067 DSCNi-predicted target combination synergy scores, we showed the 1,599-fold higher 

558 odds of synergistic than non-synergistic drug combinations to predict synergistic target 

559 combinations (P = 0.00001).
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568 dataset data and also to analyze the experimental data is provided for download 

569 (https://github.com/tzcoolman/DSCN). 

570
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Table 1. Datasets used in this study.

Part 1. Multi-omics data 

Cancer type Data platform Data type Data (n, sample size)

Affymetrix 
U133 2.0

Gene 
expression

GSE36133 (43), GSE46385 (7), 
GSE21654 (22), GSE17891 (20)

Total sample size = 92
Pancreatic
cancer cell 

lines CRISPR 
screening

Gene 
essentiality

Project Achilles (v3.3.8)
Total sample size = 26

Affymetrix 
U133 2.0

Gene 
expression

(tumor)

GSE42952 (33), GSE51978 (2), 
GSE16515 (36), GSE15471 (39), 

GSE23952 (3)
Total sample size = 113

Affymetrix 
U133 2.0

Gene 
expression 

(normal)

GSE46385 (3), GSE16515 (16), 
GSE15471 (39)

Total sample size = 58

Illumina DNA-
seq & RNA-

seq

Mutation and 
gene 

expression 
(tumor)

TCGA ductal and lobular neoplasms 
(150),

adenomas and adenocarcinomas 
(29)

Pancreatic
tissue 

samples

Illumina RNA-
seq

Gene 
expression 

(normal)
Solid tissue adjacent normal (41)

Gene 
expression

(tumor)
TCGA triple negative breast cancer 

sample (115)Breast cancer 
tissue 

samples
RNA-seq Gene 

expression 
(normal)

TCGA triple negative breast cancer 
sample
(163)

Affymetrix 
U133 2.0

Gene 
expression GSE36133 (12)

Breast cancer 
cell lines CRISPR 

Screening
Gene 

essentiality
Project Achilles (v3.3.8)
Total sample size = 28

Part 2. Databases

Data type Database Data
Protein-
protein 
interaction 
(PPI) network

STRING[28] PPI data in STRING database for human (v11):
11,609,230 interactions

Drug targets DrugBank[31] Food and Drug Administration (FDA)-approved drugs
and their associated target proteins:
1,769 gene targets

Synthetic
lethal pairs

SynlethDB[29] 19,613 synthetic lethal gene pairs in human cancer

Drug 
sensitivity 
data

DrugComb[30] Drug synergies among cell lines on 5,226 drug pairs (HS578T)

672
673
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Table 2. Analysis of overall survival among the nine top-ranked target combinations in 
pancreatic ductal adenocarcinoma (PDAC).

Gene 1 Gene 2 Impact 
score

Log rank 
P-value

Hazard 
Ratio (HR)

HR P-
value Pathways

EGLN1 TFRC -255.12 0.02 2.00 0.02 hypoxia, ferroptosis
MAP2K2 TFRC -255.05 0.08 1.60 0.08 MAPK, ferroptosis

HPSE TFRC -255.01 0.19 1.50 0.20
Metabolism, 
ferroptosis

PPIC TFRC -254.86 0.06 1.80 0.06
Immune system, 
ferroptosis

FRK TFRC -254.86 0.04 1.80 0.05
Immune system, 
ferroptosis

EGLN1 COX7C -254.79 0.84 1.10 0.85
Hypoxia, 
metabolism

XDH TFRC -254.75 0.001 2.40 0.002
Metabolism, 
ferroptosis

MAP2K2 COX7C -254.72 0.14 0.65 0.15
MAPK, oxidative 
phosphorylation

FTL TFRC -254.71 0.10 1.60 0.10
ferroptosis, 
ferroptosis

674
675
676
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Table 3. Contingency table between drug- and and target-combination synergy.

Predicted target-
combination synergy

Predicted target-
combination non-synergy

Drug-combination 
synergy

2,594 7,097

Drug-combination 
non-synergy

0 4,375

677
678
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679 Figure 1. Overview of double-target selection guided by CRISPR screening and network 
680 (DSCN).
681
682
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Note: (a) Original network. (b) Most-probable path for 𝑇1. (c) Random-walk path from 𝑇1. (d) Diffusion path 
in four hierarchical tiers.

683
684 Figure 2. Network configurations for three methods to calculate impact score.
685
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686
687 Figure 3. Correlation between the predicted and observed log-fold changes in gene 
688 expression among MAP2K1 and MAP2K2 neighbor genes in the protein-protein interaction 
689 (PPI) network.
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690

691 Figure 4. Comparison of target-combination impact scores using synthetic versus non-
692 synthetic lethal gene pairs in pancreatic cancer. The three methods for calculating impact 
693 score–the most-probable, random-walk, and diffusion paths are defined in Figure 2. The 
694 impact scores (IS) are calculated from either the global protein-protein interaction (PPI) 
695 network (global) or the local PPI network (local).
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696

697 Figure 5. Kaplan-Meier curves for the nine top-ranked target combinations (a)-(i). Kaplan-
698 Meier curves and other survival statistics for (a) < EGLN1, TRFC>, (b) < MAP2K2, TRFC>, 
699 (c) < HPSE, TRFC>, (d) < PPIC, TRFC>, (e) < FRK, TRFC>, (f) < EGLN1, COX7C>, (g) < 
700 XDH, TRFC>, (h) < MAP2K2, COX7C>, and (i) < FTL, TRFC>. Y-axis indicates survival 
701 probability while X-axis indicates months. The blue line in each plot indicates low expression 
702 of the two gene groups, and the red line, high expression.

703

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.06.459081doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459081
http://creativecommons.org/licenses/by/4.0/

